Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ann Bot ; 132(7): 1271-1288, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37963010

RESUMO

BACKGROUND AND AIMS: Exploring how species diverge is vital for understanding the drivers of speciation. Factors such as geographical separation and ecological selection, hybridization, polyploidization and shifts in mating system are all major mechanisms of plant speciation, but their contributions to divergence are rarely well understood. Here we test these mechanisms in two plant species, Gentiana lhassica and G. hoae, with the goal of understanding recent allopatric species divergence on the Qinghai-Tibet Plateau (QTP). METHODS: We performed Bayesian clustering, phylogenetic analysis and estimates of hybridization using 561 302 nuclear genomic single nucleotide polymorphisms (SNPs). We performed redundancy analysis, and identified and annotated species-specific SNPs (ssSNPs) to explore the association between climatic preference and genetic divergence. We also estimated genome sizes using flow cytometry to test for overlooked polyploidy. KEY RESULTS: Genomic evidence confirms that G. lhassica and G. hoae are closely related but distinct species, while genome size estimates show divergence occurred without polyploidy. Gentiana hoae has significantly higher average FIS values than G. lhassica. Population clustering based on genomic SNPs shows no signature of recent hybridization, but each species is characterized by a distinct history of hybridization with congeners that has shaped genome-wide variation. Gentiana lhassica has captured the chloroplast and experienced introgression with a divergent gentian species, while G. hoae has experienced recurrent hybridization with related taxa. Species distribution modelling suggested range overlap in the Last Interglacial Period, while redundancy analysis showed that precipitation and temperature are the major climatic differences explaining the separation of the species. The species differ by 2993 ssSNPs, with genome annotation showing missense variants in genes involved in stress resistance. CONCLUSIONS: This study suggests that the distinctiveness of these species on the QTP is driven by a combination of hybridization, geographical isolation, mating system differences and evolution of divergent climatic preferences.


Assuntos
Gentiana , Tibet , Filogenia , Gentiana/genética , DNA de Cloroplastos/genética , Teorema de Bayes , Variação Genética , Plantas/genética , Poliploidia
2.
PeerJ ; 11: e14968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915654

RESUMO

Gentiana rhodantha is a medicinally important perennial herb used as traditional Chinese and ethnic medicines. Secoiridoids are one of the major bioactive compounds in G. rhodantha. To better understand the secoiridoid biosynthesis pathway, we generated transcriptome sequences from four organs (root, leaf, stem and flower), followed by the de novo sequence assembly. We verified 8-HGO (8-hydroxygeraniol oxidoreductase), which may encode key enzymes of the secoiridoid biosynthesis by qRT-PCR. The mangiferin, swertiamarin and loganic acid contents in root, stem, leaf, and flower were determined by HPLC. The results showed that there were 47,871 unigenes with an average length of 1,107.38 bp. Among them, 1,422 unigenes were involved in 25 standard secondary metabolism-related pathways in the KEGG database. Furthermore, we found that 1,005 unigenes can be divided into 66 transcription factor (TF) families, with no family members exhibiting significant organ-specificity. There were 54 unigenes in G. rhodantha that encoded 17 key enzymes of the secoiridoid biosynthetic pathway. The qRT-PCR of the 8-HGO and HPLC results showed that the relative expression and the mangiferin, swertiamarin, and loganic acid contents of the aerial parts were higher than in the root. Six types of SSR were identified by SSR analysis of unigenes: mono-nucleoside repeat SSR, di-nucleoside repeat SSR, tri-nucleoside repeat SSR, tetra-nucleoside repeat SSR, penta-nucleoside repeat SSR, and hexa-nucleoside repeat SSR. This report not only enriches the Gentiana transcriptome database but helps further study the function and regulation of active component biosynthesis of G. rhodantha.


