Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Mol Biol ; 32(3): 229-239, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36533988

RESUMO

Farnesyl/geranylgeranyl diphosphate synthases (FPPS/GGPPS) as the short-chain prenyltransferases catalyse the formation of the acyclic precursors (E)-FPP and (E)-GGPP for isoprenoid biosynthesis. Here, we first cloned the cDNAs encoding FPPS and GGPPS in the vetch aphid Megoura viciae (designated as MvFPPS and MvGGPPS). They had an open reading frame of 1185 and 930 bp in length, encoding 395 and 309 amino acids, with a theoretical isoelectric point of 6.52 and 6.21, respectively. Sequence alignment and phylogenetic analysis showed that MvFPPS and MvGGPPS shared the conserved aspartate-rich motifs characterized by all prenyltransferases identified to date and were clustered with their homologues in two large clades. RNA interference (RNAi) combined with gas chromatography/mass spectrometry (GC-MS) analysis showed that both MvFPPS and MvGGPPS were involved in the biosynthesis of alarm pheromone. Spatiotemporal expression profiling showed that the expression of MvFPPS and MvGGPPS was significantly higher in embryos than in other tissues. RNAi and GC-MS performed specifically in embryos corroborated the function of MvFPPS and MvGGPPS. In vitro, enzymatic activity assay and product analysis demonstrated that MvFPPS could catalysed the formation of (E)-FPP using DMAPP or (E)-GPP as the allylic cosubstrates in the presence of IPP, while MvGGPPS could only use (E)-GPP or (E)-FPP as cosubstrates. Functional interaction analysis using RNAi revealed that MvGGPPS exerts unidirectional functional compensation for MvFPPS. Moreover, it can regulate the biosynthesis of alarm pheromone by imposing a negative feedback regulation on MvFPPS. Our study helps to understand the molecular regulatory mechanism of terpenoid biosynthesis in the aphid.


Assuntos
Afídeos , Geraniltranstransferase , Animais , Geraniltranstransferase/genética , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Afídeos/metabolismo , Feromônios , Filogenia
2.
J Biomol Struct Dyn ; 41(5): 1978-1987, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037838

RESUMO

Helicoverpa armigera (Ha), a polyphagous pest, causes significant damage to several crop plants, including cotton. The control of this cosmopolitan pest is largely challenging due to the development of resistance to existing management practices. The Juvenile Hormone (JH) plays a pivotal role in the life cycle of insects by regulating their morphogenetic and gonadotropic development. Hence, enzymes involved in JH biosynthesis are an attractive target for the development of selective insecticides. Farnesyl diphosphate synthase (FPPS), a member protein of (E)-prenyl-transferases, is one of the most crucial enzymes in the biosynthetic pathway of JHs. It catalyzes the condensation of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), forming farnesyl diphosphate (FPP), a precursor of JH. The study was designed to identify an effective small inhibitory molecule that could inhibit the activity of Helicoverpa armigera - FPPS (HaFPPS) for an effective pest control intervention. Therefore, a 3D model of FPPS protein was generated using homology modeling. The FooDB database library of small molecules was selected for virtual screening, following which binding affinities were evaluated using docking studies. Three top-scored molecules were analyzed for various pharmacophore properties. Further, molecular dynamics (MD) simulation analysis showed that the identified molecules (mitraphylline-ZINC1607834, chlorogenic acid-ZINC2138728 and llagate-ZINC3872446) had a reasonably acceptable binding affinity for HaFPPS and resulted in the formation of a stable HaFPPS-inhibitor(s) complex. The identified phytochemical molecules may be used as potent inhibitors of HaFPPS thus, paving the way for further developing environment-friendly insect growth regulator(s). Communicated by Ramaswamy H. Sarma.


Assuntos
Geraniltranstransferase , Mariposas , Animais , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo
3.
Biomed Res Int ; 2021: 6653500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791370

RESUMO

Pinene, a natural active monoterpene, is widely used as a flavoring agent, perfume, medicine, and biofuel. Although genetically engineered microorganisms have successfully produced pinene, to date, the biological yield of pinene is much lower than that of semiterpenes (isoprene) and sesquiterpenes (farnesene). In addition to the low heterologous expression of geranyl pyrophosphate synthase (GPPS) and pinene synthase (PS), cytotoxicity due to accumulation of the monoterpene also limits the production of pinene in microorganisms. In this study, we attempted to use two strategies to increase the biological yield of pinene. By deleting the random coils of GPPS and PS alone or in combination, a strain with a 335% yield increase was obtained. Additionally, upon computer-guided molecular modeling and docking of GPPS with isopentenyl pyrophosphate (IPP), its substrate, the key sites located within the catalytic pocket for substrate binding, was predicted. After screening, a strain harboring the T273R mutation of GPPS was selected among a batch of mutations of the key sites with a 154% increase in pinene yield.


