Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.298
Filtrar
1.
BMC Oral Health ; 24(1): 514, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698364

RESUMO

BACKGROUND: Studies have shown that visfatin is an inflammatory factor closely related to periodontitis. We examined the levels of visfatin in gingival crevicular fluid (GCF) and gingival tissues under different periodontal conditions, in order to provide more theoretical basis for exploring the role of visfatin in the pathogenesis of periodontitis. METHODS: We enrolled 87 subjects, with 43 in the chronic periodontitis (CP) group, 21 in the chronic gingivitis (CG) group, and 23 in the periodontal health (PH) group. Periodontal indexes (PD, AL, PLI, and BI) were recorded. GCF samples were collected for visfatin quantification, and gingival tissues were assessed via immunohistochemical staining. RESULTS: Visfatin levels in GCF decreased sequentially from CP to CG and PH groups, with statistically significant differences (P < 0.05). The CP group exhibited the highest visfatin levels, while the PH group had the lowest. Gingival tissues showed a similar trend, with significant differences between groups (P < 0.001). Periodontal indexes were positively correlated with visfatin levels in both GCF and gingival tissues (P < 0.001). A strong positive correlation was observed between visfatin levels in GCF and gingival tissues (rs = 0.772, P < 0.001). CONCLUSION: Greater periodontal destruction corresponded to higher visfatin levels in GCF and gingival tissues, indicating their potential collaboration in damaging periodontal tissues. Visfatin emerges as a promising biomarker for periodontitis and may play a role in its pathogenesis.


Assuntos
Periodontite Crônica , Gengiva , Líquido do Sulco Gengival , Gengivite , Nicotinamida Fosforribosiltransferase , Índice Periodontal , Humanos , Líquido do Sulco Gengival/química , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/análise , Masculino , Feminino , Estudos Transversais , Gengiva/metabolismo , Adulto , Periodontite Crônica/metabolismo , Gengivite/metabolismo , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/análise
2.
Dent Med Probl ; 61(2): 225-231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567731

RESUMO

BACKGROUND: Type 2 diabetes mellitus (DM) is a known systemic risk factor for periodontitis. An increased expression of CD44 has been suggested in type 2 diabetics and periodontitis patients. OBJECTIVES: The present study aimed to assess the expression of CD44 antigen in patients with chronic periodontitis (CP) and type 2 DM in a South Indian urban population. Additionally, the relationships between the expression of CD44 antigen in gingival tissues, periodontal clinical parameters, and the random blood sugar (RBS) and glycated hemoglobin (HbA1c) levels were assessed. MATERIAL AND METHODS: A total of 63 subjects were divided into 3 groups: systemically and periodontally healthy controls (group H); CP patients, otherwise healthy (group CP); and CP patients with type 2 DM (group CP+DM). Periodontal parameters were recorded for all groups, and additionally the RBS and HbA1c levels for group CP+DM. Gingival tissue samples were obtained and subjected to immunohistochemical analysis for CD44. RESULTS: The expression of CD44 was significantly higher in the diseased groups. Epithelial CD44 expression was significantly stronger in group CP+DM as compared to groups CP and H (p < 0.001), whereas connective tissue CD44 expression was similar in groups CP and CP+DM (p = 0.657). Furthermore, an inverse relationship was observed between blood glucose parameters and CD44 expression in the epithelium and connective tissue. CONCLUSIONS: The expression of CD44 increased with the severity of periodontal disease. Additionally, glycemic control in patients with CP and type 2 DM had an impact on CD44 expression. Our findings indicate a possible destructive role of CD44 in the pathogenesis of periodontal diseases in individuals with type 2 DM.


Assuntos
Periodontite Crônica , Diabetes Mellitus Tipo 2 , Gengiva , Hemoglobinas Glicadas , Receptores de Hialuronatos , Humanos , Receptores de Hialuronatos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Masculino , Feminino , Periodontite Crônica/metabolismo , Adulto , Hemoglobinas Glicadas/metabolismo , Pessoa de Meia-Idade , Gengiva/metabolismo , Imuno-Histoquímica , Glicemia/metabolismo , Índice Periodontal , Estudos de Casos e Controles , Índia
3.
Sci Rep ; 14(1): 9497, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664418

RESUMO

Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFß/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFß/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFß-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFß-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.


Assuntos
Anormalidades Múltiplas , Proteínas Adaptadoras de Transdução de Sinal , Fissura Palatina , Hipoplasia do Esmalte Dentário , Exoftalmia , Fibroblastos , Fibrose , Gengiva , Osteosclerose , Proteômica , Transdução de Sinais , Fatores de Transcrição , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Humanos , Fator de Crescimento Transformador beta/metabolismo , Gengiva/metabolismo , Gengiva/patologia , Proteômica/métodos , Fibrose/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Osteosclerose/metabolismo , Osteosclerose/genética , Osteosclerose/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Hipoplasia do Esmalte Dentário/metabolismo , Hipoplasia do Esmalte Dentário/genética , Hipoplasia do Esmalte Dentário/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Microcefalia/metabolismo , Microcefalia/genética , Microcefalia/patologia , Feminino , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Masculino , Transativadores/metabolismo , Transativadores/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Caseína Quinase I/metabolismo , Caseína Quinase I/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Células Cultivadas
4.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674094

