Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Biotechnol Lett ; 46(3): 443-458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38523202

RESUMO

OBJECTIVES: Although Geobacillus are significant thermophilic bacteria source, there are no reports of thermostable esterase gene in Geobacillus jurassicus or rational design strategies to increase the thermal stability of esterases. RESULTS: Gene gju768 showed a highest similarity of 15.20% to esterases from Geobacillus sp. with detail enzymatic properties. Using a combination of Gibbs Unfolding Free Energy (∆∆G) calculator and the distance from the mutation site to the catalytic site (DsCα-Cα) to screen suitable mutation sites with elimination of negative surface charge, the mutants (D24N, E221Q, and E253Q) displayed stable mutants with higher thermal stability than the wild-type (WT). Mutant E253Q exhibited the best thermal stability, with a half-life (T1/2) at 65 °C of 32.4 min, which was 1.8-fold of the WT (17.9 min). CONCLUSION: Cloning of gene gju768 and rational design based on surface charge engineering contributed to the identification of thermostable esterase from Geobacillus sp. and the exploration of evolutionary strategies for thermal stability.


Assuntos
Estabilidade Enzimática , Esterases , Geobacillus , Geobacillus/enzimologia , Geobacillus/genética , Esterases/genética , Esterases/química , Esterases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desenho Assistido por Computador , Clonagem Molecular
2.
Int J Biol Macromol ; 263(Pt 2): 130438, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408579

RESUMO

Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of ß-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of ß-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.


Assuntos
Asparaginase , Geobacillus , Asparaginase/química , Geobacillus/genética , Geobacillus/metabolismo , Mercaptoetanol , Proteínas Recombinantes/genética , Estabilidade Enzimática
3.
Extremophiles ; 28(1): 18, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353731

RESUMO

We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.


Assuntos
Geobacillus , Ribonucleotídeo Redutases , Ribonucleotídeo Redutases/genética , Oxigenases de Função Mista/genética , Geobacillus/genética , Alcanos
4.
Rev Argent Microbiol ; 56(1): 102-111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37704517

RESUMO

The genus Geobacillus is composed of thermophilic bacteria that exhibit diverse biotechnological potentialities. Specifically, Geobacillus stearothermophilus is included as a test bacterium in commercial microbiological inhibition methods, although it exhibits limited sensitivity to aminoglycosides, macrolides, and quinolones. Therefore, this article evaluates the antibiotic susceptibility profiles of five test bacteria (G. stearothermophilus subsp. calidolactis C953, Geobacillus thermocatenulatus LMG 19007, Geobacillus thermoleovorans LMG 9823, Geobacillus kaustophilus DSM 7263 and Geobacillus vulcani 13174). For that purpose, the minimum inhibitory concentrations (MICs) of 21 antibiotics were determined in milk samples for five test bacteria using the radial diffusion microbiological inhibition method. Subsequently, the similarities between bacteria and antibiotics were analyzed using cluster analysis. The dendrogram of this multivariate analysis shows an association between a group formed by G. thermocatenulatus and G. stearothermophilus and another by G. thermoleovorans, G. kaustophilus and G. vulcani. Finally, future microbiological methods could be developed in microtiter plates using G. thermocatenulatus as test bacterium, as it exhibits similar sensitivities to G. stearothermophilus. Conversely, G. vulcani, G. thermoleovorans and G. kaustophilus show higher MICs than G. thermocatenulatus.


Assuntos
Anti-Infecciosos , Geobacillus , Animais , DNA Ribossômico/análise , Leite/química , RNA Ribossômico 16S , Geobacillus/genética , Antibacterianos/farmacologia , Antibacterianos/análise
5.
Biotechnol Appl Biochem ; 71(1): 162-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37908087