Assuntos
Abies , Evolução Molecular Direcionada , Geraniltranstransferase , Simulação de Acoplamento Molecular , Proteínas de Plantas , Abies/enzimologia , Abies/genética , Geraniltranstransferase/química , Geraniltranstransferase/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
4.
Biochemistry ; 59(29): 2751-2759, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32584028

RESUMO

Farnesyl diphosphate synthase (FPPS) is an isoprenoid chain elongation enzyme that catalyzes the sequential condensation of dimethylallyl diphosphate (C5) with isopentenyl diphosphate (IPP; C5) and the resulting geranyl diphosphate (GPP; C10) with another molecule of IPP, eventually producing farnesyl diphosphate (FPP; C15), which is a precursor for the biosynthesis of a vast majority of isoprenoids. Previous studies of FPPS have highlighted the importance of the structure around the hydrophobic chain elongation path in determining product specificity. To investigate what structural features define the final chain length of the product in FPPS from Leishmania major, we designed and expressed six mutants of LmFPPS by replacing small amino acids around the binding pocket with bulky residues. Using enzymatic assays, binding kinetics, and crystallographic studies, we analyzed the effects of these mutations on the activity and product specificity of FPPS. Our results revealed that replacement of Thr-164 with tryptophan and phenylalanine completely abolished the activity of FPPS. Intriguingly, the T164Y substitution displayed dual product specificity and produced a mixture GPP and FPP as final products, with an activity for FPP synthesis that was lower than that of the wild-type enzyme. These data indicate that Thr-164 is a potential regulator of product specificity.


Assuntos
Geraniltranstransferase/metabolismo , Leishmania major/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferase/química , Hemiterpenos/metabolismo , Humanos , Leishmania major/química , Leishmania major/metabolismo , Leishmaniose Cutânea/parasitologia , Modelos Moleculares , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Conformação Proteica , Sesquiterpenos/metabolismo , Especificidade por Substrato
5.
Parasit Vectors ; 13(1): 168, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248823

RESUMO

BACKGROUND: The enzyme farnesyl diphosphate synthase (FPPS) is positioned in the intersection of different sterol biosynthesis pathways such as those producing isoprenoids, dolichols and ergosterol. FPPS is ubiquitous in eukaryotes and is inhibited by nitrogen-containing bisphosphonates (N-BP). N-BP activity and the mechanisms of cell death as well as damage to the ultrastructure due to N-BP has not yet been investigated in Leishmania infantum and Giardia. Thus, we evaluated the effect of N-BP on cell viability and ultrastructure and then performed structural modelling and phylogenetic analysis on the FPPS enzymes of Leishmania and Giardia. METHODS: We performed multiple sequence alignment with MAFFT, phylogenetic analysis with MEGA7, and 3D structural modelling for FPPS with Modeller 9.18 and on I-Tasser server. We performed concentration curves with N-BP in Leishmania promastigotes and Giardia trophozoites to estimate the IC50via the MTS/PMS viability method. The ultrastructure was evaluated by transmission electron microscopy, and the mechanism of cell death by flow cytometry. RESULTS: The nitrogen-containing bisphosphonate risedronate had stronger anti-proliferative activity in Leishmania compared to other N-BPs with an IC50 of 13.8 µM, followed by ibandronate and alendronate with IC50 values of 85.1 µM and 112.2 µM, respectively. The effect of N-BPs was much lower on trophozoites of Giardia than Leishmania (IC50 of 311 µM for risedronate). Giardia treated with N-BP displayed concentric membranes around the nucleus and nuclear pyknosis. Leishmania had mitochondrial swelling, myelin figures, double membranes, and plasma membrane blebbing. The same population labelled with annexin-V and 7-AAD had a loss of membrane potential (TMRE), indicative of apoptosis. Multiple sequence alignments and structural alignments of FPPS proteins showed that Giardia and Leishmania FPPS display low amino acid identity but possess the conserved aspartate-rich motifs. CONCLUSIONS: Giardia and Leishmania FPPS enzymes are phylogenetically distant but display conserved protein signatures. The N-BPs effect on FPPS was more pronounced in Leishmania than Giardia. This might be due to general differences in metabolism and differences in the FPPS catalytic site.