RESUMO

Porphyromonas gingivalis (Pg) and its gingipain proteases contribute to Alzheimer's disease (AD) pathogenesis through yet unclear mechanisms. Cellular secretion of small extracellular vesicles or exosomes (EXO) increases with aging as part of the senescence-associated secretory phenotype (SASP). We have shown that EXO isolated from Pg-infected dendritic cells contain gingipains and other Pg antigens and transmit senescence to bystander gingival cells, inducing alveolar bone loss in mice in vivo. Here, EXO were isolated from the gingiva of mice and humans with/without periodontitis (PD) to determine their ability to penetrate the blood-brain barrier (BBB) in vitro and in vivo. PD was induced by Pg oral gavage for 6 weeks in C57B6 mice. EXO isolated from the gingiva or brain of donor Pg-infected (PD EXO) or control animals (Con EXO) were characterized by NTA, Western blot, and TEM. Gingival PD EXO or Con EXO were labeled and injected into the gingiva of uninfected WT mouse model. EXO biodistribution in brains was tracked by an in vivo imaging system (IVIS) and confocal microscopy. The effect of human PD EXO on BBB integrity and permeability was examined using TEER and FITC dextran assays in a human in vitro 3D model of the BBB. Pg antigens (RGP and Mfa-1) were detected in EXO derived from gingival and brain tissues of donor Pg-infected mice. Orally injected PD EXO from donor mice penetrated the brains of recipient uninfected mice and colocalized with hippocampal microglial cells. IL-1ß and IL-6 were expressed in human PD EXO and not in Con EXO. Human PD EXO promoted BBB permeability and penetrated the BBB in vitro. This is the first demonstration that microbial-induced EXO in the oral cavity can disseminate, cross the BBB, and may contribute to AD pathogenesis.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Gengiva , Periodontite , Porphyromonas gingivalis , Barreira Hematoencefálica/metabolismo , Animais , Humanos , Camundongos , Vesículas Extracelulares/metabolismo , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Periodontite/microbiologia , Periodontite/metabolismo , Periodontite/patologia , Gengiva/metabolismo , Gengiva/microbiologia , Camundongos Endogâmicos C57BL , Masculino , Exossomos/metabolismo , Feminino , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/metabolismo
5.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 486-495, 2024 May 09.
Artigo em Chinês | MEDLINE | ID: mdl-38637003

RESUMO

Objective: To observe whether endothelial cells undergo pyroptosis in the inflammatory periodontal environment by using a model in vivo and in vitro, providing an experimental basis for indepth understanding of the underlying pathogenesis of periodontitis. Methods: According to the classification of periodontal diseases of 2018, gingival tissues were collected from periodontally healthy subjects and patients with stage Ⅲ-Ⅳ, grade C periodontitis, who presented Department of Oral and Maxillofacial Surgery and Department of Periodontology, School of Stomatology, The Fourth Military Medical University from April to May 2022. Immunohistochemical staining was performed to detect the expression level and distribution of gasdermin D (GSDMD), a hallmark protein of cell pyroptosis, in gingival tissues. Periodontitis models were established in each group by ligating the maxillary second molar teeth of three mice for 2 weeks (ligation group). The alveolar bone resorption was determined by micro-CT (mice without ligation treatment were used as the control group), and the colocalization of GSDMD and CD31 were quantitatively analyzed by immunofluorescence staining in gingival tissues of healthy and inflammatory mice. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro and treated with lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg) combined with adenosine triphosphate (ATP) at various concentrations of 0.5, 1.0, 2.5, 5.0, and 10.0 mg/L, respectively, and the 0 mg/L group was set as the control group at the same time. Scanning electron microscopy was used to observe the morphology of HUVECs. Western blotting was used to detect the expression of gasdermin D-N terminal domains (GSDMD-N) protein and immunofluorescence cell staining was used to detect the expression and distribution of GSDMD. Cell counting kit-8 (CCK-8) was used to detect the proliferative ability of HUVECs, and propidium iodide (PI) staining was used to detect the integrity of cell membrane of HUVECs. Results: Immunohistochemistry showed that GSDMD in gingival tissues of periodontitis was mainly distributed around blood vessels and its expression level was higher than that in healthy tissues. Micro-CT showed that alveolar bone resorption around the maxillary second molar significantly increased in ligation group mice compared with control subjects (t=8.88, P<0.001). Immunofluorescence staining showed significant colocalization of GSDMD with CD31 in the gingival vascular endothelial cells in mice of ligation group. The results of scanning electron microscopy showed that there were pores of different sizes, the typical morphology of pyroptosis, on HUVECs cell membranes in the inflammatory environment simulated by ATP combined with different concentrations of LPS, and 2.5 mg/L group showed the most dilated and fused pores on cell membranes, with the cells tended to lyse and die. Western blotting showed that the expression of GSDMD-N, the hallmark protein of cell pyroptosis, was significantly higher in 2.5 and 5.0 mg/L groups than that in the control group (F=3.86, P<0.01). Immunofluorescence cell staining showed that the average fluorescence intensity of GSDMD in 2.5 mg/L group elevated the most significantly in comparison with that in the control group (F=35.25, P<0.001). The CCK-8 proliferation assay showed that compared to the control group (1.00±0.02), 0.5 mg/L (0.52±0.07), 1.0 mg/L (0.57±0.10), 2.5 mg/L (0.58±0.04), 5.0 mg/L (0.55±0.04), 10.0 mg/L (0.61±0.03) groups inhibited cell proliferation (F=39.95, P<0.001). PI staining showed that the proportion of positive stained cells was highest [(56.07±3.22)%] in 2.5 mg/L group (F=88.24, P<0.001). Conclusions: Endothelial cells undergo significant pyroptosis in both in vivo and in vitro periodontal inflammatory environments, suggesting that endothelial cell pyroptosis may be an important pathogenic factor contributing to the pathogenesis of periodontitis.


