Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.931
Filtrar
1.
Parasit Vectors ; 17(1): 199, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698452

RESUMO

BACKGROUND: Enteric parasitic infections remain a major public health problem globally. Cryptosporidium spp., Cyclospora spp. and Giardia spp. are parasites that cause diarrhea in the general populations of both developed and developing countries. Information from molecular genetic studies on the speciation of these parasites and on the role of animals as vectors in disease transmission is lacking in Ghana. This study therefore investigated these diarrhea-causing parasites in humans, domestic rats and wildlife animals in Ghana using molecular tools. METHODS: Fecal samples were collected from asymptomatic school children aged 9-12 years living around the Shai Hills Resource Reserve (tourist site), from wildlife (zebras, kobs, baboons, ostriches, bush rats and bush bucks) at the same site, from warthogs at the Mole National Park (tourist site) and from rats at the Madina Market (a popular vegetable market in Accra, Ghana. The 18S rRNA gene (18S rRNA) and 60-kDa glycoprotein gene (gp60) for Cryptosporidium spp., the glutamate dehydrogenase gene (gdh) for Giardia spp. and the 18S rDNA for Cyclospora spp. were analyzed in all samples by PCR and Sanger sequencing as markers of speciation and genetic diversity. RESULTS: The parasite species identified in the fecal samples collected from humans and animals included the Cryptosporidium species C. hominis, C. muris, C. parvum, C. tyzzeri, C. meleagridis and C. andersoni; the Cyclopora species C. cayetanensis; and the Gardia species, G. lamblia and G. muris. For Cryptosporidium, the presence of the gp60 gene confirmed the finding of C. parvum (41%, 35/85 samples) and C. hominis (29%, 27/85 samples) in animal samples. Cyclospora cayetanensis was found in animal samples for the first time in Ghana. Only one human sample (5%, 1/20) but the majority of animal samples (58%, 51/88) had all three parasite species in the samples tested. CONCLUSIONS: Based on these results of fecal sample testing for parasites, we conclude that animals and human share species of the three genera (Cryptosporidium, Cyclospora, Giardia), with the parasitic species mostly found in animals also found in human samples, and vice-versa. The presence of enteric parasites as mixed infections in asymptomatic humans and animal species indicates that they are reservoirs of infections. This is the first study to report the presence of C. cayetanensis and C. hominis in animals from Ghana. Our findings highlight the need for a detailed description of these parasites using high-throughput genetic tools to further understand these parasites and the neglected tropical diseases they cause in Ghana where such information is scanty.


Assuntos
Animais Domésticos , Animais Selvagens , Criptosporidiose , Cryptosporidium , Cyclospora , Ciclosporíase , Fezes , Animais , Gana/epidemiologia , Cyclospora/genética , Cyclospora/isolamento & purificação , Cyclospora/classificação , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Fezes/parasitologia , Ciclosporíase/epidemiologia , Ciclosporíase/parasitologia , Ciclosporíase/veterinária , Animais Selvagens/parasitologia , Criptosporidiose/parasitologia , Criptosporidiose/epidemiologia , Criptosporidiose/transmissão , Humanos , Criança , Animais Domésticos/parasitologia , Ratos , DNA de Protozoário/genética , RNA Ribossômico 18S/genética , Giardíase/veterinária , Giardíase/parasitologia , Giardíase/epidemiologia , Diarreia/parasitologia , Diarreia/veterinária , Diarreia/epidemiologia , Filogenia , Giardia/genética , Giardia/isolamento & purificação , Giardia/classificação
2.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584235

RESUMO

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Assuntos
Giardia lamblia , Giardíase , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Giardíase/parasitologia , Giardia/genética , Telômero/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo
3.
Parasitol Res ; 123(4): 176, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573530

RESUMO

Giardiasis is a common intestinal infection caused by Giardia duodenalis, which is a major economic and health burden for humans and livestock. Currently, a convenient and effective detection method is urgently needed. CRISPR/Cas12a-based diagnostic methods have been widely used for nucleic acid-based detection of pathogens due to their high efficiency and sensitivity. In this study, a technique combining CRISPR/Cas12a and RPA was established that allows the detection of G. duodenalis in faecal samples by the naked eye with high sensitivity (10-1 copies/µL) and specificity (no cross-reactivity with nine common pathogens). In clinical evaluations, the RPA-CRISPR/Cas12a-based detection assay detected Giardia positivity in 2% (1/50) of human faecal samples and 47% (33/70) of cattle faecal samples, respectively, which was consistent with the results of nested PCR. Our study demonstrated that the RPA-CRISPR/Cas12a technique for G. duodenalis is stable, efficient, sensitive, specific and has low equipment requirements. This technique offers new opportunities for on-site detection in remote and poor areas.