Assuntos
Proliferação de Células/efeitos dos fármacos , Difosfonatos/farmacologia , Geraniltranstransferase/química , Giardia/enzimologia , Giardia/ultraestrutura , Leishmania/enzimologia , Leishmania/ultraestrutura , Aminoácidos/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Geraniltranstransferase/antagonistas & inibidores , Giardia/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Filogenia , Alinhamento de Sequência , Relação Estrutura-Atividade
6.
Mol Biotechnol ; 62(2): 132-141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897972

RESUMO

A farnesyl diphosphate synthase (FPS) cDNA and promoter region was cloned from Sanghuangporus baumii. The gene contains a 150-bp 5'-untranslated region (UTR), a 154-bp 3'-UTR, and a 1062-bp open reading frame (ORF) encoding a 354 amino acid polypeptide. The FPS-DNA includes three exons (nucleotides 1 -123, 184-321, and 505-1305) and two introns (nucleotides 124-183 and 322-504). The FPS protein has a molecular weight of 40.73 kDa, it is hydrophilic with a theoretical isoelectric point of 5.13, and the secondary and three-dimensional structure were analysed. There is a transcription start site at nucleotides 1318-1368 of the promoter, which includes typical eukaryotic promoter elements (TATA Box, CAAT Box, ARBE, AT-rich element, G-box, MBS, Sp1, LTR). FPS was expressed in Escherichia coli BL21, and the recombinant protein (63.41 kDa) was subjected to dodecyl sulphate, sodium salt-polyacrylamide gel electrophoresis (SDS-PAGE). FPS transcription was measured during different developmental stages, and expression in 11 and 13 days mycelia was upregulated 49.3-fold and 125.4-fold, respectively, compared with 9 days mycelia controls. Through analysing, S. baumii triterpenoid content was correlated with the transcription level of FPS during different development stages, and the triterpenoid content peaked at day 15 (7.21 mg/g).


Assuntos
Basidiomycota/enzimologia , Geraniltranstransferase/metabolismo , Triterpenos/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Sequência de Aminoácidos/genética , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Clonagem Molecular , Escherichia coli , Éxons , Expressão Gênica , Geraniltranstransferase/química , Geraniltranstransferase/genética , Íntrons , Filogenia , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triterpenos/farmacologia
7.
Mol Pharmacol ; 96(5): 580-588, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31427399

RESUMO

Geranylgeranyl diphosphate synthase (GGPPS) is a central metalloenzyme in the mevalonate pathway, crucial for the prenylation of small GTPases. As small GTPases are pivotal for cellular survival, GGPPS was highlighted as a potential target for treating human diseases, including solid and hematologic malignancies and parasitic infections. Most available GGPPS inhibitors are bisphosphonates, but the clinically available compounds demonstrate poor pharmacokinetic properties. Although the design of novel bisphosphonates with improved physicochemical properties is highly desirable, the structure of wild-type human GGPPS (hGGPPS) bound to a bisphosphonate has not been resolved. Moreover, various metal-bisphosphonate-binding stoichiometries were previously reported in structures of yeast GGPPS (yGGPPS), hampering computational drug design with metal-binding pharmacophores (MBP). In this study, we report the 2.2 Å crystal structure of hGGPPS in complex with ibandronate, clearly depicting the involvement of three Mg2+ ions in bisphosphonate-protein interactions. Using drug-binding assays and computational docking, we show that the assignment of three Mg2+ ions to the binding site of both hGGPPS and yGGPPS greatly improves the correlation between calculated binding energies and experimentally measured affinities. This work provides a structural basis for future rational design of additional MBP-harboring drugs targeting hGGPPS. SIGNIFICANCE STATEMENT: Bisphosphonates are inhibitors of geranylgeranyl diphosphate synthase (GGPPS), a metalloenzyme crucial for cell survival. Bisphosphonate binding depends on coordination by Mg2+ ions, but various Mg2+-bisphosphonate-binding stoichiometries were previously reported. In this study, we show that three Mg2+ ions are vital for drug binding and provide a structural basis for future computational design of GGPPS inhibitors.


Assuntos
Cristalografia por Raios X/métodos , Dimetilaliltranstransferase/metabolismo , Difosfonatos/metabolismo , Farnesiltranstransferase/metabolismo , Geraniltranstransferase/metabolismo , Magnésio/metabolismo , Simulação de Acoplamento Molecular/métodos , Sítios de Ligação/fisiologia , Dimetilaliltranstransferase/química , Difosfonatos/química , Farnesiltranstransferase/química , Geraniltranstransferase/química , Humanos , Magnésio/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Molecules ; 23(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301210

