Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Elife ; 102021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34223816

RESUMO

Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time-resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time-specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway-specific readouts.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Genoma Fúngico/fisiologia , Resposta ao Choque Térmico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Genética Reversa , Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 116(19): 9481-9490, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019070

RESUMO

DNA double-strand breaks (DSBs) are serious genomic insults that can lead to chromosomal rearrangements if repaired incorrectly. To gain insight into the nuclear mechanisms contributing to these rearrangements, we developed an assay in yeast to measure cis (same site) vs. trans (different site) repair for the majority process of precise nonhomologous end joining (NHEJ). In the assay, the HO endonuclease gene is placed between two HO cut sites such that HO expression is self-terminated upon induction. We further placed an additional cut site in various genomic loci such that NHEJ in trans led to expression of a LEU2 reporter gene. Consistent with prior reports, cis NHEJ was more efficient than trans NHEJ. However, unlike homologous recombination, where spatial distance between a single DSB and donor locus was previously shown to correlate with repair efficiency, trans NHEJ frequency remained essentially constant regardless of the position of the two DSB loci, even when they were on the same chromosome or when two trans repair events were put in competition. Repair of similar DSBs via single-strand annealing of short terminal direct repeats showed substantially higher repair efficiency and trans repair frequency, but still without a strong correlation of trans repair to genomic position. Our results support a model in which yeast cells mobilize, and perhaps compartmentalize, multiple DSBs in a manner that no longer reflects the predamage position of two broken loci.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Loci Gênicos/fisiologia , Genoma Fúngico/fisiologia , Saccharomyces cerevisiae , 3-Isopropilmalato Desidrogenase/biossíntese , 3-Isopropilmalato Desidrogenase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
3.
PLoS One ; 14(3): e0212769, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30822315

RESUMO

The basidiomycete Chondrostereum purpureum (Silverleaf fungus) is a saprotroph and plant pathogen commercially used for combatting forest "weed" trees in vegetation management. However, little is known about its lignocellulose-degrading capabilities and the enzymatic machinery that is responsible for the degradative potential, and it is not yet clear to which group of wood-rot fungi it actually belongs. Here, we sequenced and analyzed the draft genome of C. purpureum (41.2 Mbp) and performed a quantitative proteomic approach during growth in submerged and solid-state cultures based on soybean meal suspension or containing beech wood supplemented with phenol-rich olive mill residues, respectively. The fungus harbors characteristic lignocellulolytic hydrolases (GH6 and GH7) and oxidoreductases (e.g. laccase, heme peroxidases). High abundance of some of these genes (e.g. 45 laccases, nine GH7) can be explained by gene expansion, e.g. identified for the laccase orthogroup ORTHOMCL11 that exhibits a total of 18 lineage-specific duplications. Other expanded genes families encode for proteins more related to a pathogenic lifestyle (e.g. protease and cytochrome P450s). The fungus responds to the presence of complex growth substrates (lignocellulose, phenolic residues) by the secretion of most of these lignocellulolytic and lignin-modifying enzymes (e.g. alcohol and aryl alcohol oxidases, laccases, GH6, GH7). Based on the genetic and enzymatic constitution, we consider the 'marasmioid' fungus C. purpureum as a 'phytopathogenic' white-rot fungus (WRF) that possesses a complex extracellular enzyme machinery to accomplish efficient lignocellulose degradation during both saprotrophic and phytopathogenic life phases.


Assuntos
Agaricales , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico/fisiologia , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Proteínas Fúngicas/biossíntese
4.
Evolution ; 73(3): 600-608, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30632605

RESUMO

Mutator alleles that elevate the genomic mutation rate may invade nonrecombining populations by hitchhiking with beneficial mutations. Mutators have been repeatedly observed to take over adapting laboratory populations and have been found at high frequencies in both microbial pathogen and cancer populations in nature. Recently, we have shown that mutators are only favored by selection in sufficiently large populations and transition to being disfavored as population size decreases. This population size-dependent sign inversion in selective effect suggests that population structure may also be an important determinant of mutation rate evolution. Although large populations may favor mutators, subdividing such populations into sufficiently small subpopulations (demes) might effectively inhibit them. On the other hand, migration between small demes that otherwise inhibit hitchhiking may promote mutator fixation in the whole metapopulation. Here, we use stochastic, agent-based simulations and evolution experiments with the yeast Saccharomyces cerevisiae to show that mutators can, indeed, be favored by selection in subdivided metapopulations composed of small demes connected by sufficient migration. In fact, we show that population structure plays a previously unsuspected role in promoting mutator success in subdivided metapopulations when migration is rare.