Assuntos
Gentiana , Humanos , Gentiana/genética , Anotação de Sequência Molecular , Perfilação da Expressão Gênica , Iridoides/metabolismo
3.
BMC Plant Biol ; 23(1): 101, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36800941

RESUMO

BACKGROUND: Gentiana rigescens Franchet is an endangered medicinal herb from the family Gentianaceae with medicinal values. Gentiana cephalantha Franchet is a sister species to G. rigescens possessing similar morphology and wider distribution. To explore the phylogeny of the two species and reveal potential hybridization, we adopted next-generation sequencing technology to acquire their complete chloroplast genomes from sympatric and allopatric distributions, as along with Sanger sequencing to produce the nrDNA ITS sequences. RESULTS: The plastid genomes were highly similar between G. rigescens and G. cephalantha. The lengths of the genomes ranged from 146,795 to 147,001 bp in G. rigescens and from 146,856 to 147,016 bp in G. cephalantha. All genomes consisted of 116 genes, including 78 protein-coding genes, 30 tRNA genes, four rRNA genes and four pseudogenes. The total length of the ITS sequence was 626 bp, including six informative sites. Heterozygotes occurred intensively in individuals from sympatric distribution. Phylogenetic analysis was performed based on chloroplast genomes, coding sequences (CDS), hypervariable sequences (HVR), and nrDNA ITS. Analysis based on all the datasets showed that G. rigescens and G. cephalantha formed a monophyly. The two species were well separated in phylogenetic trees using ITS, except for potential hybrids, but were mixed based on plastid genomes. This study supports that G. rigescens and G. cephalantha are closely related, but independent species. However, hybridization was confirmed to occur frequently between G. rigescens and G. cephalantha in sympatric distribution owing to the lack of stable reproductive barriers. Asymmetric introgression, along with hybridization and backcrossing, may probably lead to genetic swamping and even extinction of G. rigescens. CONCLUSION: G. rigescens and G. cephalantha are recently diverged species which might not have undergone stable post-zygotic isolation. Though plastid genome shows obvious advantage in exploring phylogenetic relationships of some complicated genera, the intrinsic phylogeny was not revealed because of matrilineal inheritance here; nuclear genomes or regions are hence crucial for uncovering the truth. As an endangered species, G. rigescens faces serious threats from both natural hybridization and human activities; therefore, a balance between conservation and utilization of the species is extremely critical in formulating conservation strategies.


Assuntos
Genoma de Cloroplastos , Genomas de Plastídeos , Gentiana , Plantas Medicinais , Humanos , Animais , Gentiana/genética , Espécies em Perigo de Extinção , Filogenia , Plantas Medicinais/genética
4.
Mol Genet Genomics ; 298(2): 399-411, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36592219

RESUMO

Species in Gentiana section Cruciata are important alpine plants with a center of diversity and speciation in Qinghai-Tibet Plateau (QTP), and some of these species are sympatrically distributed in northeastern QTP. Studies on genome features and natural selection signatures of sympatric species in section Crucata have been impeded by a lack of genomic resources. Here, we showed transcript characterizations and molecular footprints of selection effects on G. straminea, G. dahurica and G. officinalis based on the comparative transcriptome. A total of 62.97 Gb clean reads were obtained with unigene numbers per species ranging from 141,819 to 236,408 after assembly. We found that these three species had similar distribution of functional categories in different databases, and key enzyme-encoding genes involved in the iridoids biosynthesis were also obtained. The selective pressure analyses indicated that most paired orthologs between these three species were subject to negative selection, and only a low proportion of the orthologs that underwent positive selection were detected. We found that some positive selected genes were involved in "catalytic activity", "metabolic process", "response to stimulus" and "response to stress". Besides, large numbers of SSR primer pairs with transferabilities were successfully designed based on the available transcriptome datasets of three Gentiana species. The phylogenetic relationships reconstructed based on 352 single-copy nuclear genes provided a rough phylogenetic framework for this genus and confirmed the monophyly of section Cruciata. Our study not only provides insights for the natural selection effects on sympatric Gentiana species, but also enhances future genetic breeding or evolutionary studies on Qinjiao species.


Assuntos
Gentiana , Gentiana/genética , Filogenia , Melhoramento Vegetal , Tibet , Perfilação da Expressão Gênica , Transcriptoma/genética
5.
PLoS One ; 18(1): e0281134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701356