RESUMO

Isoprenyl chains are found in many important metabolites. These are derived from precursors of the appropriate length produced by isoprenyl diphosphate synthases (IDSs). The human pathogen Mycobacterium tuberculosis makes various isoprenoids/terpenoids, with important roles in their biosynthesis played by two closely related IDSs, encoded by grcC1 (Rv0562) and grcC2 (Rv0989c), with Rv0989c generating the 10-carbon precursor (E)-geranyl diphosphate (GPP), and Rv0562 the 20-carbon precursor (E,E,E)-geranylgeranyl diphosphate (GGPP). Intriguingly, while Rv0562 contains the prototypical trans-IDS first and second aspartate-rich (DDxxD) motifs (FARM and SARM, respectively), Rv0989c uniquely contains arginine in place of the second Asp in the FARM and first Asp in the SARM. Here site-directed mutagenesis of the corresponding residues in both Rv0562 and Rv0989c reveals that these play a role in determination of product chain length. Specifically, substitution of Asp for the Arg in the FARM and SARM of Rv0989c leads to increased production of the longer 15-carbon farnesyl diphosphate (FPP), while substitution of Arg for the corresponding Asp in Rv0562 leads to increased release of shorter products, both FPP and GPP. Accordingly, while the primary role of the FARM and SARM is known to be chelation of the divalent magnesium ion co-factors that assist substrate binding and catalysis, the Arg substitutions found in Rv0989c seem to provide a novel means by which product chain length is moderated, at least in these M. tuberculosis IDSs.


Assuntos
Arginina/química , Ácido Aspártico/genética , Geraniltranstransferase/genética , Mycobacterium tuberculosis/enzimologia , Motivos de Aminoácidos/genética , Sequência de Aminoácidos/genética , Arginina/genética , Ácido Aspártico/química , Difosfatos/química , Diterpenos/química , Geraniltranstransferase/química , Humanos , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química , Terpenos/química
9.
Insect Biochem Mol Biol ; 92: 84-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183817

RESUMO

Farnesyl diphosphate synthase (FPPS) is an enzyme from the class of short chain (E)-prenyltransferases that catalyzes the condensation of two molecules of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) to generate the C15 product FPP. In insects, FPPS plays a key role in the biosynthesis of the morphogenetic and gonadotropic "juvenile hormone" (JH). Lepidopteran genomes encode two very distinct FPPS paralogs, one of which ("type-II") is expressed almost exclusively in the JH-producing glands, the corpora allata. This paralog has been hypothesized to display structural features that enable the binding of the bulkier precursors required for the biosynthesis of lepidopteran ethyl-branched JHs. Here, we report on the first crystal structures of an insect FPPS solved to date. Apo, ligand-bound, and inhibitor-bound structures of type-II FPPS (FPPS2) from the spruce budworm, Choristoneura fumiferana (Order: Lepidoptera), were obtained. Comparison of apo and inhibitor-bound enzymes revealed differences in both inhibitor binding and structural plasticity of CfFPPS2 compared to other FPPSs. Our data showed that IPP is not essential to the closure of the C-terminal tail. Ortho-substituted pyridinium bisphosphonates, previously shown to inhibit CfFPPS2, bound to the allylic site, as predicted; however, their alkyl groups were oriented towards the homoallylic binding site, with the bulkier propyl-substituted inhibitor penetrating deeply into the IPP binding pocket. The current study sheds light on the structural basis of substrate specificity of type-II FPPS of the spruce budworm. Through a comparison with other inhibitor-bound FPPSs, we propose several approaches to improve inhibitor selectivity and potency.


Assuntos
Geraniltranstransferase/química , Proteínas de Insetos/química , Mariposas/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Difosfonatos/metabolismo , Mariposas/química , Compostos de Piridínio/metabolismo , Especificidade por Substrato
10.
Chem Biol Drug Des ; 91(3): 735-746, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29080272

RESUMO

Nitrogen-containing bisphosphonates (N-BPs) have been used widely to treat various bone diseases by inhibiting the key enzyme farnesyl pyrophosphate synthase (FPPS) in the mevalonate pathway. Understanding the structure-activity relationships and the action mechanisms of these bisphosphonates is instructive for the design and the development of novel potent inhibitors. Here, a series of N-BPs inhibitors of human FPPS (hFPPS) were investigated using a combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, and three-layer ONIOM studies. The constructed 3D-QSAR model yielded a good correlation between the predicted and experimental activities. Based on the analysis of comparative molecular field analysis (CoMFA) contour maps, a series of novel N-BPs inhibitors were designed and ten novel potent N-BPs inhibitor candidates were screened out. Molecular docking and ONIOM (B3LYP/6-31 + G*:PM6:Amber) calculations revealed that the inhibitors bound to the active site of hFPPS via hydrogen-bonding interactions, hydrophobic interactions, and cation-π interactions. Six novel N-BPs inhibitors with better biological activities and higher lipophilicity were further screened out from ten candidates based on the calculated interaction energy. This study will facilitate the discovery of novel N-BPs inhibitors with higher activity and selectivity.