Assuntos
Genoma Fúngico/fisiologia , Taxa de Mutação , Saccharomyces cerevisiae/fisiologia , Seleção Genética , Modelos Genéticos , Densidade Demográfica , Saccharomyces cerevisiae/genética
5.
Curr Genet ; 65(1): 71-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29931377

RESUMO

Retrotransposons often spread rapidly through eukaryotic genomes until they are neutralized by host-mediated silencing mechanisms, reduced by recombination and mutation, and lost or transformed into benevolent entities. But the Ty1 retrotransposon appears to have been domesticated to guard the genome of Saccharomyces cerevisiae.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Inativação Gênica/fisiologia , Genoma Fúngico/fisiologia , Recombinação Genética/fisiologia , Retroelementos/fisiologia , Saccharomyces cerevisiae , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Genome Res ; 29(1): 74-84, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30552104

RESUMO

Repair of UV-induced DNA damage requires chromatin remodeling. How repair is initiated in chromatin remains largely unknown. We recently demonstrated that global genome-nucleotide excision repair (GG-NER) in chromatin is organized into domains in relation to open reading frames. Here, we define these domains, identifying the genomic locations from which repair is initiated. By examining DNA damage-induced changes in the linear structure of nucleosomes at these sites, we demonstrate how chromatin remodeling is initiated during GG-NER. In undamaged cells, we show that the GG-NER complex occupies chromatin, establishing the nucleosome structure at these genomic locations, which we refer to as GG-NER complex binding sites (GCBSs). We demonstrate that these sites are frequently located at genomic boundaries that delineate chromosomally interacting domains (CIDs). These boundaries define domains of higher-order nucleosome-nucleosome interaction. We demonstrate that initiation of GG-NER in chromatin is accompanied by the disruption of dynamic nucleosomes that flank GCBSs by the GG-NER complex.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Reparo do DNA/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico/fisiologia , Nucleossomos , Saccharomyces cerevisiae , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
PLoS Comput Biol ; 14(10): e1006548, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30356259

RESUMO

The size of a cell sets the scale for all biochemical processes within it, thereby affecting cellular fitness and survival. Hence, cell size needs to be kept within certain limits and relatively constant over multiple generations. However, how cells measure their size and use this information to regulate growth and division remains controversial. Here, we present two mechanistic mathematical models of the budding yeast (S. cerevisiae) cell cycle to investigate competing hypotheses on size control: inhibitor dilution and titration of nuclear sites. Our results suggest that an inhibitor-dilution mechanism, in which cell growth dilutes the transcriptional inhibitor Whi5 against the constant activator Cln3, can facilitate size homeostasis. This is achieved by utilising a positive feedback loop to establish a fixed size threshold for the Start transition, which efficiently couples cell growth to cell cycle progression. Yet, we show that inhibitor dilution cannot reproduce the size of mutants that alter the cell's overall ploidy and WHI5 gene copy number. By contrast, size control through titration of Cln3 against a constant number of genomic binding sites for the transcription factor SBF recapitulates both size homeostasis and the size of these mutant strains. Moreover, this model produces an imperfect 'sizer' behaviour in G1 and a 'timer' in S/G2/M, which combine to yield an 'adder' over the whole cell cycle; an observation recently made in experiments. Hence, our model connects these phenomenological data with the molecular details of the cell cycle, providing a systems-level perspective of budding yeast size control.