RESUMO

Gentiana crassicaulis and G. straminea are alpine plants of Gentiana with important medicinal value and complex genetic backgrounds. In this study, the mitochondrial genomes (mtDNAs) of these two species were sequenced. The mtDNAs of G. crassicaulis and G. straminea are 368,808 and 410,086 bp long, respectively, 52 and 49 unique genes are annotated in the two species, and the gene arrangement varies widely. Compared to G. crassicaulis, G. straminea loses three effective genes, namely atp6, trnG-GCC and trnV-GAC. As a pseudogene, the atp6 gene of G. straminea is incomplete, which is rare in higher plants. We detected 1696 and 1858 pairs of long repeats and 213 SSRs and 250 SSs in the mtDNAs of G. crassicaulis and G. straminea, respectively. There are 392 SNPs and 18 InDels between the two genomes, and syntenic sequence and structural variation analysis show low collinearity between the two genomes. Chloroplast DNA transferring to mtDNA is observed in both species, and 46,511 and 55,043 bp transferred segments containing three tRNA genes are identified, respectively. Comparative analysis of mtDNAs of G. crassicaulis, G. straminea and four species of Gentianales determined 18 core genes, and there is no specific gene in G. crassicaulis and G. straminea. The phylogenetic tree based on mtDNAs places Gentianaceae in a branch of Gentianales. This study is the first to analyze the mtDNAs of Gentianaceae, which could provide information for analysis of the structure of mtDNAs of higher plants and phylogenetic research of Gentianaceae and Gentianales.


Assuntos
Genoma Mitocondrial , Gentiana , Gentianaceae , Plantas Medicinais , Gentiana/genética , Plantas Medicinais/genética , Gentianaceae/genética , Genoma Mitocondrial/genética , Filogenia
6.
Genes (Basel) ; 13(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36553639

RESUMO

Gentiana macrophylla Pall. (G. macrophylla)-a member of the family Gentianaceae-is a well-known traditional Chinese medical herb. Iridoids are the main active components of G. macrophylla, which has a wide range of pharmacological activities such as dispelling wind, eliminating dampness, clearing heat and asthenic fever, hepatoprotective and choleretic actions, and other medicinal effects. In this study, a total of 67,048 unigenes were obtained by transcriptomic sequencing analysis of G. macrophylla. A BLAST analysis showed that 48.21%, 33.66%, 46.32%, and 32.62% of unigenes were identified in the NR, Swiss-Prot, eggNOG, and KEGG databases, respectively. Twenty-five key enzymes were identified in the iridoid biosynthesis pathway. Most of the upregulated unigenes were enriched in flowers and leaves. The trustworthiness of the transcriptomic data was validated by real-time quantitative PCR (qRT-PCR). A total of 22 chemical constituents were identified by ultra-high performance liquid chromatography-quadrupole-electrostatic field Orbitrap mass spectrometry (UPLC-Q-Exactive MS), including 10 iridoids. A correlation analysis showed that the expression of 7-DLH and SLS was closely related to iridoids. The expression of 7-DLH and SLS was higher in flowers, indicating that flowers are important for iridoid biosynthesis in G. macrophylla.


Assuntos
Gentiana , Gentiana/genética , Gentiana/química , Gentiana/metabolismo , Iridoides/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica , Flores/genética , Flores/metabolismo
7.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233055

RESUMO

Japanese cultivated gentians are perennial plants that flower in early summer to late autumn in Japan, depending on the cultivar. Several flowering-related genes, including GtFT1 and GtTFL1, are known to be involved in regulating flowering time, but many such genes remain unidentified. In this study, we obtained transcriptome profiling data using the Gentiana triflora cultivar 'Maciry', which typically flowers in late July. We conducted deep RNA sequencing analysis using gentian plants grown under natural field conditions for three months before flowering. To investigate diurnal changes, the plants were sampled at 4 h intervals over 24 h. Using these transcriptome data, we determined the expression profiles of leaves based on homology searches against the Flowering-Interactive Database of Arabidopsis. In particular, we focused on transcription factor genes, belonging to the BBX and MADS-box families, and analyzed their developmental and diurnal variation. The expression levels of representative BBX genes were also analyzed under long- and short-day conditions using in-vitro-grown seedlings, and the expression patterns of some BBX genes differed. Clustering analysis revealed that the transcription factor genes were coexpressed with GtFT1. Overall, these expression profiles will facilitate further analysis of the molecular mechanisms underlying the control of flowering time in gentians.