Assuntos
Difosfonatos/química , Inibidores Enzimáticos/química , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/química , Simulação de Acoplamento Molecular , Humanos , Ligação de Hidrogênio , Relação Estrutura-Atividade
11.
PLoS One ; 12(10): e0186447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29036218

RESUMO

Human farnesyl pyrophosphate synthase (hFPPS) catalyzes the production of the 15-carbon isoprenoid farnesyl pyrophosphate. The enzyme is a key regulator of the mevalonate pathway and a well-established drug target. Notably, it was elucidated as the molecular target of nitrogen-containing bisphosphonates, a class of drugs that have been widely successful against bone resorption disorders. More recently, research has focused on the anticancer effects of these inhibitors. In order to achieve increased non-skeletal tissue exposure, we created phenylaminopyridine bisphosphonates (PNP-BPs) that have bulky hydrophobic side chains through a structure-based approach. Some of these compounds have proven to be more potent than the current clinical drugs in a number of antiproliferation assays using multiple myeloma cell lines. In the present work, we characterized the binding of our most potent PNP-BPs to the target enzyme, hFPPS. Co-crystal structures demonstrate that the molecular interactions designed to elicit tighter binding are indeed established. We carried out thermodynamic studies as well; the newly introduced protein-ligand interactions are clearly reflected in the enthalpy of binding measured, which is more favorable for the new PNP-BPs than for the lead compound. These studies also indicate that the affinity of the PNP-BPs to hFPPS is comparable to that of the current drug risedronate. Risedronate forms additional polar interactions via its hydroxyl functional group and thus exhibits more favorable binding enthalpy; however, the entropy of binding is more favorable for the PNP-BPs, owing to the greater desolvation effects resulting from their large hydrophobic side chains. These results therefore confirm the overall validity of our drug design strategy. With a distinctly different molecular scaffold, the PNP-BPs described in this report represent an interesting new group of future drug candidates. Further investigation should follow to characterize the tissue distribution profile and assess the potential clinical benefits of these compounds.


Assuntos
Difosfonatos/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X , Difosfonatos/química , Humanos , Ligação Proteica , Termodinâmica
12.
FEMS Yeast Res ; 17(4)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854674

RESUMO

Farnesyl diphosphate synthase (FPPS) is a key enzyme responsible for the supply of isoprenoid precursors for several essential metabolites, including sterols, dolichols and ubiquinone. In Saccharomyces cerevisiae, FPPS catalyzes the sequential condensation of two molecules of isopentenyl diphosphate (IPP) with dimethylallyl diphosphate (DMAPP), producing geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Critical amino acid residues that determine product chain length were determined by a comparative study of strict GPP synthases versus strict FPPS. In silico ΔΔG, i.e. differential binding energy between a protein and two different ligands-of yeast FPPS mutants was evaluated, and F96, A99 and E165 residues were identified as key determinants for product selectivity. A99X variants were evaluated in vivo, S. cerevisiae strains carrying A99R and A99H variants showed significant differences on GPP concentrations and specific growth rates. The FPPS A99T variant produced unquantifiable amounts of FPP and no effect on GPP production was observed. Strains carrying A99Q, A99Y and A99K FPPS accumulated high amounts of DMAPP-IPP, with a decrease in GPP and FPP. Our results demonstrated the relevance of the first residue before FARM (First Aspartate Rich Motif) over substrate consumption and product specificity of S. cerevisiae FPPS in vivo. The presence of A99H significantly modified product selectivity and appeared to be relevant for GPP synthesis.


Assuntos
Regulação Fúngica da Expressão Gênica , Geraniltranstransferase/química , Mutação Puntual , Saccharomyces cerevisiae/enzimologia , Terpenos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Hemiterpenos/metabolismo , Cinética , Engenharia Metabólica , Simulação de Acoplamento Molecular , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sesquiterpenos/metabolismo , Especificidade por Substrato , Termodinâmica
13.
J Am Chem Soc ; 139(41): 14556-14567, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28926242