Assuntos
Células Endoteliais , Gengiva , Células Endoteliais da Veia Umbilical Humana , Periodontite , Proteínas de Ligação a Fosfato , Molécula-1 de Adesão Celular Endotelial a Plaquetas , Piroptose , Animais , Camundongos , Humanos , Periodontite/metabolismo , Periodontite/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gengiva/patologia , Gengiva/metabolismo , Gengiva/citologia , Proteínas de Ligação a Fosfato/metabolismo , Células Endoteliais/metabolismo , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microtomografia por Raio-X , Modelos Animais de Doenças , Porphyromonas gingivalis
6.
BMC Oral Health ; 24(1): 510, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689229

RESUMO

BACKGROUND: Periodontitis is a chronic osteolytic inflammatory disease, where anti-inflammatory intervention is critical for restricting periodontal damage and regenerating alveolar bone. Ropinirole, a dopamine D2 receptor agonist, has previously shown therapeutic potential for periodontitis but the underlying mechanism is still unclear. METHODS: Human gingival fibroblasts (HGFs) treated with LPS were considered to mimic periodontitis in vitro. The dosage of Ropinirole was selected through the cell viability of HGFs evaluation. The protective effects of Ropinirole on HGFs were evaluated by detecting cell viability, cell apoptosis, and pro-inflammatory factor levels. The molecular docking between NAT10 and Ropinirole was performed. The interaction relationship between NAT10 and KLF6 was verified by ac4C Acetylated RNA Immunoprecipitation followed by qPCR (acRIP-qPCR) and dual-luciferase reporter assay. RESULTS: Ropinirole alleviates LPS-induced damage of HGFs by promoting cell viability, inhibiting cell apoptosis and the levels of IL-1ß, IL-18, and TNF-α. Overexpression of NAT10 weakens the effects of Ropinirole on protecting HGFs. Meanwhile, NAT10-mediated ac4C RNA acetylation promotes KLF6 mRNA stability. Upregulation of KLF6 reversed the effects of NAT10 inhibition on HGFs. CONCLUSIONS: Taken together, Ropinirole protected HGFs through inhibiting the NAT10 ac4C RNA acetylation to decrease the KLF6 mRNA stability from LPS injury. The discovery of this pharmacological and molecular mechanism of Ropinirole further strengthens its therapeutic potential for periodontitis.


Assuntos
Fibroblastos , Indóis , Fator 6 Semelhante a Kruppel , Acetiltransferases N-Terminal , Periodontite , Humanos , Acetilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/efeitos dos fármacos , Gengiva/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Fator 6 Semelhante a Kruppel/metabolismo , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Acetiltransferases N-Terminal/antagonistas & inibidores
7.
J Transl Med ; 22(1): 407, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689292

RESUMO

BACKGROUND AND OBJECTIVE: Progranulin (PGRN), a multifunctional growth factor, plays indispensable roles in the regulation of cancer, inflammation, metabolic diseases, and neurodegenerative diseases. Nevertheless, its immune regulatory role in periodontitis is insufficiently understood. This study attempts to explore the regulatory effects of PGRN on macrophage polarization in periodontitis microenvironment. METHODS: Immunohistochemical (IHC) and multiplex immunohistochemical (mIHC) stainings were performed to evaluate the expression of macrophage-related markers and PGRN in gingival samples from periodontally healthy subjects and periodontitis subjects. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were polarized towards M1 or M2 macrophages by the addition of LPS or IL-4, respectively, and were treated with or without PGRN. Real-time fluorescence quantitative PCR (qRT-PCR), immunofluorescence staining (IF), enzyme-linked immunosorbent assay (ELISA), and flow cytometry were used to determine the expressions of M1 and M2 macrophage-related markers. Co-immunoprecipitation was performed to detect the interaction between PGRN and tumor necrosis factor receptor 2 (TNFR2). Neutralizing antibody was used to block TNFR2 to confirm the role of TNFR2 in PGRN-mediated macrophage polarization. RESULTS: The IHC and mIHC staining of human gingival slices showed a significant accumulation of macrophages in the microenvironment of periodontitis, with increased expressions of both M1 and M2 macrophage markers. Meanwhile, PGRN was widely expressed in the gingival tissue of periodontitis and co-expressed mainly with M2 macrophages. In vitro experiments showed that in RAW264.7 cells and BMDMs, M1 markers (CD86, TNF-α, iNOS, and IL-6) substantially decreased and M2 markers (CD206, IL-10, and Arg-1) significantly increased when PGRN was applied to LPS-stimulated macrophages relatively to LPS stimulation alone. Besides, PGRN synergistically promoted IL-4-induced M2 markers expression, such as CD206, IL-10, and Arg1. In addition, the co-immunoprecipitation result showed the direct interaction of PGRN with TNFR2. mIHC staining further revealed the co-localization of PGRN and TNFR2 on M2 macrophages (CD206+). Blocking TNFR2 inhibited the regulation role of PGRN on macrophage M2 polarization. CONCLUSIONS: In summary, PGRN promotes macrophage M2 polarization through binding to TNFR2 in both pro- and anti-inflammatory periodontal microenvironments.