Assuntos
Ciclo Celular/fisiologia , Proliferação de Células/fisiologia , Tamanho Celular , Saccharomycetales , Sítios de Ligação , Biologia Computacional , Genoma Fúngico/fisiologia , Modelos Biológicos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Saccharomycetales/citologia , Saccharomycetales/metabolismo , Saccharomycetales/fisiologia , Fatores de Transcrição
8.
G3 (Bethesda) ; 7(7): 2015-2022, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28500048

RESUMO

Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique lifestyle and its remarkably recent whole genome duplication, H. werneckii provides opportunities for testing the role of genome duplications and adaptability to extreme environments. We previously assembled the genome of H. werneckii using short-read sequencing technology and found a remarkable degree of gene duplication. Technology limitations, however, precluded high-confidence annotation of the entire genome. We therefore revisited the H. wernickii genome using long-read, single-molecule sequencing and provide an improved genome assembly which, combined with transcriptome and nucleosome analysis, provides a useful resource for fungal halophile genomics. Remarkably, the ∼50 Mb H. wernickii genome contains 15,974 genes of which 95% (7608) are duplicates formed by a recent whole genome duplication (WGD), with an average of 5% protein sequence divergence between them. We found that the WGD is extraordinarily recent, and compared to Saccharomyces cerevisiae, the majority of the genome's ohnologs have not diverged at the level of gene expression of chromatin structure.


Assuntos
Ascomicetos/genética , Cromatina/fisiologia , Duplicação Gênica , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico/fisiologia
9.
Transcription ; 8(3): 169-174, 2017 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-28301289

RESUMO

Mediator is a conserved and essential coactivator complex broadly required for RNA polymerase II (RNAPII) transcription. Recent genome-wide studies of Mediator binding in budding yeast have revealed new insights into the functions of this critical complex and raised new questions about its role in the regulation of gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico/fisiologia , Complexo Mediador , RNA Polimerase II , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Complexo Mediador/genética , Complexo Mediador/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Nat Commun ; 8: 14444, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176784

RESUMO

The advent of complex multicellularity (CM) was a pivotal event in the evolution of animals, plants and fungi. In the fungal Ascomycota, CM is based on hyphal filaments and arose in the Pezizomycotina. The genus Neolecta defines an enigma: phylogenetically placed in a related group containing mostly yeasts, Neolecta nevertheless possesses Pezizomycotina-like CM. Here we sequence the Neolecta irregularis genome and identify CM-associated functions by searching for genes conserved in Neolecta and the Pezizomycotina, which are absent or divergent in budding or fission yeasts. This group of 1,050 genes is enriched for functions related to diverse endomembrane systems and their organization. Remarkably, most show evidence for divergence in both yeasts. Using functional genomics, we identify new genes involved in fungal complexification. Together, these data show that rudimentary multicellularity is deeply rooted in the Ascomycota. Extensive parallel gene divergence during simplification and constraint leading to CM suggest a deterministic process where shared modes of cellular organization select for similarly configured organelle- and transport-related machineries.


Assuntos
Ascomicetos/citologia , DNA Fúngico/genética , Proteínas Fúngicas/fisiologia , Genoma Fúngico/fisiologia , Ascomicetos/genética , Biodiversidade , Transporte Biológico/fisiologia , Biologia Computacional , Evolução Molecular , Filogenia , Alinhamento de Sequência , Sequenciamento Completo do Genoma
11.
Yeast ; 34(1): 3-17, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27668700

RESUMO

The rise of sequence information across different yeast species and strains is driving an increasing number of studies in the emerging field of genomics to associate polymorphic variants, mRNA abundance and phenotypic differences between individuals. Here, we gathered evidence from recent studies covering several layers that define the genotype-phenotype gap, such as mRNA abundance, allele-specific expression and translation efficiency to demonstrate how genetic variants co-evolve and define an individual's genome. Moreover, we exposed several antecedents where inter- and intra-specific studies led to opposite conclusions, probably owing to genetic divergence. Future studies in this area will benefit from the access to a massive array of well-annotated genomes and new sequencing technologies, which will allow the fine breakdown of the complex layers that delineate the genotype-phenotype map. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Regulação Fúngica da Expressão Gênica/genética , Variação Genética/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Estudos de Associação Genética , Variação Genética/fisiologia , Genoma Fúngico/genética , Genoma Fúngico/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética
12.
Sci Rep ; 6: 30760, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477109