RESUMO

The amino acid sequences of farnesyl diphosphate synthase (FPPase) and chrysanthemyl diphosphate synthase (CPPase) from Artemisia tridentata ssp. Spiciformis, minus their chloroplast targeting regions, are 71% identical and 90% similar. FPPase efficiently and selectively synthesizes the "regular" sesquiterpenoid farnesyl diphosphate (FPP) by coupling isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) and then to geranyl diphosphate (GPP). In contrast, CPPase is an inefficient promiscuous enzyme, which synthesizes the "irregular" monoterpenes chrysanthemyl diphosphate (CPP), lavandulyl diphosphate (LPP), and trace quantities of maconelliyl diphosphate (MPP) from two molecules of DMAPP, and couples IPP to DMAPP to give GPP. A. tridentata FPPase and CPPase belong to the chain elongation protein family (PF00348), a subgroup of the terpenoid synthase superfamily (CL0613) whose members have a characteristic α terpene synthase α-helical fold. The active sites of A. tridentata FPPase and CPPase are located within a six-helix bundle containing amino acids 53 to 241. The two enzymes were metamorphosed into one another by sequentially replacing the loops and helices of the six-helix bundle from enzyme with those from the other. Chain elongation was the dominant activity during the N-terminal to C-terminal metamorphosis of FPPase to CPPase, with product selectivity gradually switching from FPP to GPP, until replacement of the final α-helix, whereupon cyclopropanation and branching activity competed with chain elongation. During the corresponding metamorphosis of CPPase to FPPase, cyclopropanation and branching activities were lost upon replacement of the first helix in the six-helix bundle. Mutations of active site residues in CPPase to the corresponding amino acids in FPPase enhanced chain-elongation activity, while similar mutations in the active site of FPPase failed to significantly promote formation of significant amounts of irregular monoterpenes. Our results indicate that CPPase, a promiscuous enzyme, is more plastic toward acquiring new activities, whereas FPPase is more resistant. Mutations of residues outside of the α terpene synthase fold are important for acquisition of FPPase activity for synthesis of CPP, LPP, and MPP.


Assuntos
Artemisia/enzimologia , Difosfatos/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Morfogênese , Mutagênese Sítio-Dirigida , Sequência de Aminoácidos , Artemisia/genética , Geraniltranstransferase/genética , Mutação , Relação Estrutura-Atividade
14.
J Comput Aided Mol Des ; 31(7): 675-688, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28631130

RESUMO

Pamidronate, alendronate, APHBP and neridronate are a group of drugs, known as second-generation bisphosphonates (2G-BPs), commonly used in the treatment of bone-resorption disorders, and recently their use has been related to some collateral side effects. The therapeutic activity of 2G-BPs is related to the inhibition of the human Farnesyl Pyrophosphate Synthase (hFPPS). Available inhibitory activity values show that 2G-BPs act time-dependently, showing big differences in their initial inhibitory activities but similar final IC50 values. However, there is a lack of information explaining this similar final inhibitory potency. Although different residues have been identified in the stabilization of the R2 side chain of 2G-BPs into the active site, similar free binding energies were obtained that highlighted a similar stability of the ternary complexes, which in turns justified the similar IC50 values reported. Free binding energy calculations also demonstrated that the union of 2G-BPs to the active site were 38 to 54 kcal mol-1 energetically more favourable than the union of the natural substrate, which is the basis of the inhibition potency of the hFPPS activity.


Assuntos
Conservadores da Densidade Óssea/química , Difosfonatos/química , Geraniltranstransferase/antagonistas & inibidores , Hemiterpenos/química , Simulação de Dinâmica Molecular , Compostos Organofosforados/química , Alendronato/química , Sítios de Ligação , Descoberta de Drogas , Geraniltranstransferase/química , Humanos , Pamidronato , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
15.
Biochimie ; 139: 95-106, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28478108

RESUMO

Farnesyl diphosphate synthase (FPS) is an essential enzyme in the biosynthesis of prenyl precursors for the production of primary and secondary metabolites, including sterols, dolichols, carotenoids and ubiquinones, and for the modification of proteins. Here we identified and characterized two FPSs (EuFPS1 and EuFPS2) from the plant Eucommia ulmoides. The EuFPSs had seven highly conserved prenyltransferase-specific domains that are critical for activity. Complementation and biochemical analyses using bacterially produced recombinant EuFPS isoforms showed that the EuFPSs had FPP synthesis activities both in vivo and in vitro. In addition to the typical reaction mechanisms of FPS, EuFPSs utilized farnesyl diphosphate (FPP) as an allylic substrate and participated in further elongation of the isoprenyl chain, resulting in the synthesis of geranylgeranyl diphosphate. However, despite the high amino acid similarities between the two EuFPS isozymes, their specific activities, substrate preferences, and final reaction products were different. The use of dimethylallyl diphosphate (DMAPP) as an allylic substrate highlighted the differences between the two enzymes: depending on the pH, the metal ion cofactor, and the cofactor concentration, EuFPS2 accumulated geranyl diphosphate as an intermediate product at a constant rate, whereas EuFPS1 synthesized little geranyl diphosphate. The reaction kinetics of the EuFPSs demonstrated that isopentenyl diphosphate and DMAPP were used both as substrates and as inhibitors of EuFPS activity. Taken together, the results indicate that the biosynthesis of FPP is highly regulated by various factors indispensable for EuFPS reactions in plants.