Assuntos
Flores , Gentiana , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gentiana/genética , Gentiana/fisiologia , Japão , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
8.
DNA Res ; 29(6)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197098

RESUMO

Gentiana macrophylla is a perennial herb in the Gentianaceae family, whose dried roots are used in traditional Chinese medicine. Here, we assembled a chromosome-level genome of G. macrophylla using a combination of Nanopore, Illumina, and Hi-C scaffolding approaches. The final genome size was ~1.79 Gb (contig N50 = 720.804 kb), and 98.89% of the genome sequences were anchored on 13 pseudochromosomes (scaffold N50 = 122.73 Mb). The genome contained 55,337 protein-coding genes, and 73.47% of the assemblies were repetitive sequences. Genome evolution analysis indicated that G. macrophylla underwent two rounds of whole-genome duplication after the core eudicot γ genome triplication event. We further identified candidate genes related to the biosynthesis of iridoids, and the corresponding gene families mostly expanded in G. macrophylla. In addition, we found that root-specific genes are enriched in pathways involved in defense responses, which may greatly improve the biological adaptability of G. macrophylla. Phylogenomic analyses showed a sister relationship of asterids and rosids, and all Gentianales species formed a monophyletic group. Our study contributes to the understanding of genome evolution and active component biosynthesis in G. macrophylla and provides important genomic resource for the genetic improvement and breeding of G. macrophylla.


Assuntos
Gentiana , Plantas Medicinais , Genômica , Gentiana/genética , Iridoides , Plantas Medicinais/genética
9.
Front Biosci (Landmark Ed) ; 27(8): 236, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36042168

RESUMO

BACKGROUND: Gentiana plants, which have great medicinal and ornamental value, are widely distributed in diverse habitats and have complex taxonomy. Here 40 Gentiana chloroplast genomes were used for comparative genomic analysis and divergence time estimation. METHODS: The complete chloroplast genome of G. rhodantha was sequenced, assembled, and annotated. Comparative genomic and phylogenetic analysis were provided for variation analysis of Gentiana. RESULTS: Gentiana species satisfy the characteristics of intra-Sect conservation and inter-Sect variation in chloroplast genome structure and IR boundaries. All Gentiana Sects can be clustered into a single one and separated from each other; however, Ser. Apteroideae and Ser. Confertifoliae in Sect. Monopodiae are more closely related to Sect. Frigida and Sect. Cruciata, respectively. Gentiana has experienced two large gene loss events; the first, the collective loss of the rps16 gene at genus formation and the second, the collective loss of the ndh gene when Ser. Ornatae and Ser. Verticillatae completed their differentiation. Comparative genomic analysis support that Sect. Stenogyne and Sect. Otophora became the independent genera Metagentiana and Kuepferia. Seven divergence hotspot regions were screened based on Pi values, and could serve as DNA-specific barcodes for Gentiana. CONCLUSIONS: This study provides a further theoretical basis for taxonomic analysis, genetic diversity, evolutionary mechanism and molecular identification in Gentiana.


Assuntos
Genoma de Cloroplastos , Gentiana , Sequência de Bases , Genoma de Cloroplastos/genética , Genômica , Gentiana/genética , Filogenia
10.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628413

RESUMO

The elongation of flower longevity increases the commercial value of ornamental plants, and various genes have been identified as influencing flower senescence. Recently, EPHEMERAL1 (EPH1), encoding a NAC-type transcription factor, was identified in Japanese morning glory as a gene that promotes flower senescence. Here we attempted to identify an EPH1 homolog gene from cultivated Japanese gentians and characterized the same with regard to its flower senescence. Two EPH1-LIKE genes (EPH1La and EPH1Lb), considered as alleles, were isolated from a gentian cultivar (Gentiana scabra × G. triflora). Phylogenetic analyses revealed that EPH1L belongs to the NAM subfamily. The transcript levels of EPH1L increased along with its senescence in the field-grown flowers. Under dark-induced senescence conditions, the gentian-detached flowers showed the peak transcription level of EPH1L earlier than that of SAG12, a senescence marker gene, suggesting the involvement of EPH1L in flower senescence. To reveal the EPH1L function, we produced eph1l-knockout mutant lines using the CRISPR/Cas9 system. When the flower longevity was evaluated using the detached flowers as described above, improved longevity was recorded in all genome-edited lines, with delayed induction of SAG12 transcription. The degradation analysis of genomic DNA matched the elongation of flower longevity, cumulatively indicating the involvement of EPH1L in the regulation of flower senescence in gentians.