RESUMO

Undifilum oxytropis is a fungal endophyte of locoweeds. It produces swainsonine, which is the principal toxic ingredient of locoweeds. However, the genes, pathways and mechanisms of swainsonine biosynthesis are not known. In this study, the genome of U. oxytropis was firstly sequenced and assembled into a 70.05 megabases (Mb) draft genome, which encoded 11,057 protein-coding genes, and 54% of them were similar to current publicly available sequences. U. oxytropis genes were annotated and 164 putative genes were annotated into enzymes, such as Saccharopine dehydrogenase, Saccharopine oxidase, and Pyrroline-5-carboxylate reductase, hypothesized to be involved in the biosynthesis pathway of swainsonine. The genome sequence and gene annotation of U. oxytropis will provide new insights into functional analyses. The characterization of genes in swainsonine biosynthesis will greatly facilitate locoweed poisoning research and help direct locoism management.


Assuntos
Ascomicetos , Proteínas Fúngicas , Genoma Fúngico/fisiologia , Swainsonina/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
13.
J Biol Chem ; 291(19): 10372-7, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-26975376

RESUMO

Cse4, a histone H3-like centromeric protein, plays critical functions in chromosome segregation. Cse4 level is tightly regulated, but the underlying mechanism remains poorly understood. We employed a toxicity-based screen to look for the degradation components involved in Cse4 regulation. Here, we show that the F-box containing protein Rcy1 is required for efficient Cse4 turnover as Cse4 degradation is compromised in yeast cells lacking RCY1 Excessive Cse4 accumulation in rcy1Δ cells leads to growth retardation. Furthermore, the deletion of RCY1 is tied to enhanced chromosome instability and temperature-sensitive cell growth. Our results reveal the involvement of Rcy1 in chromosome regulation and another regulatory pathway controlling the Cse4 level and activity.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico/fisiologia , Instabilidade Genômica/fisiologia , Histonas/metabolismo , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética
14.
Cell Rep ; 12(5): 774-87, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26212319

RESUMO

The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication.


Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Cromatina/genética , Cromatina/metabolismo , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , DNA/genética , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , DNA Fúngico/genética , Genoma Fúngico/fisiologia , Antígeno Nuclear de Célula em Proliferação/genética , Proteína de Replicação C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS One ; 10(3): e0119785, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774802

RESUMO

Light stimulates carotenoid biosynthesis in the ascomycete fungus Fusarium fujikuroi through transcriptional activation of the structural genes of the pathway carRA, carB, and cart, but the molecular basis of this photoresponse is unknown. The F. fujikuroi genome contains genes for different predicted photoreceptors, including the WC protein WcoA, the DASH cryptochrome CryD and the Vivid-like flavoprotein VvdA. We formerly found that null mutants of wcoA, cryD or vvdA exhibit carotenoid photoinduction under continuous illumination. Here we show that the wild type exhibits a biphasic response in light induction kinetics experiments, with a rapid increase in carotenoid content in the first hours, a transient arrest and a subsequent slower increase. The mutants of the three photoreceptors show different kinetic responses: the wcoA mutants are defective in the rapid response, the cryD mutants are affected in the slower response, while the fast and slow responses were respectively enhanced and attenuated in the vvdA mutants. Transcriptional analyses of the car genes revealed a strong reduction of dark and light-induced transcript levels in the wcoA mutants, while minor or no reductions were found in the cryD mutants. Formerly, we found no change on carRA and carB photoinduction in vvdA mutants. Taken together, our data suggest a cooperative participation of WcoA and CryD in early and late stages of photoinduction of carotenoid biosynthesis in F. fujikuroi, and a possible modulation of WcoA activity by VvdA. An unexpected transcriptional induction by red light of vvdA, cryD and carRA genes suggest the participation of an additional red light-absorbing photoreceptor.