Assuntos
Giardia lamblia , Giardíase , Humanos , Animais , Bovinos , Giardia lamblia/genética , Sistemas CRISPR-Cas , Giardíase/diagnóstico , Giardíase/veterinária , Giardia/genética , Bioensaio
4.
Environ Monit Assess ; 196(5): 439, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592554

RESUMO

In this study, the Quantitative Microbial Risk Assessment (QMRA) methodology was applied to estimate the annual risk of Giardia and Cryptosporidium infection associated with a water treatment plant in southern Brazil. The efficiency of the treatment plant in removing protozoa and the effectiveness of the Brazilian legislation on microbiological protection were evaluated, emphasizing the relevance of implementing the QMRA in this context. Two distinct approaches were employed to estimate the mechanical removal of protozoa: The definitions provided by the United States Environmental Protection Agency (USEPA), and the model proposed by Neminski and Ongerth. Although the raw water collected had a higher concentration of Giardia cysts than Cryptosporidium oocysts, the estimated values for the annual risk of infection were significantly higher for Cryptosporidium than for Giardia. From a general perspective, the risk values of protozoa infection were either below or very near the limit set by the World Health Organization (WHO). In contrast, all the risk values of Cryptosporidium infection exceeded the threshold established by the USEPA. Ultimately, it was concluded that the implementation of the QMRA methodology should be considered by the Brazilian authorities, as the requirements and guidelines provided by the Brazilian legislation proved to be insufficient to guarantee the microbiological safety of drinking water. In this context, the QMRA application can effectively contribute to the prevention and investigation of outbreaks of waterborne disease.


Assuntos
Criptosporidiose , Cryptosporidium , Estados Unidos , Humanos , Criptosporidiose/epidemiologia , Brasil/epidemiologia , Monitoramento Ambiental , Giardia , Medição de Risco
6.
Parasitology ; 151(4): 351-362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305092

RESUMO

Cryptosporidium spp., Giardia intestinalis and microsporidia are unicellular opportunistic pathogens that can cause gastrointestinal infections in both animals and humans. Since companion animals may serve as a source of infection, the aim of the present screening study was to analyse the prevalence of these intestinal protists in fecal samples collected from dogs living in 10 animal shelters in central Europe (101 dogs from Poland and 86 from the Czech Republic), combined with molecular subtyping of the detected organisms in order to assess their genetic diversity. Genus-specific polymerase chain reactions were performed to detect DNA of the tested species and to conduct molecular subtyping in collected samples, followed by statistical evaluation of the data obtained (using χ2 or Fisher's tests). The observed prevalence was 15.5, 10.2, 1 and 1% for G. intestinalis, Enterocytozoon bieneusi, Cryptosporidium spp. and Encephalitozoon cuniculi, respectively. Molecular evaluation has revealed the predominance of dog-specific genotypes (Cryptosporidium canis XXe1 subtype; G. intestinalis assemblages C and D; E. cuniculi genotype II; E. bieneusi genotypes D and PtEbIX), suggesting that shelter dogs do not pose a high risk of human transmission. Interestingly, the percentage distribution of the detected pathogens differed between both countries and individual shelters, suggesting that the risk of infection may be associated with conditions typical of a given location.