Assuntos
Polaridade Celular , Macrófagos , Periodontite , Progranulinas , Receptores Tipo II do Fator de Necrose Tumoral , Periodontite/metabolismo , Periodontite/patologia , Macrófagos/metabolismo , Humanos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Progranulinas/metabolismo , Camundongos , Células RAW 264.7 , Gengiva/metabolismo , Gengiva/patologia , Masculino , Feminino , Adulto , Ativação de Macrófagos , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
8.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(4): 344-353, 2024 Apr 09.
Artigo em Chinês | MEDLINE | ID: mdl-38548591

RESUMO

Objective: To clarify the effect and the mechanism of G protein-coupled receptor class C group 5 member A (GPRC5A) on lipopolysaccharide (LPS)-induced inflammatory response in human gingival fibroblasts (GFs), thus to provide a foundation for delving into the role of G protein coupled receptor (GPCR) in periodontitis. Methods: Gingival tissue samples were collected from 3 individuals periodontally healthy (health group) and 3 patients with periodontitis (periodontitis group) in Shandong Stomatological Hospital from December 2022 to February 2023. The expressions of GPRC5A of the two groups were detected by immunohistochemistry staining. GFs used in this study were isolated from a portion of gingiva for the extraction of impacted teeth in School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University from December 2022 to February 2023. GFs were isolated with enzymic digestion and transfected with 30, 50 and 80 µmol/L small interfering RNA-GPRC5A (siGPRC5A) or small interfering RNA-negative control (siNC), regarded as the experimental group and the negative control one, respectively. The silencing efficiency of siGPRC5A was evaluated by real-time fluorescence quantitative PCR (RT-qPCR). Experiments were then conducted using these cells which were divided into four groups of negative control (NC), LPS, siGPRC5A+LPS and siGPRC5A. The mRNA and protein levels of GPRC5A in GFs under 1 mg/L LPS-induced GFs inflammatory state were evaluated by RT-qPCR and Western blotting analysis after GPRC5A knockdown. RT-qPCR was used to detect the gene expression levels of the inflammatory cytokines in GFs induced by LPS, namely, interleukin (IL)-1ß, IL-6, IL-8, tumor necrosis factor (TNF)-α, prostaglandin endoperoxide synthase 2 (PTGS2) after GPRC5A knockdown. Western blotting analysis and immunofluorescence staining were used to further investigate the activation of nuclear factor-kappa B (NF-κB) signaling pathway. Results: Immunohistochemistry staining showed that the expression of GPRC5A in gingival tissues of periodontitis group (0.132±0.006) increased compared with that in periodontally healthy group (0.036±0.019) (t=8.24, P=0.001). Meanwhile, RT-qPCR results showed that the gene expression levels of GPRC5A at different time point (2, 6, 12, 24 h) in LPS-induced GFs (0.026±0.002, 0.042±0.005, 0.004±0.000, 0.016±0.000) were upregulated compared with those in the NC group (0.004±0.000, 0.004±0.000, 0.002±0.000, 0.007±0.000) (all P<0.001), respectively, and peaked at 6 h. The 50 µmol/L group displayed the most significant decrease in siGPRC5A expression (31.16±3.29) compared with that of the siNC group (100.00±4.88) (F=297.98, P<0.001). The results of RT-qPCR and Western blotting analysis showed that siGPRC5A (0.27±0.03, 0.71±0.00) suppressed the expressions of GPRC5A at both gene and protein levels, while LPS (1.30±0.10, 1.43±0.03) was able to promote the expressions of GPRC5A compared with those of the NC group (1.00±0.01, 1.00±0.00)(all P<0.001). The siGPRC5A+LPS group (0.39±0.03, 1.06±0.16) also inhibited the increase of GPRC5A at both gene and protein levels induced by LPS (1.30±0.10, 1.43±0.03) (F=208.38, P<0.001; F=42.04, P<0.001). RT-qPCR results showed that the expressions of IL-8, IL-1ß, IL-6, TNF-α, and PTGS2 at the gene level in LPS group were highly increased compared with those in the NC group (all P<0.001). siGPRC5A significantly suppressed LPS-induced expressions of these inflammatory cytokines in GFs (all P<0.001). Western blotting analysis showed that the levels of p65 and IκBα protein phosphorylation in the LPS group were highly increased compared with those in the NC group, and siGPRC5A could effectively suppressed LPS-induced protein phosphorylation (all P<0.01). Furthermore, immunofluorescence staining showed that NF-κB p65 in the control group was mainly concentrated in the cytoplasm, and partially translocated to the nucleus under the stimulation of LPS. siGPRC5A was able to inhibit LPS-induced intranuclear translocation of p65 to a certain extent. Conclusions: GPRC5A expression was upregulated in periodontitis, and GPRC5A knockdown inhibited LPS-induced inflammation. Moreover, GPRC5A played a role in inflammation regulation by interacting with NF-κB signaling pathway.


Assuntos
Periodontite , Receptores Acoplados a Proteínas G , Humanos , Ciclo-Oxigenase 2/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Fibroblastos , Gengiva/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Periodontite/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
BMC Oral Health ; 24(1): 266, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395886