Assuntos
Carotenoides/biossíntese , Proteínas Fúngicas/biossíntese , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Genoma Fúngico/fisiologia , Transcrição Gênica/fisiologia , Carotenoides/genética , Proteínas Fúngicas/genética , Fusarium/genética
16.
Sci Rep ; 5: 8331, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25660389

RESUMO

Monascus has been used to produce natural colorants and food supplements for more than one thousand years, and approximately more than one billion people eat Monascus-fermented products during their daily life. In this study, using next-generation sequencing and optical mapping approaches, a 24.1-Mb complete genome of an industrial strain, Monascus purpureus YY-1, was obtained. This genome consists of eight chromosomes and 7,491 genes. Phylogenetic analysis at the genome level provides convincing evidence for the evolutionary position of M. purpureus. We provide the first comprehensive prediction of the biosynthetic pathway for Monascus pigment. Comparative genomic analyses show that the genome of M. purpureus is 13.6-40% smaller than those of closely related filamentous fungi and has undergone significant gene losses, most of which likely occurred during its specialized adaptation to starch-based foods. Comparative transcriptome analysis reveals that carbon starvation stress, resulting from the use of relatively low-quality carbon sources, contributes to the high yield of pigments by repressing central carbon metabolism and augmenting the acetyl-CoA pool. Our work provides important insights into the evolution of this economically important fungus and lays a foundation for future genetic manipulation and engineering of this strain.


Assuntos
Microbiologia de Alimentos , Genoma Fúngico/fisiologia , Monascus/fisiologia , Filogenia , Pigmentos Biológicos , Transcriptoma/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Pigmentos Biológicos/biossíntese , Pigmentos Biológicos/genética
17.
Curr Protoc Mol Biol ; 108: 21.28.1-21.28.16, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25271716

RESUMO

Because histones bind DNA very tightly, the location on DNA and the level of occupancy of a given DNA sequence by nucleosomes can profoundly affect accessibility of non-histone proteins to chromatin, affecting virtually all DNA-dependent processes, such as transcription, DNA repair, DNA replication and recombination. Therefore, it is often necessary to determine positions and occupancy of nucleosomes to understand how DNA-dependent processes are regulated. Recent technological advances made such analyses feasible on a genome-wide scale at high resolution. In addition, we have recently developed a method to measure nuclease accessibility of nucleosomes on a global scale. This unit describes methods to map nucleosome positions, to determine nucleosome density, and to determine nuclease accessibility of nucleosomes using deep sequencing.


Assuntos
DNA Fúngico/genética , Genoma Fúngico/fisiologia , Estudo de Associação Genômica Ampla/métodos , Histonas/genética , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicação do DNA/fisiologia , DNA Fúngico/química , DNA Fúngico/metabolismo , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Biol Chem ; 289(19): 13186-96, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24648511

RESUMO

In Saccharomyces cerevisiae, histone H3 lysine 56 acetylation (H3K56ac) is a modification of new H3 molecules deposited throughout the genome during S-phase. H3K56ac is removed by the sirtuins Hst3 and Hst4 at later stages of the cell cycle. Previous studies indicated that regulated degradation of Hst3 plays an important role in the genome-wide waves of H3K56 acetylation and deacetylation that occur during each cell cycle. However, little is known regarding the mechanism of cell cycle-regulated Hst3 degradation. Here, we demonstrate that Hst3 instability in vivo is dependent upon the ubiquitin ligase SCF(Cdc4) and that Hst3 is phosphorylated at two Cdk1 sites, threonine 380 and threonine 384. This creates a diphosphorylated degron that is necessary for Hst3 polyubiquitylation by SCF(Cdc4). Mutation of the Hst3 diphospho-degron does not completely stabilize Hst3 in vivo, but it nonetheless results in a significant fitness defect that is particularly severe in mutant cells treated with the alkylating agent methyl methanesulfonate. Unexpectedly, we show that Hst3 can be degraded between G2 and anaphase, a window of the cell cycle where Hst3 normally mediates genome-wide deacetylation of H3K56. Our results suggest an intricate coordination between Hst3 synthesis, genome-wide H3K56 deacetylation by Hst3, and cell cycle-regulated degradation of Hst3 by cyclin-dependent kinases and SCF(Cdc4).