Assuntos
Gentiana , Flores/metabolismo , Gentiana/genética , Filogenia , Senescência Vegetal , Fatores de Transcrição/metabolismo
11.
DNA Res ; 29(2)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35380665

RESUMO

Gentiana dahurica Fisch. is a perennial herb of the family Gentianaceae. This species is used as a traditional Tibetan medicine because of its rich gentiopicroside constituents. Here, we generate a high-quality, chromosome-level genome of G. dahurica with a total length of 1,416.54 Mb. Comparative genomic analyses showed that G. dahurica shared one whole-genome duplication (WGD) event with Gelsemium sempervirens of the family Gelsemiaceaei and had one additional species-specific WGD after the ancient whole-genome triplication with other eudicots. Further transcriptome analyses identified numerous enzyme coding genes and the transcription factors related to gentiopicroside biosynthesis. A set of candidate cytochrome P450 genes were identified for being involved in biosynthetic shifts from swertiamarin to gentiopicroside. Both gene expressions and the contents measured by high-performance liquid chromatography indicated that the gentiopicrosides were mainly synthesized in the rhizomes with the highest contents. In addition, we found that two above-mentioned WGDs, contributed greatly to the identified candidate genes involving in gentiopicroside biosynthesis. The first reference genome of Gentianaceae we generated here will definitely accelerate evolutionary, ecological, and pharmaceutical studies of this family.


Assuntos
Gentiana , Gentianaceae , Cromossomos , Perfilação da Expressão Gênica , Gentiana/química , Gentiana/genética , Gentianaceae/genética , Glucosídeos Iridoides
12.
Sci Rep ; 12(1): 2461, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165323

RESUMO

Plants living at the edge of their range boundary tend to suffer an overall decline in their fitness, including growth and reproduction. However, the reproductive performance of plants in artificially expanded habitats is rarely investigated, although this type of study would provide a better understanding of range limitations and improved conservation of ex situ plants. In the current study, we transplanted a narrowly dispersed species of Gentiana officinalis H. Smith (Gentianaceae) from its natural area of distribution to two different elevations and natural elevation to comprehensively study its pollination biology, including flowering phenology and duration, floral display, reproductive allocation, pollinator activity, and seed production. The findings indicated that the starting point and endpoint of the flowering phenology of G. officinalis were earlier at the low elevation, but the peak flowering periods did not differ significantly between any of the experimental plots. When transplanted, the flowering duration, especially the female phase, was reduced; the floral display, including spray numbers, flower numbers, and flower size (length and width), decreased, especially at high elevations. Moreover, the pollen numbers and pollen-ovule ratio were decreased at both high and low elevations, although the ovule numbers showed no change, and aboveground reproductive allocation was decreased. Furthermore, pollinator richness and activity were significantly decreased, and the seed-set ratio decreased under both natural conditions and with supplemental pollination. Finally, more severe pollen limitation was found in transplanted individuals. These results indicated an overall decrease in reproductive fitness in plants living outside their original area of distribution when the geographical range of G. officinalis was expanded.


Assuntos
Ecossistema , Aptidão Genética , Gentiana/genética , Dispersão Vegetal/genética , Polinização/genética , Flores/crescimento & desenvolvimento , Pólen/genética , Estações do Ano , Sementes/crescimento & desenvolvimento
13.
Biomed Res Int ; 2022: 1382604, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35047628

RESUMO

Anthocyanins are important pigments for flower color, determining the ornamental and economic values of horticultural plants. As a key enzyme in the biosynthesis of anthocyanidins, dihydroflavonol 4-reductase (DFR) catalyzes the reduction of dihydroflavonols to generate the precursors for anthocyanidins (i.e., leucoanthocyanidins) and anthocyanins. To investigate the functions of DFRs in plants, we cloned the GlaDFR1 and GlaDFR2 genes from the petals of Gentiana lutea var. aurantiaca and transformed both genes into Nicotiana tabacum by Agrobacterium-mediated leaf disc method. We further investigated the molecular and phenotypic characteristics of T1 generation transgenic tobacco plants selected based on the hygromycin resistance and verified by both PCR and semiquantitative real-time PCR analyses. The phenotypic segregation was observed in the flower color of the transgenic tobacco plants, showing petals darker than those in the wild-type (WT) plants. Results of high-performance liquid chromatography (HPLC) analysis showed that the contents of gentiocyanin derivatives were decreased in the petals of transgenic plants in comparison to those of WT plants. Ours results revealed the molecular functions of GlaDFR1 and GlaDFR2 in the formation of coloration, providing solid theoretical foundation and candidate genes for further genetic improvement in flower color of plants.