RESUMO

Microbial lipases are utilized in various biotechnological areas, including pharmaceuticals, food, biodiesel, and detergents. In this study, we cloned and sequenced Lip21 and Lip33 genes from Geobacillus sp. GS21 and Geobacillus sp. GS33, then we in silico and experimentally analyzed the encoded lipases. For this purpose, Lip21 and Lip33 were cloned, sequenced, and their amino acid sequences were investigated for determination of biophysicochemical characteristics, evolutionary relationships, and sequence similarities. 3D models were built and computationally affirmed by various bioinformatics tools, and enzyme-ligand interactions were investigated by docking analysis using six ligands. Biophysicochemical property of Lip21 and Lip33 was also determined experimentally and the results demonstrated that they had similar isoelectric point (pI) (6.21) and Tm (75.5°C) values as Tm was revealed by denatured protein analysis of the circular dichroism spectrum and pI was obtained by isoelectric focusing. Phylogeny analysis indicated that Lip21 and Lip33 were the closest to lipases from Geobacillus sp. SBS-4S and Geobacillus thermoleovorans, respectively. Alignment analysis demonstrated that S144-D348-H389 was catalytic triad residues in Lip21 and Lip33, and enzymes possessed a conserved Gly-X-Ser-X-Gly motif containing catalytic serine. 3D structure analysis indicated that Lip21 and Lip33 highly resembled each other and they were α/ß hydrolase-fold enzymes with large lid domains. BANΔIT analysis results showed that Lip21 and Lip33 had higher thermal stability, compared to other thermostable Geobacillus lipases. Docking results revealed that Lip21- and Lip33-docked complexes possessed common residues (H112, K115, Q162, E163, and S141) that interacted with the substrates, except paranitrophenyl (pNP)-C10 and pNP-C12, indicating that these residues might have a significant action on medium and short-chain fatty acid esters. Thus, Lip21 and Lip33 can be potential candidates for different industrial applications.


Assuntos
Geobacillus , Geobacillus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Estabilidade Enzimática
6.
Viruses ; 15(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37632033

RESUMO

We report a detailed characterization of five thermophilic bacteriophages (phages) that were isolated from compost heaps in Vilnius, Lithuania using Geobacillus thermodenitrificans strains as the hosts for phage propagation. The efficiency of plating experiments revealed that phages formed plaques from 45 to 80 °C. Furthermore, most of the phages formed plaques surrounded by halo zones, indicating the presence of phage-encoded bacterial exopolysaccharide (EPS)-degrading depolymerases. Transmission Electron Microscopy (TEM) analysis revealed that all phages were siphoviruses characterized by an isometric head (from ~63 nm to ~67 nm in diameter) and a non-contractile flexible tail (from ~137 nm to ~150 nm in length). The genome sequencing resulted in genomes ranging from 38,161 to 39,016 bp. Comparative genomic and phylogenetic analysis revealed that all the isolated phages had no close relatives to date, and potentially represent three new genera within siphoviruses. The results of this study not only improve our knowledge about poorly explored thermophilic bacteriophages but also give new insights for further investigation of thermophilic and/or thermostable enzymes of bacterial viruses.


Assuntos
Bacteriófagos , Compostagem , Geobacillus , Filogenia , Técnicas de Tipagem Bacteriana , Bacteriófagos/genética , Geobacillus/genética
7.
Extremophiles ; 27(2): 18, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428266

RESUMO

Geobacillus sp. ID17 is a gram-positive thermophilic bacterium isolated from Deception Island, Antarctica, which has shown to exhibit remarkable laccase activity in crude extract at high temperatures. A bioinformatic search using local databases led to the identification of three putative multicopper oxidase sequences in the genome of this microorganism. Sequence analysis revealed that one of those sequences contains the four-essential copper-binding sites present in other well characterized laccases. The gene encoding this sequence was cloned and overexpressed in Escherichia coli, partially purified and preliminary biochemically characterized. The resulting recombinant enzyme was recovered in active and soluble form, exhibiting optimum copper-dependent laccase activity at 55 °C, pH 6.5 with syringaldazine substrate, retaining over 60% of its activity after 1 h at 55 and 60 °C. In addition, this thermophilic enzyme is not affected by common inhibitors SDS, NaCl and L-cysteine. Furthermore, biodecolorization assays revealed that this laccase is capable of degrading 60% of malachite green, 54% of Congo red, and 52% of Remazol Brilliant Blue R, after 6 h at 55 °C with aid of ABTS as redox mediator. The observed properties of this enzyme and the relatively straightforward overexpression and partial purification of it could be of great interest for future biotechnology applications.