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Proteínas F-Box/metabolismo , Genoma Fúngico/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Acetilação , Proteínas de Ciclo Celular/genética , Estabilidade Enzimática/fisiologia , Proteínas F-Box/genética , Histona Desacetilases/genética , Histonas/genética , Histonas/metabolismo , Fosforilação/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética
19.
Adv Exp Med Biol ; 781: 49-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24277295

RESUMO

Fungi play a central role in both ecosystems and human societies. This is in part because they have adopted a large diversity of life history traits to conquer a wide variety of ecological niches. Here, I review recent fungal genomics studies that explored the molecular origins and the adaptive significance of this diversity. First, macro-ecological genomics studies revealed that fungal genomes were highly remodelled during their evolution. This remodelling, in terms of genome organization and size, occurred through the proliferation of non-coding elements, gene compaction, gene loss and the expansion of large families of adaptive genes. These features vary greatly among fungal clades, and are correlated with different life history traits such as multicellularity, pathogenicity, symbiosis, and sexual reproduction. Second, micro-ecological genomics studies, based on population genomics, experimental evolution and quantitative trait loci approaches, have allowed a deeper exploration of early evolutionary steps of the above adaptations. Fungi, and especially budding yeasts, were used intensively to characterize early mutations and chromosomal rearrangements that underlie the acquisition of new adaptive traits allowing them to conquer new ecological niches and potentially leading to speciation. By uncovering the ecological factors and genomic modifications that underline adaptation, these studies showed that Fungi are powerful models for ecological genomics (eco-genomics), and that this approach, so far mainly developed in a few model species, should be expanded to the whole kingdom.


Assuntos
Adaptação Biológica/fisiologia , Ecossistema , Evolução Molecular , Fungos/fisiologia , Interação Gene-Ambiente , Genoma Fúngico/fisiologia , Metagenômica , Humanos , Locos de Características Quantitativas/fisiologia
20.
J Proteomics ; 97: 195-221, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23811051

RESUMO

The necrotrophic fungus Botrytis cinerea is a very damaging phytopathogen of wide host range and environmental persistence. It is difficult to control because of its genetic versatility, expressed in the many phenotypical differences among isolates. The genomes of the B. cinerea B05.10 and T4 strains have been recently sequenced, becoming a model system for necrotrophic pathogens, and thus opening new alternatives for functional genomics analysis. In this work, the mycelium and secreted proteome of six wild-type strains with different host range, and grown in liquid minimal medium, have been analyzed by using complementary gel-based (1-DE and 2-DE) and gel-free/label-free (nUPLC-MS(E)) approaches. We found differences in the protein profiles among strains belonging to both the mycelium and the secretome. A total of 47 and 51 variable proteins were identified in the mycelium and the secretome, respectively. Some of them, such as malate dehydrogenase or peptidyl-prolyl cis-trans isomerase from the mycelium, and endopolygalacturonase, aspartic protease or cerato-platanin protein from the secretome have been reported as virulence factors, which are involved in host-tissue invasion, pathogenicity or fungal development. BIOLOGICAL SIGNIFICANCE: The necrotrophic fungus Botrytis cinerea is an important phytopathogen of wide host range and environmental persistence, causing substantial economic losses worldwide. In this work, the mycelium and secreted proteome of six B. cinerea wild-type strains with different host range have been analyzed by using complementary gel-based and gel-free/label-free approaches. Fungal genetic versatility was confirmed at the proteome level for both mycelium proteome and secreted proteins. A high number of hypothetical proteins with conserved domains related to toxin compounds or to unknown functions were identified, having qualitative differences among strains. The identification of hypothetical proteins suggests that the B. cinerea strains differ mostly in processes involved in adaptation to a particular environment or a growth condition, rather than in essential metabolic reactions. Proteomics can help in the identification of variable proteins related to the infection and colonization of host plant tissues, as well as of virulence and aggressiveness factors among different B. cinerea wild-type strains. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.


Assuntos
Botrytis/metabolismo , Proteínas Fúngicas/metabolismo , Variação Genética , Micélio/metabolismo , Proteômica , Botrytis/genética , Proteínas Fúngicas/genética , Genoma Fúngico/fisiologia , Micélio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...