Assuntos
Eucommiaceae/enzimologia , Geraniltranstransferase/metabolismo , Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Sequência de Aminoácidos , Geraniltranstransferase/química , Cinética , Modelos Moleculares , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
16.
BMC Mol Biol ; 18(1): 3, 2017 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160774

RESUMO

BACKGROUND: Farnesyl pyrophosphate synthase (FPS) belongs to the short-chain prenyltransferase family, and it performs a conserved and essential role in the terpenoid biosynthesis pathway. However, its classification, evolutionary history, and the forces driving the evolution of FPS genes in plants remain poorly understood. RESULTS: Phylogeny and positive selection analysis was used to identify the evolutionary forces that led to the functional divergence of FPS in plants, and recombinant detection was undertaken using the Genetic Algorithm for Recombination Detection (GARD) method. The dataset included 68 FPS variation pattern sequences (2 gymnosperms, 10 monocotyledons, 54 dicotyledons, and 2 outgroups). This study revealed that the FPS gene was under positive selection in plants. No recombinant within the FPS gene was found. Therefore, it was inferred that the positive selection of FPS had not been influenced by a recombinant episode. The positively selected sites were mainly located in the catalytic center and functional areas, which indicated that the 98S and 234D were important positively selected sites for plant FPS in the terpenoid biosynthesis pathway. They were located in the FPS conserved domain of the catalytic site. We inferred that the diversification of FPS genes was associated with functional divergence and could be driven by positive selection. CONCLUSIONS: It was clear that protein sequence evolution via positive selection was able to drive adaptive diversification in plant FPS proteins. This study provides information on the classification and positive selection of plant FPS genes, and the results could be useful for further research on the regulation of triterpenoid biosynthesis.


Assuntos
Evolução Molecular , Geraniltranstransferase/genética , Proteínas de Plantas/genética , Plantas/enzimologia , Seleção Genética , Sequência de Aminoácidos , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Conformação Proteica , Sesquiterpenos/metabolismo
17.
Nat Commun ; 8: 14132, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098152

RESUMO

Farnesyl pyrophosphate synthase (FPPS) is an enzyme of the mevalonate pathway and a well-established therapeutic target. Recent research has focused around a newly identified druggable pocket near the enzyme's active site. Pharmacological exploitation of this pocket is deemed promising; however, its natural biological function, if any, is yet unknown. Here we report that the product of FPPS, farnesyl pyrophosphate (FPP), can bind to this pocket and lock the enzyme in an inactive state. The Kd for this binding is 5-6 µM, within a catalytically relevant range. These results indicate that FPPS activity is sensitive to the product concentration. Kinetic analysis shows that the enzyme is inhibited through FPP accumulation. Having a specific physiological effector, FPPS is a bona fide allosteric enzyme. This allostery offers an exquisite mechanism for controlling prenyl pyrophosphate levels in vivo and thus contributes an additional layer of regulation to the mevalonate pathway.


Assuntos
Regulação Alostérica , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Domínio Catalítico , Humanos , Cinética , Ácido Mevalônico/química , Ácido Mevalônico/metabolismo , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química
18.
J Biol Chem ; 291(52): 26806-26815, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27834682

RESUMO

Viperin is an endoplasmic reticulum-associated antiviral responsive protein that is highly up-regulated in eukaryotic cells upon viral infection through both interferon-dependent and independent pathways. Viperin is predicted to be a radical S-adenosyl-l-methionine (SAM) enzyme, but it is unknown whether viperin actually exploits radical SAM chemistry to exert its antiviral activity. We have investigated the interaction of viperin with its most firmly established cellular target, farnesyl pyrophosphate synthase (FPPS). Numerous enveloped viruses utilize cholesterol-rich lipid rafts to bud from the host cell membrane, and it is thought that by inhibiting FPPS activity (and therefore cholesterol synthesis), viperin retards viral budding from infected cells. We demonstrate that, consistent with this hypothesis, overexpression of viperin in human embryonic kidney cells reduces the intracellular rate of accumulation of FPPS but does not inhibit or inactivate FPPS. The endoplasmic reticulum-localizing, N-terminal amphipathic helix of viperin is specifically required for viperin to reduce cellular FPPS levels. However, although viperin reductively cleaves SAM to form 5'-deoxyadenosine in a slow, uncoupled reaction characteristic of radical SAM enzymes, this cleavage reaction is independent of FPPS. Furthermore, mutation of key cysteinyl residues ligating the catalytic [Fe4S4] cluster in the radical SAM domain, surprisingly, does not abolish the inhibitory activity of viperin against FPPS; indeed, some mutations potentiate viperin activity. These observations imply that viperin does not act as a radical SAM enzyme in regulating FPPS.