Assuntos
Geobacillus , Lacase , Lacase/química , Regiões Antárticas , Cobre/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Vermelho Congo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
8.
World J Microbiol Biotechnol ; 39(6): 139, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995480

RESUMO

The Bacillaceae family members are considered to be a good source of microbial factories for biotechnological processes. In contrast to Bacillus and Geobacillus, Anoxybacillus, which would be thermophilic and spore-forming group of bacteria, is a relatively new genus firstly proposed in the year of 2000. The development of thermostable microbial enzymes, waste management and bioremediation processes would be a crucial parameter in the industrial sectors. There has been increasing interest in Anoxybacillus strains for biotechnological applications. Therefore, various Anoxybacillus strains isolated from different habitats have been explored and identified for biotechnological and industrial purposes such as enzyme production, bioremediation and biodegradation of toxic compounds. Certain strains have ability to produce exopolysaccharides possessing biological activities including antimicrobial, antioxidant and anticancer. This current review provides past and recent discoveries regarding Anoxybacillus strains and their potential biotechnological applications in enzyme industry, environmental processes and medicine.


Assuntos
Anoxybacillus , Bacillaceae , Bacillus , Geobacillus , Biotecnologia , Bacillus/genética , Geobacillus/genética
9.
J Biosci Bioeng ; 135(4): 282-290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806411

RESUMO

Recombinase polymerase amplification (RPA) is an isothermal DNA amplification reaction at around 41 °C using recombinase (Rec), single-stranded DNA-binding protein (SSB), and strand-displacing DNA polymerase (Pol). Component instability and the need to store commercial kits in a deep freezer until use are some limitations of RPA. In a previous study, Bacillus stearothermophilus Pol (Bst-Pol) was used as a thermostable strand-displacing DNA polymerase in RPA. Here, we attempted to optimize the lyophilization conditions for RPA with newly isolated thermostable DNA polymerases for storage at room temperature. We isolated novel two thermostable strand-displacing DNA polymerases, one from a thermophilic bacterium Aeribacillus pallidus (H1) and the other from Geobacillus zalihae (C1), and evaluated their performances in RPA reaction. Urease subunit ß (UreB) DNA from Ureaplasma parvum serovar 3 was used as a model target for evaluation. The RPA reaction with H1-Pol or C1-Pol was performed at 41 °C with the in vitro synthesized standard UreB DNA. The minimal initial copy numbers of standard DNA from which the amplified products were observed were 600, 600, and 6000 copies for RPA with H1-Pol, C1-Pol, and Bst-Pol, respectively. Optimization was carried out using RPA components, showing that the lyophilized RPA reagents containing H1-Pol exhibited the same performance as the corresponding liquid RPA reagents. In addition, lyophilized RPA reagents with H1-Pol showed almost the same activity after two weeks of storage at room temperature as the freshly prepared liquid RPA reagents. These results suggest that lyophilized RPA reagents with H1-Pol are preferable to liquid RPA reagents for onsite use.


Assuntos
Geobacillus , Recombinases , Recombinases/genética , Recombinases/metabolismo , DNA Polimerase Dirigida por DNA/genética , Geobacillus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
10.
Biotechnol Appl Biochem ; 70(3): 1100-1108, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36455188

RESUMO

Alpha-L-arabinofuranosidase (Abf) is of big interest in various industrial areas. Directed evolution is a powerful strategy to identify significant residues underlying Abf properties. Here, six active variants from GH51 Abf of Geobacillus vulcani GS90 (GvAbf) by directed evolution were overproduced, extracted, and analyzed at biochemical and structural levels. According to the activity and thermostability results, the most-active and the least-active variants were found as GvAbf51 and GvAbf52, respectively. GvAbf63 variant was more active than parent GvAbf by 20% and less active than GvAbf51. Also, the highest thermostability belonged to GvAbf52 with 80% residual activity after 1 h. Comparative sequence and structure analyses revealed that GvAbf51 possessed L307S displacement. Thus, this study suggested that L307 residue may be critical for GvAbf activity. GvAbf63 had H30D, Q90H, and L307S displacements, and H30 was covalently bound to E29 catalytic residue. Thus, H30D may decrease the positive effect of L307S on GvAbf63 activity, preventing E29 action. Besides, GvAbf52 possessed S215N, L307S, H473P, and G476C substitutions and S215 was close to E175 (acid-base residue). S215N may partially disrupt E175 action. Overall effect of all substitutions in GvAbf52 may result in the formation of the C-C bond between C171 and C213 by becoming closer to each other.