RESUMO

BACKGROUND: It is hypothesized that whole salivary prostaglandin E2 (PgE2) levels are higher in patients with type-2 diabetes mellitus (type-2 DM) than non-diabetic individuals with periodontal inflammation; and that whole salivary expression of PgE2 is correlated with hemoglobin A1C (HbA1c) levels. The aim of the present study was to compare whole salivary PgE2 levels among patients with type-2 DM and non-diabetic individuals with periodontal inflammation. METHODS: Sociodemographic data, duration since the diagnosis and management of type-2 DM, most recent hemoglobin A1C (HbA1c level), and any familial history of DM was retrieved from patient's healthcare records. Participants were divided into four groups: Group-1: type-2 diabetics with periodontal inflammation; Group-2: type-2 diabetics without periodontal inflammation; Group-3: non-diabetics with periodontal inflammation; and Group-4: non-diabetics without periodontal inflammation. Plaque and gingival indices (PI and GI), probing depth (PD), clinical attachment loss (CAL) and marginal bone loss (MBL) were measured. Unstimulated whole saliva samples were collected and PgE2 levels were measured. Group-comparisons were done and P < 0.05 were considered statistically significant. RESULTS: One-hundred-sixty individuals were included. Mean HbA1c levels were higher in Group-1 than groups 2 (P < 0.05), 3 (P < 0.05) and 4 (P < 0.05). The PI (P < 0.05), GI (P < 0.05) and PD (P < 0.05) were higher in Group-1 than groups 2 and 4. The CAL was higher in Group-1 than groups 2 (P < 0.05) and 3 (P < 0.05). The PD (P < 0.05), PI (P < 0.05) and GI (P < 0.05) were higher in Group-3 than Group-4. The MBL was higher in Group-1 than groups 2 (P < 0.05), 3 (P < 0.05) and 4 (P < 0.05). The PgE2 levels were higher in Group-1 than groups 2 (P < 0.05), 3 (P < 0.05) and 4 (P < 0.05). CONCLUSION: Hyperglycemia in patients with type-2 DM is associated with increased expression of whole salivary PgE2 levels and worsened periodontal inflammation compared with individuals with well-controlled type-2 DM and non-diabetic individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamação , Humanos , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Gengiva/metabolismo , Prostaglandinas , Índice de Placa Dentária
10.
J Periodontal Res ; 59(2): 280-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38226427

RESUMO

OBJECTIVE: The objective of the study was to evaluate the expression of oxytocin receptors in normal and inflamed gingiva, as well as the effects of systemic administration of oxytocin in bone loss and gum inflammatory mediators in a rat model of experimental periodontitis. BACKGROUND DATA: Current evidence supports the hypothesis of a disbalance between the oral microbiota and the host's immune response in the pathogenesis of periodontitis. Increased complexity of the microbial biofilm present in the periodontal pocket leads to local production of nitrogen and oxygen-reactive species, cytokines, chemokines, and other proinflammatory mediators which contribute to periodontal tissue destruction and bone loss. Oxytocin has been suggested to participate in the modulation of immune and inflammatory processes. We have previously shown that oxytocin, nitric oxide, and endocannabinoid system interact providing a mechanism of regulation for systemic inflammation. Here, we aimed at investigating not only the presence and levels of expression of oxytocin receptors on healthy and inflamed gingiva, but also the effects of oxytocin treatment on alveolar bone loss, and systemic and gum expression of inflammatory mediators involved in periodontal tissue damage using ligature-induced periodontitis. Therefore, anti-inflammatory strategies oriented at modulating the host's immune response could be valuable adjuvants to the main treatment of periodontal disease. METHODS: We used an animal model of ligature-induced periodontitis involving the placement of a linen thread (Barbour flax 100% linen suture, No. 50; size 2/0) ligature around the neck of first lower molars of adult male rats. The ligature was left in place during the entire experiment (7 days) until euthanasia. Animals with periodontitis received daily treatment with oxytocin (OXT, 1000 µg/kg, sc.) or vehicle and/or atosiban (3 mg/kg, sc.), an antagonist of oxytocin receptors. The distance between the cement-enamel junction and the alveolar bone crest was measured in stained hemimandibles in the long axis of both buccal and lingual surfaces of both inferior first molars using a caliper. TNF-α levels in plasma were determined using specific rat enzyme-linked immunosorbent assays (ELISA). OXT receptors, IL-6, IL-1ß, and TNF-α expression were determined in gingival tissues by semiquantitative or real-time PCR. RESULTS: We show that oxytocin receptors are expressed in normal and inflamed gingival tissues in male rats. We also show that the systemic administration of oxytocin prevents the experimental periodontitis-induced increased gum expression of oxytocin receptors, TNF-α, IL-6, and IL-1ß (p < .05). Furthermore, we observed a reduction in bone loss in rats treated with oxytocin in our model. CONCLUSIONS: Our results demonstrate that oxytocin is a novel and potent modulator of the gingival inflammatory process together with bone loss preventing effects in an experimental model of ligature-induced periodontitis.


Assuntos
Perda do Osso Alveolar , Periodontite , Ratos , Masculino , Animais , Ocitocina/uso terapêutico , Ocitocina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptores de Ocitocina/metabolismo , Modelos Animais de Doenças , Periodontite/metabolismo , Gengiva/metabolismo , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/prevenção & controle , Perda do Osso Alveolar/etiologia , Processo Alveolar/metabolismo , Mediadores da Inflamação/metabolismo
11.
Sci China Life Sci ; 67(4): 720-732, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172357

RESUMO

The gingiva is a key oral barrier that protects oral tissues from various stimuli. A loss of gingival tissue homeostasis causes periodontitis, one of the most prevalent inflammatory diseases in humans. The human gingiva exists as a complex cell network comprising specialized structures. To understand the tissue-specific pathophysiology of the gingiva, we applied a recently developed spatial enhanced resolution omics-sequencing (Stereo-seq) technique to obtain a spatial transcriptome (ST) atlas of the gingiva in healthy individuals and periodontitis patients. By utilizing Stereo-seq, we identified the major cell types present in the gingiva, which included epithelial cells, fibroblasts, endothelial cells, and immune cells, as well as subgroups of epithelial cells and immune cells. We further observed that inflammation-related signalling pathways, such as the JAK-STAT and NF-κB signalling pathways, were significantly upregulated in the endothelial cells of the gingiva of periodontitis patients compared with those of healthy individuals. Additionally, we characterized the spatial distribution of periodontitis risk genes in the gingiva and found that the expression of IFI16 was significantly increased in endothelial cells of inflamed gingiva. In conclusion, our Stereo-seq findings may facilitate the development of innovative therapeutic strategies for periodontitis by mapping periodontitis-relevant genes and pathways and effector cells.