Assuntos
Retículo Endoplasmático/metabolismo , Geraniltranstransferase/metabolismo , Proteínas Mutantes/metabolismo , Proteínas/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/genética , Células HEK293 , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutação/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/química , Proteínas/genética
19.
Biochemistry ; 55(31): 4366-74, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27428767

RESUMO

Some trans-prenyltransferases, such as long-chain C40 octaprenyl diphosphate synthase (OPPS), short-chain C15 farnesyl diphosphate synthase (FPPS), and C20 geranylgeranyl diphosphate synthase (GGPPS), are important drug targets. These enzymes catalyze chain elongation of FPP or geranyl diphosphate (GPP) through condensation reactions with isopentenyl diphosphate (IPP), forming designated numbers of trans-double bonds in the final products. To facilitate drug discovery, we report here a sensitive and reliable fluorescence-based assay for monitoring their activities in real time. MANT-O-GPP, a fluorescent analogue of FPP, was used as an alternative substrate and converted by the wild-type OPPS and the engineered FPPS and GGPPS into sufficiently long products with enhanced fluorescence intensities. This fluorescence probe was used to reveal the inhibitory mechanism of zoledronate, a bisphosphonate drug that targets human FPPS and possibly GGPPS.


Assuntos
Dimetilaliltranstransferase/antagonistas & inibidores , Dimetilaliltranstransferase/química , Corantes Fluorescentes/química , Sondas Moleculares/química , Fosfatos de Poli-Isoprenil/química , Sesquiterpenos/química , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Substituição de Aminoácidos , Dimetilaliltranstransferase/genética , Difosfonatos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/química , Farnesiltranstransferase/genética , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/química , Geraniltranstransferase/genética , Humanos , Imidazóis/farmacologia , Cinética , Modelos Moleculares , Técnicas de Sonda Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Especificidade por Substrato , Ácido Zoledrônico
20.
J Phys Chem B ; 120(33): 8685-95, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27258368

RESUMO

Mixed-solvent molecular dynamics (MixMD) is a hotspot-mapping technique that relies on molecular dynamics simulations of proteins in binary solvent mixtures. Previous work on MixMD has established the technique's effectiveness in capturing binding sites of small organic compounds. In this work, we show that MixMD can identify both competitive and allosteric sites on proteins. The MixMD approach embraces full protein flexibility and allows competition between solvent probes and water. Sites preferentially mapped by probe molecules are more likely to be binding hotspots. There are two important requirements for the identification of ligand-binding hotspots: (1) hotspots must be mapped at very high signal-to-noise ratio and (2) the hotspots must be mapped by multiple probe types. We have developed our mapping protocol around acetonitrile, isopropanol, and pyrimidine as probe solvents because they allowed us to capture hydrophilic, hydrophobic, hydrogen-bonding, and aromatic interactions. Charged probes were needed for mapping one target, and we introduce them in this work. In order to demonstrate the robust nature and wide applicability of the technique, a combined total of 5 µs of MixMD was applied across several protein targets known to exhibit allosteric modulation. Most notably, all the protein crystal structures used to initiate our simulations had no allosteric ligands bound, so there was no preorganization of the sites to predispose the simulations to find the allosteric hotspots. The protein test cases were ABL Kinase, Androgen Receptor, CHK1 Kinase, Glucokinase, PDK1 Kinase, Farnesyl Pyrophosphate Synthase, and Protein-Tyrosine Phosphatase 1B. The success of the technique is demonstrated by the fact that the top-four sites solely map the competitive and allosteric sites. Lower-ranked sites consistently map other biologically relevant sites, multimerization interfaces, or crystal-packing interfaces. Lastly, we highlight the importance of including protein flexibility by demonstrating that MixMD can map allosteric sites that are not detected in half the systems using FTMap applied to the same crystal structures.


Assuntos
Regulação Alostérica , Domínio Catalítico , Simulação de Dinâmica Molecular , 2-Propanol/química , Acetonitrilas/química , Quinase 1 do Ponto de Checagem/química , Quinase 1 do Ponto de Checagem/metabolismo , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Glucoquinase/química , Glucoquinase/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Pirimidinas/química , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Solventes/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...