Assuntos
Geobacillus , Geobacillus/genética , Glicosídeo Hidrolases/química , Estabilidade Enzimática
11.
J Agric Food Chem ; 70(48): 15283-15295, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36442227

RESUMO

GtfC-type 4,6-α-glucanotransferase (α-GT) enzymes from Glycoside Hydrolase Family 70 (GH70) are of interest for the modification of starch into low-glycemic index food ingredients. Compared to the related GH70 GtfB-type α-GTs, found exclusively in lactic acid bacteria (LAB), GtfCs occur in non-LAB, share low sequence identity, lack circular permutation of the catalytic domain, and feature a single-segment auxiliary domain IV and auxiliary C-terminal domains. Despite these differences, the first crystal structure of a GtfC, GbGtfC-ΔC from Geobacillus 12AMOR1, and the first one representing a non-permuted GH70 enzyme, reveals high structural similarity in the core domains with most GtfBs, featuring a similar tunneled active site. We propose that GtfC (and related GtfD) enzymes evolved from starch-degrading α-amylases from GH13 by acquiring α-1,6 transglycosylation capabilities, before the events that resulted in circular permutation of the catalytic domain observed in other GH70 enzymes (glucansucrases, GtfB-type α-GTs). AlphaFold modeling and sequence alignments suggest that the GbGtfC structure represents the GtfC subfamily, although it has a so far unique alternating α-1,4/α-1,6 product specificity, likely determined by residues near acceptor binding subsites +1/+2.


Assuntos
Geobacillus , Geobacillus/genética , Glicosídeo Hidrolases/genética , Amido
12.
Appl Environ Microbiol ; 88(18): e0105122, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36069579

RESUMO

Geobacillus thermodenitrificans K1041 is an unusual thermophile that is highly transformable via electroporation, making it a promising host for screening genetic libraries at elevated temperatures. In this study, we determined its biological properties, draft genome sequence, and effective vectors and also optimized the electroporation procedures in an effort to enhance its utilization. The organism exhibited swarming motility but not detectable endospore formation, and growth was rapid at 60°C under neutral and relatively low-salt conditions. Although the cells showed negligible acceptance of shuttle plasmids from general strains of Escherichia coli, methylation-controlled plasmids from dam mutant strains were efficiently accepted, suggesting circumvention of a restriction-modification system in G. thermodenitrificans K1041. We optimized the electroporation procedure to achieve efficiencies of 103 to 105 CFU/µg for five types of plasmids, which exhibited the different copy numbers and segregational stabilities in G. thermodenitrificans K1041. Some sets of plasmids were compatible. Moreover, we observed substantial plasmid-directed production of heterologous proteins in the intracellular or extracellular environments. Our successful construction of a library of promoter mutants using K1041 cells as hosts and subsequent screening at elevated temperatures to identify improved promoters revealed that G. thermodenitrificans K1041 was practical as a library host. The draft genomic sequence of the organism contained 3,384 coding genes, including resA and mcrB genes, which are involved in restriction-modification systems. Further examination revealed that in-frame deletions of resA increased transformation efficiencies, but mcrB deletion had no effect. The ΔresA mutant exhibited transformation efficiencies of >105 CFU/µg for some plasmids. IMPORTANCE Geobacillus thermodenitrificans K1041 has yet to be fully characterized. Although it is transformable via electroporation, it rarely accepts Escherichia coli-derived plasmids. This study clarified the biological and genomic properties of G. thermodenitrificans K1041. Additionally, we developed an electroporation procedure resulting in efficient acceptance of E. coli-derived plasmids. This procedure produced transformants using small amounts of plasmids immediately after the ligation reaction. Thus, G. thermodenitrificans K1041 was identified as a host for screening promoter mutants at elevated temperatures. Furthermore, because this strain efficiently produced heterologous proteins, it could serve as a host for screening thermostable proteins encoded in random mutant libraries or metagenomes. We also generated a ΔresA mutant that exhibited transformation efficiencies of >105 CFU/µg, which were highest in cases of electroporation-based transformation of Geobacillus spp. with E. coli-derived plasmids. Our findings provide a new platform for screening diverse genetic libraries at elevated temperatures.