Assuntos
Oxirredutases do Álcool , Flores , Gentiana , Pigmentação/fisiologia , Proteínas de Plantas , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Clonagem Molecular , Flores/enzimologia , Flores/genética , Gentiana/enzimologia , Gentiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Nicotiana/enzimologia , Nicotiana/genética
14.
Plant Physiol ; 188(4): 1887-1899, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35026009

RESUMO

Perennial plants undergo a dormant period in addition to the growth and flowering phases that are commonly observed in annuals and perennials. Consequently, the regulation of these phase transitions in perennials is believed to be complicated. Previous studies have proposed that orthologs of FLOWERING LOCUS T (FT) regulate not only floral initiation but also dormancy. We, therefore, investigated the involvement of FT orthologs (GtFT1 and GtFT2) during the phase transitions of the herbaceous perennial gentian (Gentiana triflora). Analysis of seasonal fluctuations in the expression of these genes revealed that GtFT1 expression increased prior to budbreak and flowering, whereas GtFT2 expression was induced by chilling temperatures with the highest expression occurring when endodormancy was released. The expression of FT-related transcription factors, reportedly involved in flowering, also fluctuated during each phase transition. These results suggested the involvement of GtFT1 in budbreak and floral induction and GtFT2 in dormancy regulation, implying that the two gentian FT orthologs activated a different set of transcription factors. Gentian ft2 mutants generated by CRISPR/Cas9-mediated genome editing had a lower frequency of budbreak and budbreak delay in overwintering buds caused by an incomplete endodormancy release. Our results highlighted that the gentian orthologs of FRUITFULL (GtFUL) and SHORT VEGETATIVE PHASE-like 1 (GtSVP-L1) act downstream of GtFT2, probably to prevent untimely budbreak during ecodormancy. These results suggest that each gentian FT ortholog regulates a different phase transition by having variable responses to endogenous or environmental cues, leading to their ability to induce the expression of distinct downstream genes.


Assuntos
Gentiana , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Gentiana/genética , Gentiana/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5260-5269, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34738428

RESUMO

Gentiana is an important but complicated group in Gentianaceae. The genus covers numerous medicinal plants which are difficult to be identified. In the present study, several medicinal species in Gentiana from Yunnan province, including G. rigescens, G.rhodantha, and G. delavayi, were sequenced using the Illumina HiSeq 2500 system. Three complete chloroplast genome sequences were obtained after assembly and annotation. According to several published genome sequences of G. crassicaulis, the DNA super-barcoding of species in Gentiana was preliminarily carried out. The results revealed that chloroplast genomes of the three species were conservative with short lengths(146 944, 148 992, and 148 796 bp, respectively). The genomes encoded 114 genes, including 78 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 2 pseudogenes. Furthermore, these medicinal species in Yunnan province were identified using DNA super-barcoding based on chloroplast genomes. The results showed that the Gentiana species could be gathered into monophyletic branches with a high support value(100%). It indicated that DNA super-barcoding possessed obvious advantages in discriminating species in complicated genera. This study is expected to provide a scientific basis for the identification, utilization, and conservation of Gentiana species.


Assuntos
Genoma de Cloroplastos , Gentiana , China , DNA , Genoma de Cloroplastos/genética , Gentiana/genética , Filogenia
16.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4704-4711, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581079

RESUMO

As the main chemical constituents, iridoids are widely distributed within Gentiana, Gentianaceae, with promising bioactivities. Based on the previous work, the transcriptome of G. lhassica, an original plant of Tibetan herb "Jieji Nabao", was sequenced and analyzed in this study, and the transcriptome databases of roots, stems, leaves, and flowers were constructed so as to explore unigenes that may encode the key enzymes in the biosynthetic pathway of iridoids. Then, qRT-PCR was used to validate the relative expression levels of 11 genes named AACT, DXS, MCS, HDS, IDI, GPPS, GES, G10H, 7-DLNGT, 7-DLGT, and SLS in roots, stems, leaves, and flowers. Also, the total contents of gentiopicroside and loganic acid were determined by HPLC, respectively. The results are as follows:(1)a total of 76 486 unigenes with an average length of 852 bp were obtained;(2)335 unigenes were involved in 19 stan-dard secondary metabolism pathways in KEGG database, with phenylpropanoid biosynthesis having the maximum number(75 unigenes), and no isoflavone biosynthetic pathway was annotated;(3)171 unigenes participatedin 27 key enzymes encoding in the biosynthetic pathway of iridoids, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase(DXR) gene was highly expressed;(4)qRT-PCR results were approximately consistent with RNA-Seq data and the relative expression levels of the 11 genes were higher in the aboveground parts(stem, leaf, and flower) than in the underground part(root);(5)the total contents of gentiopicroside and loganic acid were higher in the aboveground parts(stem, leaf, and flower) than in the underground part(root), and the difference was significant. This study provides basic scientific data for accurate species identification, evaluation of germplasm resources, research on secondary pro-duct accumulation of medicinal plants within Gentianaceae, and protection of endangered alpine species.