Assuntos
Gengiva , Periodontite , Humanos , Gengiva/metabolismo , Transcriptoma , Células Endoteliais/metabolismo , Periodontite/genética , Periodontite/metabolismo , Perfilação da Expressão Gênica
12.
J Oral Biosci ; 66(1): 26-34, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37949170

RESUMO

OBJECTIVE: Periodontal disease is a risk factor for preterm delivery, and elevated female hormone levels during pregnancy promote hormone-dependent periodontopathogenic bacterial growth and gingivitis. Although the saliva of pregnant women contains female hormones at elevated levels, their effects on the gingiva are poorly understood. Therefore, in this study, we investigated the effects of estradiol and progesterone stimulation on gingival epithelial cells via ingenuity pathway analysis. METHODS: Human gingival epithelial progenitors were cultured in a CnT-Prime medium; 17ß-estradiol (E2) and progesterone (P4) were used as the reagents. Cells treated with dimethyl sulfoxide alone were used as the control group. Cells in the control and experimental groups were incubated for 12 h. RNA was extracted from the cultured cells, RNA-Seq was performed, and pathway analysis was conducted. RESULTS: Differentially expressed genes were detected for 699 (over 2-fold increase) and 348 (decrease) genes in group E2 and for 1448 (increase) and 924 (decrease) genes in group P4 compared with those in the control group (FDR <0.05, n = 4). The z-scores of the pathways suggest that E2 and P4 increased the activity of the wound healing signaling pathway. The activation of this pathway was higher in the E2 and P4 groups than that in the control group. CONCLUSIONS: The results of this study suggest that estradiol and progesterone may affect gingival homeostasis and wound healing.


Assuntos
Estradiol , Progesterona , Recém-Nascido , Feminino , Gravidez , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Gengiva/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas
13.
J Periodontol ; 95(3): 268-280, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37515488

RESUMO

BACKGROUND: Inducible nitric oxide synthase (iNOS) is associated with inflammation and osteoclastic differentiation in periodontal disease. This study was conducted to compare the time-dependent variation in iNOS production between the gingiva and other periodontal tissues and to explore the potential association with C-reactive protein (CRP) in early periodontal disease. METHODS: Ligature-induced periodontal disease models (0-14 days) were established in wild-type and CRP knockout rats. Changes in CRP, iNOS, and autophagy levels were examined in the gingiva and other periodontal tissues. Macrophages were treated with lipopolysaccharide and chloroquine to explore the role of autophagy in iNOS production. iNOS, CRP, and autophagy-related proteins were analyzed using Western blotting, immunostaining, and enzyme-linked immunosorbent assays. mRNA expression was detected by quantitative real-time polymerase chain reaction. Hematoxylin and eosin staining was used for histological analysis. Cathepsin K immunostaining and microcomputed tomography of the maxillae were performed to compare alveolar bone resorption. RESULTS: iNOS and CRP levels increased rapidly in periodontal tissues, as observed on Day 2 of ligature, then decreased more rapidly in the gingiva than in other periodontal tissues. CRP deficiency did not prevent iNOS generation, but effectively accelerated iNOS reduction and delayed alveolar bone loss. The CRP effect on iNOS was accompanied by a change in autophagy, which was reduced by CRP knockout. CONCLUSIONS: The regulation of iNOS by CRP shows temporospatial variation in early periodontal disease and is potentially associated with autophagy. These findings may contribute to the early detection and targeted treatment of periodontal disease.


Assuntos
Perda do Osso Alveolar , Proteína C-Reativa , Ratos , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína C-Reativa/metabolismo , Microtomografia por Raio-X , Perda do Osso Alveolar/patologia , Gengiva/metabolismo , Óxido Nítrico/metabolismo
14.
Hum Cell ; 37(1): 193-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882908

RESUMO

To investigate biological processes of the periodontium, in vitro primary cell models have been established. To study the biology of the gingiva, primary gingival fibroblast cell models are widely used. For such experiments, cells need to be expanded and passaged. A key assumption is that primary cells maintain most of their original characteristics they have in situ. The aim of this research is to explore the impact of early passaging on selected gene expression of human gingival fibroblast cells. For this purpose, gene expression from the outgrowth of the resected tissues until the fourth passage was followed for nine tissue samples, from both healthy and diseased sites. Micrographs were taken from the cultures, RNA was extracted from the samples of each passage and quantitative PCR was performed for selected genes representing various biological processes. Epithelial cells were present during the first outgrowth, but were no longer present in the second passage. Our results indicate that the morphology of the gingival fibroblast cells does not change with passaging and that passages 2-4 contain only gingival fibroblasts. Gene expression of M-CSF, TNF-α, TLR4, POSTN and FAPα was unchanged by passaging, the expression of IL-6, IL-1ß and TLR2 decreased due to passaging and the expression of in particular the selected osteogenesis genes (ALP, RUNX2, Osteonectin, COL1A), OPG and MKI67 increased with passaging. Worldwide, use of the same passage in laboratory experiments using primary cell cultures is the standard. Our results support this, since for certain genes, in particular osteogenesis genes, expression may alter solely due to passaging.