Assuntos
Proteínas de Escherichia coli , Geobacillus , Enzimas de Restrição do DNA/genética , Enzimas de Restrição-Modificação do DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Vetores Genéticos , Genômica , Geobacillus/genética , Plasmídeos/genética , Temperatura
13.
J Biosci Bioeng ; 134(3): 203-212, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35811183

RESUMO

Catalases catalyze the decomposition of hydrogen peroxide into water and oxygen. We have characterized two manganese-catalases from Geobacillus thermopakistaniensis, CatGt and Cat-IIGt, which exhibited significant variation in their sequence, structure and properties. There was only 23% sequence identity between the two. The striking structural difference was the presence of an extended C-terminal domain in CatGt. Molecular modelling and docking studies revealed that deletion of the C-terminal domain removes non-specific binding, which results in increased substrate affinity. To verify experimentally, a C-terminal truncated version of CatGt, named as CatGt-ΔC, was produced in Escherichia coli and effects of deletion were analyzed. There was no significant difference in optimal pH, optimal temperature and substrate specificity of CatGt and CatGt-ΔC. However, Km value was reduced from 259 to 157 mM and CatGt-ΔC exhibited ∼1.5-fold higher catalytic efficiency as compared to CatGt. Furthermore, removal of the C-terminal domain converted the tetrameric nature to monomeric, and reduced the thermostability of the truncated protein. These results demonstrate that C-terminal domain of CatGt might have little role in maintaining enzyme function but provides additional structural stability to the protein, which is a desired property for industrial applications.


Assuntos
Geobacillus , Catalase , Escherichia coli/genética , Geobacillus/genética , Manganês , Especificidade por Substrato
14.
Protein Expr Purif ; 199: 106146, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863721

RESUMO

L-asparaginases, which are oncolytic enzymes, have been used in clinical applications for many years. These enzymes are also important in food processing industry due to their potential in acrylamide-mitigation. In this study, the gene for l-asparaginase (GkASN) from a thermophilic bacterium, Geobacillus kaustophilus, was cloned and expressed in E. coli Rosetta™2 (DE3) cells utilizing the pET-22b(+) vector. The 6xHis-tag attached enzyme was purified and analyzed both biochemically and structurally. The molecular mass of GkASN was determined as ∼36 kDa by SDS-PAGE, Western Blotting, and MALDI-TOF MS analyses. Optimum temperature and pH for the enzyme was determined as 55 °C and 8.5, respectively. The enzyme retained 89% of its thermal stability at 37 °C and 75% at 55 °C after 6 h of incubation. The enzyme activity was inhibited in the presence of Cu2+, Fe3+, Zn2+, and EDTA, while the activity was enhanced in the presence of Mn2+, Mg2+, and thiol group protective agents such as 2-mercaptoethanol and DTT. The structural modeling analysis demonstrated that the catalytic residues of the enzyme were partially similar to other asparaginases. The therapeutic potential of GkASN was tested on hepatocellular carcinoma cells, a solid cancer type with high mortality rate and rapidly increasing incidence in recent years. We showed that the GkASN-induced asparagine deficiency effectively reduced the metastatic synergy in HCC SNU387 cells on a xCELLigence system with differentiated epithelial Hep3B and poorly differentiated metastatic mesenchymal HCC SNU387 cells.