Assuntos
Gentiana , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gentiana/genética , Iridoides , Transcriptoma
17.
Plant J ; 107(6): 1711-1723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245606

RESUMO

Cultivated Japanese gentians traditionally produce vivid blue flowers because of the accumulation of delphinidin-based polyacylated anthocyanins. However, recent breeding programs developed several red-flowered cultivars, but the underlying mechanism for this red coloration was unknown. Thus, we characterized the pigments responsible for the red coloration in these cultivars. A high-performance liquid chromatography with photodiode array analysis revealed the presence of phenolic compounds, including flavones and xanthones, as well as the accumulation of colored cyanidin-based anthocyanins. The chemical structures of two xanthone compounds contributing to the coloration of red-flowered gentian petals were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds were identified as norathyriol 6-O-glucoside (i.e., tripteroside designated as Xt1) and a previously unreported norathyriol-6-O-(6'-O-malonyl)-glucoside (designated Xt2). The copigmentation effects of these compounds on cyanidin 3-O-glucoside were detected in vitro. Additionally, an RNA sequencing analysis was performed to identify the cDNAs encoding the enzymes involved in the biosynthesis of these xanthones. Recombinant proteins encoded by the candidate genes were produced in a wheat germ cell-free protein expression system and assayed. We determined that a UDP-glucose-dependent glucosyltransferase (StrGT9) catalyzes the transfer of a glucose moiety to norathyriol, a xanthone aglycone, to produce Xt1, which is converted to Xt2 by a malonyltransferase (StrAT2). An analysis of the progeny lines suggested that the accumulation of Xt2 contributes to the vivid red coloration of gentian flowers. Our data indicate that StrGT9 and StrAT2 help mediate xanthone biosynthesis and contribute to the coloration of red-flowered gentians via copigmentation effects.


Assuntos
Flores/fisiologia , Gentiana/fisiologia , Pigmentação/genética , Proteínas de Plantas/genética , Xantonas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Cromatografia Líquida de Alta Pressão , Flores/genética , Gentiana/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Estrutura Molecular , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Xantenos/metabolismo , Xantonas/química , Xantonas/isolamento & purificação
18.
J Ethnopharmacol ; 274: 113966, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33647427

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gentiana kurroo is a multipurpose critically endangered medicinal herb prescribed as medicine in Ayurveda in India and exhibits various pharmacological properties including anti-cancer activity. The species is rich repository of pharmacologically active secondary metabolites together with secoiridoidal glycosides. AIM OF THE STUDY: The study aimed to investigate the chemical diversity in different populations/cytotypes prevailing in G. kurroo to identify elite genetic stocks in terms of optimum accumulation/biosynthesis of desired metabolites and having higher in-vitro cytotoxicity potential in relation to chemotypic diversity. MATERIAL AND METHODS: The wild plants of the species were collected from different ranges of altitudes from the Kashmir Himalayas. For cytological evaluation, the standard meiotic analysis was performed. The standard LC-MS/MS technique was employed for phytochemical analysis based on different marker compounds viz. sweroside, swertiamarin, and gentiopicroside. Different tissues such as root-stock, aerial parts, and flowers were used for chemo-profiling. Further, the methanolic extracts of diploid and tetraploid cytotypes were assessed for cytotoxic activity by using MTT assay against four different human cancer cell lines. RESULTS: The quantification of major bioactive compounds based on tissue- and location-specific comparison, as well as in-vitro cytotoxic potential among extant cytotypes, was evaluated. The comprehensive cytomorphological studies of the populations from NW Himalayas revealed the occurrence of different chromosomal races viz. n = 13, 26. The tetraploid cytotype was hitherto unreported. The tissue-specific chemo-profiling revealed relative dominance of different phytoconstituents in root-stock. There was a noticeable increase in the quantity of the analyzed compounds in relation to increasing ploidy status along the increasing altitudes. The MTT assay of methanolic extracts of diploid and tetraploid cytotypes displayed significant cytotoxicity potential in tetraploids. The root-stock extracts of tetraploids were highly active extracts with IC50 value ranges from 5.65 to 8.53 µg/mL against HCT-116 colon cancer. CONCLUSION: The chemical evaluation of major bioactive compounds in diverse cytotypes from different plant parts along different altitudes presented an appreciable variability in sweroside, swertiamarin, and gentiopicroside contents. Additionally, the concentrations of these phytoconstituents varied for cytotoxicity potential among different screened cytotypes. This quantitative difference of active bio-constituents was in correspondence with the growth inhibition percentage of different tested cancer cell lines. Thus, the present investigation strongly alludes towards a prognostic approach for the identification of elite cytotypes/chemotypes with significant pharmacological potential.