Assuntos
Gengiva , Osteogênese , Humanos , Gengiva/metabolismo , Osteogênese/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Epiteliais , Fibroblastos/metabolismo , Células Cultivadas
15.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003346

RESUMO

Non-invasive physical plasma (NIPP), an electrically conductive gas, is playing an increasingly important role in medicine due to its antimicrobial and regenerative properties. However, NIPP is not yet well established in dentistry, although it has promising potential, especially for periodontological applications. The aim of the present study was to investigate the effect of NIPP on a commercially available human gingival fibroblast (HGF) cell line and primary HGFs in the presence of periodontitis-associated bacteria. First, primary HGFs from eight patients were characterised by immunofluorescence, and cell numbers were examined by an automatic cell counter over 5 days. Then, HGFs that were preincubated with Fusobacterium nucleatum (F.n.) were treated with NIPP. Afterwards, the IL-6 and IL-8 levels in the cell supernatants were determined by ELISA. In HGFs, F.n. caused a significant increase in IL-6 and IL-8, and this F.n.-induced upregulation of both cytokines was counteracted by NIPP, suggesting a beneficial effect of physical plasma on periodontal cells in a microbial environment. The application of NIPP in periodontal therapy could therefore represent a novel and promising strategy and deserves further investigation.


Assuntos
Interleucina-6 , Periodontite , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Citocinas/metabolismo , Fibroblastos/metabolismo , Periodontite/terapia , Periodontite/metabolismo , Gengiva/metabolismo , Células Cultivadas
16.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003371

RESUMO

Bone allografts are widely used as osteoconductive support to guide bone regrowth. Bone allografts are more than a scaffold for the immigrating cells as they maintain some bioactivity of the original bone matrix. Yet, it remains unclear how immigrating cells respond to bone allografts. To this end, we have evaluated the response of mesenchymal cells exposed to acid lysates of bone allografts (ALBA). RNAseq revealed that ALBA has a strong impact on the genetic signature of gingival fibroblasts, indicated by the increased expression of IL11, AREG, C11orf96, STC1, and GK-as confirmed by RT-PCR, and for IL11 and STC1 by immunoassays. Considering that transforming growth factor-ß (TGF-ß) is stored in the bone matrix and may have caused the expression changes, we performed a proteomics analysis, TGF-ß immunoassay, and smad2/3 nuclear translocation. ALBA neither showed detectable TGF-ß nor was the lysate able to induce smad2/3 translocation. Nevertheless, the TGF-ß receptor type I kinase inhibitor SB431542 significantly decreased the expression of IL11, AREG, and C11orf96, suggesting that other agonists than TGF-ß are responsible for the robust cell response. The findings suggest that IL11, AREG, and C11orf96 expression in mesenchymal cells can serve as a bioassay reflecting the bioactivity of the bone allografts.


Assuntos
Interleucina-11 , Fator de Crescimento Transformador beta , Interleucina-11/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Gengiva/metabolismo , Fibroblastos/metabolismo , Aloenxertos/metabolismo , Células Cultivadas
17.
J Dent Res ; 102(13): 1488-1497, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37822091

RESUMO

Several array-based microRNA (miRNA) expression studies independently showed increased expression of miRNAs hsa-miR-130a-3p, -142-3p, -144-3p, -144-5p, -223-3p, -17-5p, and -30e-5p in gingiva affected by periodontal inflammation. We aimed to determine direct target genes and signaling pathways regulated by these miRNAs to identify processes relevant to gingival inflammatory responses and tissue homeostasis. We transfected miRNA mimics (mirVana) for each of the 7 miRNAs separately into human primary gingival fibroblasts cultured from 3 different donors. Following RNA sequencing, differential gene expression and second-generation gene set enrichment analyses were performed. miRNA inhibition and upregulation was validated at the transcript and protein levels using quantitative reverse transcriptase polymerase chain reaction, Western blotting, and reporter gene assays. All 7 miRNAs significantly increased expression of the gene MET proto-oncogene, receptor tyrosine kinase (MET). Expression of known periodontitis risk genes CPEB1, ABCA1, and ATP6V1C1 was significantly repressed by hsa-miR-130a-3p, -144-3p, and -144-5p, respectively. The genes WASL, ENPP5, ARL6IP1, and IDH1 showed the most significant and strongest downregulation after hsa-miR-142-3p, -17-5p, -223-3p, and -30e-5p transfection, respectively. The most significantly regulated gene set of each miRNA related to cell cycle (hsa-miRNA-144-3p and -5p [Padj = 4 × 10-40 and Padj = 4 × 10-6], -miR-17-5p [Padj = 9.5 × 10-23], -miR-30e-5p [Padj = 8.2 × 10-18], -miR-130a-3p [Padj = 5 × 10-15]), integrin cell surface interaction (-miR-223-3p [Padj = 2.4 × 10-7]), and interferon signaling (-miR-142-3p [Padj = 5 × 10-11]). At the end of acute inflammation, gingival miRNAs bring together complex regulatory networks that lead to increased expression of the gene MET. This underscores the importance of mesenchymal cell migration and invasion during gingival tissue remodeling and proliferation in restoring periodontal tissue homeostasis after active inflammation. MET, a receptor of the mitogenic hepatocyte growth factor fibroblast secreted, is a core gene of this process.