Assuntos
Carcinoma Hepatocelular , Geobacillus , Neoplasias Hepáticas , Asparaginase/química , Asparaginase/genética , Asparaginase/farmacologia , Estabilidade Enzimática , Escherichia coli/genética , Geobacillus/genética , Humanos , Concentração de Íons de Hidrogênio
15.
J Biosci Bioeng ; 134(2): 89-94, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35644798

RESUMO

The present study investigated high-yield monoacylglycerol (MAG) synthesis by bacterial lipolytic enzymes in a solvent-free two-phase system. Esterification by monoacylglycerol lipase from Bacillus sp. H-257 (H257) required a high glycerol/fatty acid molar ratio for efficient MAG synthesis. Screening of H257 homologues revealed that carboxylesterase derived from Geobacillus thermodenitrificans, EstGtA2, exhibited a higher esterification rate than H257. Moreover, neutralizing the pH of the acidic reaction solution by adding potassium hydroxide (KOH) solution further increased the esterification rate. The esterification rate by EstGtA2 reached 75% under conditions of equivalent molar amounts of glycerol and fatty acid, and the MAG rate (MAG/total glyceride) was 97%. The neutralized pH of the reaction solution likely affected the thermal stability of EstGtA2 during the esterification reaction. Screening for thermal-tolerant variants revealed that the EstGtA2S26I variant was stable at 75 °C for 30 min, a condition under which wild-type EstGtA2 was completely inactivated. The esterification rate by the EstGtA2S26I variant reached 90%, and the MAG rate was 96%. The addition of alkali and the use of a thermal-tolerant enzyme were important for obtaining high-yield MAG in a solvent-free two-phase system utilizing EstGtA2.


Assuntos
Carboxilesterase , Geobacillus , Carboxilesterase/metabolismo , Enzimas Imobilizadas , Esterificação , Ácidos Graxos , Geobacillus/genética , Glicerol , Monoglicerídeos , Solventes
16.
Biomed Res Int ; 2022: 6840409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601142

RESUMO

This study is aimed at isolating and identifying a thermophilic cellulolytic bacterium from hot spring water and characterizing thermostable cellulase produced by the isolate. Enrichment and culture of water sample was used for isolation of bacterial strains and an isolate with highest cellulase activity was chosen for the production, partial purification, and biochemical characterization of the enzyme. Different staining techniques, enzymatic tests, and 16s ribosomal DNA (16s rDNA) gene sequencing were used for the identification of the isolate. The cellulase producing isolate was Gram positive, motile, and sporulated rod-shaped bacterium growing optimally between 55°C and 65°C. Based on partial 16s rDNA sequence analysis, the isolate was identified as Geobacillus sp. and was designated as Geobacillus sp. KP43. The cellulase enzyme production condition was optimized, and the product was partially purified and biochemically characterized. Optimum cellulase production was observed in 1% carboxymethyl cellulose (CMC) at 55°C. The molecular weight of the enzyme was found to be approximately 66 kDa on 12% SDS-PAGE analysis. Biochemical characterization of partially purified enzyme revealed the temperature optimum of 70°C and activity over a wide pH range. Further, cellulase activity was markedly stimulated by metal ion Fe2+. Apart from cellulases, the isolate also depicted good xylanase, cellobiase, and amylase activities. Thermophilic growth with a variety of extracellular enzyme activities at elevated temperature as well as in a wide pH range showed that the isolated bacteria, Geobacillus sp. KP43, can withstand the harsh environmental condition, which makes this organism suitable for enzyme production for various biotechnological and industrial applications.


Assuntos
Celulase , Geobacillus , Fontes Termais , Celulase/química , DNA Ribossômico , Estabilidade Enzimática , Geobacillus/genética , Fontes Termais/microbiologia , Temperatura Alta , Concentração de Íons de Hidrogênio , Nepal , Filogenia , Temperatura , Água
17.
Microb Cell Fact ; 21(1): 34, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260160

RESUMO

BACKGROUND: Geobacillus kaustophilus is a thermophilic Gram-positive bacterium. Methods for its transformation are still under development. Earlier studies have demonstrated that pLS20catΔoriT mobilized the resident mobile plasmids from Bacillus subtilis to G. kaustophilus and transferred long segments of chromosome from one cell to another between B. subtilis. RESULTS: In this study, we applied mobilization of the B. subtilis chromosome mediated by pLS20catΔoriT to transform G. kaustophilus. We constructed a gene cassette to be integrated into G. kaustophilus and designed it within the B. subtilis chromosome. The pLS20catΔoriT-mediated conjugation successfully transferred the gene cassette from the B. subtilis chromosome into the G. kaustophilus allowing for the desired genetic transformation. CONCLUSIONS: This transformation approach described here will provide a new tool to facilitate the flexible genetic manipulation of G. kaustophilus.