Assuntos
Cromossomos de Plantas , Gentiana/química , Gentiana/genética , Extratos Vegetais/genética , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plantas Medicinais/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromossomos de Plantas/genética , Diploide , Gentiana/citologia , Gentiana/crescimento & desenvolvimento , Humanos , Índia , Glucosídeos Iridoides/química , Ayurveda , Compostos Fitoquímicos/análise , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/genética , Extratos Vegetais/química , Raízes de Plantas/química , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Medicinais/citologia , Pironas/química , Tetraploidia
19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-888175

RESUMO

As the main chemical constituents, iridoids are widely distributed within Gentiana, Gentianaceae, with promising bioactivities. Based on the previous work, the transcriptome of G. lhassica, an original plant of Tibetan herb "Jieji Nabao", was sequenced and analyzed in this study, and the transcriptome databases of roots, stems, leaves, and flowers were constructed so as to explore unigenes that may encode the key enzymes in the biosynthetic pathway of iridoids. Then, qRT-PCR was used to validate the relative expression levels of 11 genes named AACT, DXS, MCS, HDS, IDI, GPPS, GES, G10H, 7-DLNGT, 7-DLGT, and SLS in roots, stems, leaves, and flowers. Also, the total contents of gentiopicroside and loganic acid were determined by HPLC, respectively. The results are as follows:(1)a total of 76 486 unigenes with an average length of 852 bp were obtained;(2)335 unigenes were involved in 19 stan-dard secondary metabolism pathways in KEGG database, with phenylpropanoid biosynthesis having the maximum number(75 unigenes), and no isoflavone biosynthetic pathway was annotated;(3)171 unigenes participatedin 27 key enzymes encoding in the biosynthetic pathway of iridoids, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase(DXR) gene was highly expressed;(4)qRT-PCR results were approximately consistent with RNA-Seq data and the relative expression levels of the 11 genes were higher in the aboveground parts(stem, leaf, and flower) than in the underground part(root);(5)the total contents of gentiopicroside and loganic acid were higher in the aboveground parts(stem, leaf, and flower) than in the underground part(root), and the difference was significant. This study provides basic scientific data for accurate species identification, evaluation of germplasm resources, research on secondary pro-duct accumulation of medicinal plants within Gentianaceae, and protection of endangered alpine species.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gentiana/genética , Iridoides , Transcriptoma
20.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-921671

RESUMO

Gentiana is an important but complicated group in Gentianaceae. The genus covers numerous medicinal plants which are difficult to be identified. In the present study, several medicinal species in Gentiana from Yunnan province, including G. rigescens, G.rhodantha, and G. delavayi, were sequenced using the Illumina HiSeq 2500 system. Three complete chloroplast genome sequences were obtained after assembly and annotation. According to several published genome sequences of G. crassicaulis, the DNA super-barcoding of species in Gentiana was preliminarily carried out. The results revealed that chloroplast genomes of the three species were conservative with short lengths(146 944, 148 992, and 148 796 bp, respectively). The genomes encoded 114 genes, including 78 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 2 pseudogenes. Furthermore, these medicinal species in Yunnan province were identified using DNA super-barcoding based on chloroplast genomes. The results showed that the Gentiana species could be gathered into monophyletic branches with a high support value(100%). It indicated that DNA super-barcoding possessed obvious advantages in discriminating species in complicated genera. This study is expected to provide a scientific basis for the identification, utilization, and conservation of Gentiana species.


Assuntos
China , DNA , Genoma de Cloroplastos/genética , Gentiana/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...