Assuntos
Gengiva , MicroRNAs , Humanos , Gengiva/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/genética , Regulação para Cima , Inflamação , Perfilação da Expressão Gênica
18.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895087

RESUMO

Pomegranate has shown a favorable effect on gingivitis/periodontitis, but the mechanisms involved are poorly understood. The aim of this study was to test the effect of pomegranate peel extract (PoPEx) on gingiva-derived mesenchymal stromal cells (GMSCs) under physiological and inflammatory conditions. GMSC lines from healthy (H) and periodontitis (P) gingiva (n = 3 of each) were established. The lines were treated with two non-toxic concentrations of PoPEX (low-10; high-40 µg/mL), with or without additional lipopolysaccharide (LPS) stimulation. Twenty-four genes in GMSCs involved in different functions were examined using real-time polymerase chain reaction (RT-PCR). PoPEx (mostly at higher concentrations) inhibited the basal expression of IL-6, MCP-1, GRO-α, RANTES, IP-10, HIF-1α, SDF-1, and HGF but increased the expression of IL-8, TLR3, TGF-ß, TGF-ß/LAP ratio, IDO-1, and IGFB4 genes in H-GMSCs. PoPEx increased IL-6, RANTES, MMP3, and BMP2 but inhibited TLR2 and GRO-α gene expression in P-GMSCs. LPS upregulated genes for proinflammatory cytokines and chemokines, tissue regeneration/repair (MMP3, IGFBP4, HGF), and immunomodulation (IP-10, RANTES, IDO-1, TLR3, COX-2), more strongly in P-GMSCs. PoPEx also potentiated most genes' expression in LPS-stimulated P-GMSCs, including upregulation of osteoblastic genes (RUNX2, BMP2, COL1A1, and OPG), simultaneously inhibiting cell proliferation. In conclusion, the modulatory effects of PoPEx on gene expression in GMSCs are complex and dependent on applied concentrations, GMSC type, and LPS stimulation. Generally, the effect is more pronounced in inflammation-simulating conditions.


Assuntos
Células-Tronco Mesenquimais , Periodontite , Punica granatum , Humanos , Gengiva/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Interleucina-6/metabolismo , Quimiocina CXCL10/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Receptor 3 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Periodontite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Expressão Gênica , Diferenciação Celular
19.
Clin Oral Investig ; 27(11): 6801-6812, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814163

RESUMO

OBJECTIVE: This study aimed to evaluate the Wnt/ß-catenin signaling pathway activity in gingival samples obtained from patients with periodontitis. MATERIALS AND METHODS: Fifteen patients with stage III grade B (SIIIGB) and eleven with stage III grade C (SIIIGC) periodontitis were included and compared to 15 control subjects. ß-Catenin, Wnt 3a, Wnt 5a, and Wnt 10b expressions were evaluated by Q-PCR. Topographic localization of tissue ß-catenin, Wnt 5a, and Wnt 10b was measured by immunohistochemical analysis. TNF-α was used to assess the inflammatory state of the tissues, while Runx2 was used as a mediator of active destruction. RESULTS: Wnt 3a, Wnt 5a, and Wnt 10b were significantly higher in gingival tissues in both grades of stage 3 periodontitis compared to the control group (p < 0.05). ß-Catenin showed intranuclear staining in connective tissue in periodontitis, while it was confined to intracytoplasmic staining in epithelial tissue and the cell walls in the control group. Wnt5a protein expression was elevated in periodontitis, with the most intense staining observed in the connective tissue of SIIIGC samples. Wnt10b showed the highest density in the connective tissue of patients with periodontitis. CONCLUSIONS: Our findings suggested that periodontal inflammation disrupts the Wnt/ß-catenin signaling pathway. CLINICAL RELEVANCE: Periodontitis disrupts Wnt signaling in periodontal tissues in parallel with tissue inflammation and changes in morphology. This change in Wnt-related signaling pathways that regulate tissue homeostasis in the immunoinflammatory response may shed light on host-induced tissue destruction in the pathogenesis of the periodontal disease.


Assuntos
Periodontite , Via de Sinalização Wnt , Humanos , beta Catenina/metabolismo , Periodontite/metabolismo , Gengiva/metabolismo , Inflamação/metabolismo
20.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569358

RESUMO

This study aimed to identify the microRNAs (miRNAs) associated with periodontitis (PD) in gingival tissues, and to evaluate the levels of these selected miRNAs in the saliva and blood plasma among participants with and without rheumatoid arthritis (RA). A genome-wide miRNA expression analysis in 16 gingival tissue samples revealed 177 deregulated miRNAs. The validation of the miRNA profiling results in 80 gingival tissue samples revealed that the PD-affected tissues had a higher expression of miR-140-3p and -145-5p, while the levels of miR-125a-3p were significantly lower in inflamed tissues. After a thorough validation, four miRNAs, namely miR-140-3p, -145-5p, -146a-5p, and -195-5p, were selected for further analysis in a larger sample of salivary (N = 173) and blood plasma (N = 221) specimens. Increased salivary levels of miR-145-5p were associated with higher mean values of pocket probing depth and bleeding on probing index. The plasma-derived levels of miR-140-3p were higher among the participants with PD. In conclusion, the gingival levels of miR-140-3p, -145-5p, and -125a-3p were independently associated with PD presence and severity. The salivary and blood plasma levels of the target miRNAs were diversely related to PD. Similar miRNA associations with PD were observed among the participants with and without RA.


Assuntos
Artrite Reumatoide , MicroRNA Circulante , MicroRNAs , Periodontite , Humanos , MicroRNAs/metabolismo , MicroRNA Circulante/genética , Artrite Reumatoide/genética , Periodontite/genética , Gengiva/metabolismo , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...