Assuntos
Bacillus subtilis , Geobacillus , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Cromossomos , Geobacillus/genética , Plasmídeos/genética
18.
Folia Microbiol (Praha) ; 67(3): 389-404, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35229277

RESUMO

The genus Geobacillus is one of the most important genera which mainly comprises gram-positive thermophilic bacterial strains including obligate aerobes, denitrifiers and facultative anaerobes having capability of endospore formation as well. The genus Geobacillus is widely distributed in nature and mostly abundant in extreme locations such as cool soils, hot springs, hydrothermal vents, marine trenches, hay composts and dairy plants. Due to plasticity towards environmental adaptation, the Geobacillus sp. shows remarkable genome diversification and acquired many beneficial properties, which facilitates their exploitation for many biotechnological applications. Many thermophiles are of biotechnological importance and having considerable interest in commercial applications for the production of industrially important products. Recently, due to catabolic versatility especially in the degradation of hemicellulose and starch containing agricultural waste and rapid growth rates, these microorganisms show potential for the production of biofuels, thermostable enzymes and bioremediation. This review mainly summarizes the status of Geobacillus sp. including its notable properties, biotechnological studies and its potential application in the production of industrially important products.


Assuntos
Geobacillus , Biodegradação Ambiental , Biocombustíveis , Biotecnologia , Geobacillus/genética , Geobacillus/metabolismo
19.
Bioresour Technol ; 347: 126690, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35007737

RESUMO

Nitroalkanes are important toxic pollutants for which there is no effective removal method at present. Although genetic engineering bacteria have been developed as a promising bioremediation strategy for years, their actual performance is far lower than expected. In this study, important factors affecting the application of engineered Geobacillus for nitroalkanes degradation were comprehensively optimized. The deep-reconstructed engineered strains significantly raised the expression and activity level of catalytic enzymes, but failed to fully enhance the degradation efficiency. However, further debugging of a variety of key parameters effectively improved the performance of the engineering strains. The increased cell membrane permeability, trace supplementation of vital nutritional factors, synergy of multifunctional enzyme engineered bacteria, switch of oxygen-supply mode, and moderate initial biomass all effectively boosted the degradation efficiency. Finally, a low-cost and highly effective bioreactor test for high-concentration nitroalkanes degradation proved the multi-parameter optimization mode helps to maximize the performance of genetically engineered bacteria.


Assuntos
Geobacillus , Águas Residuárias , Biodegradação Ambiental , Reatores Biológicos , Engenharia Genética , Geobacillus/genética
20.
Biotechnol Lett ; 44(1): 101-112, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35001212

RESUMO

ß-hydroxybutyric acid is the most sensitive indicator in ketoacidosis detection, and accounts for nearly 78% of the ketone bodies. Diaphorase is commonly used to detect the ß-hydroxybutyric acid in clinical diagnosis. However, the extraction of diaphorase from animal myocardium is complex and low-yield, which is not convenient for large-scale production. In this study, a diaphorase from Geobacillus sp. Y4.1MC1 was efficiently heterologous expressed and purified in E. coli with a yield of 110 mg/L culture. The optimal temperature and pH of this recombinant diaphorase (rDIA) were 55 °C and 6.5, respectively. It was proved that rDIA was a dual acid- and thermo-stable enzyme, and which showed much more accurate detection of ß-hydroxybutyric acid than the commercial enzyme. Additionally, we also investigated the molecular interaction of rDIA with the substrate, and the conformation transition in different pH values by using homology modeling and molecular dynamics simulation. The results showed that 141-161 domain of rDIA played important role in the structure changes and conformations transmission at different pH values. Moreover, it was predicted that F105W, F105R, and M186R mutants were able to improve the binding affinity of rDIA, and A2Y, P35F, Q36D, N210L, F211Y mutants were benefit for the stability of rDIA.


Assuntos
Geobacillus , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Geobacillus/genética , Geobacillus/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...