Assuntos
Criptosporidiose , Cryptosporidium , Doenças do Cão , Enterocytozoon , Fezes , Giardíase , Microsporidiose , Animais , Cães , Doenças do Cão/parasitologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Enterocytozoon/genética , Enterocytozoon/isolamento & purificação , Enterocytozoon/classificação , Cryptosporidium/genética , Cryptosporidium/isolamento & purificação , Cryptosporidium/classificação , Microsporidiose/veterinária , Microsporidiose/epidemiologia , Polônia/epidemiologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Fezes/parasitologia , Fezes/microbiologia , República Tcheca/epidemiologia , Giardíase/veterinária , Giardíase/epidemiologia , Giardíase/parasitologia , Prevalência , Giardia/genética , Giardia/isolamento & purificação , Giardia/classificação , Genótipo , Giardia lamblia/genética , Giardia lamblia/isolamento & purificação , Giardia lamblia/classificação , Especificidade de Hospedeiro
7.
Sci Total Environ ; 919: 170615, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316303

RESUMO

Urban wastewater reuse for agriculture provides reliable nutrient-rich water, reduces water stress, and strengthens food systems. However, wastewater reuse also presents health risks and characterizing the spatial dynamics of wastewater can help optimize risk mitigation. We conducted comparative risk analysis of exposure to wastewater in irrigation canals, where we compared those exposed to a) treated vs. untreated wastewater, and b) wastewater upstream vs. downstream from communities in the Mezquital Valley. The canal system with treated wastewater was sampled prior to being treated, directly after treatment, as well as before and after it flowed through a community. Along the canal system that carried untreated wastewater, we sampled before and after a community. We quantified the concentrations of bacterial, protozoal, and viral pathogens in the wastewater. Pathogen concentration data were used to calculate measures of relative risk between sampling points. Wastewater treatment reduced predicted bacterial pathogen infection risk in post-treatment locations (RR = 0.73, 95 % CI 0.61, 0.87), with no evidence of similar reductions in Giardia or viral pathogens (RR = 1.02, 95 % CI 0.56, 1.86 and RR = 1.18, 95 % CI 0.70, 2.02 respectively). Although infection risk decreased further down the canals, infection risk increased for bacterial pathogens after our sentinel community (RR = 1.94, 95 % 1.34, 2.86). For Giardia and viral pathogens infection risk was elevated but not significantly. We found similar evidence for increases in risk when comparing the treated section of the canal system with a canal section whose wastewater was not treated, i.e., the risk benefits of wastewater treatment were lost after our sentinel community for bacteria (RR = 5.27 vs. 2.08 for sampling points before and after our sentinel community respectively) and for Giardia (RR = 6.98 vs. 3.35 respectively). The increase in risk after transit through communities could have resulted from local community recontamination of the treated wastewater stream.


Assuntos
Giardíase , Águas Residuárias , Humanos , México , Meio Ambiente , Agricultura , Bactérias , Giardia
8.
Vet Parasitol ; 327: 110151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422710

RESUMO

Rabbits are highly abundant in many countries and can serve as reservoirs of diseases for a diversity of pathogens including the enteric protozoan parasites, Cryptosporidium and Giardia. Both parasites shed environmentally robust environmental stages (oo/cysts) and have been responsible for numerous waterborne outbreaks of diseases. Cryptosporidium hominis and C. parvum are responsible for most infections in humans, while Giardia duodenalis assemblages A and B, cause most human cases of giardiasis. Cryptosporidium cuniculus, the dominant species infecting rabbits, is the only spceies other than C. hominis and C. parvum to have caused a waterborne outbreak of gastritis, which occurred in the United Kingdom in 2008. This review examines the prevalence of Cryptosporidium and Giardia species in rabbits to better understand the public health risks of contamination of water sources with Cryptosporidium and Giardia oo/cysts from rabbits. Despite the abundance of C. cuniculus in rabbits, reports in humans are relatively rare, with the exception of the United Kingdom and New Zealand, and reports of C. cuniculus in humans from the United Kingdom have declined substantially since the 2008 outbreak. Subtyping of C. cuniculus has supported the potential for zoonotic transmission. Relatively few studies have been conducted on Giardia, but assemblage B dominates. However, improved typing methods are required to better understand the transmission dynamics of Giardia assemblages in rabbits. Similarly, it is not well understood if pet rabbits or contaminated water are the main source of C. cuniculus infections in humans. Well-planned studies using high-resolution typing tools are required to understand the transmission dynamics better and quantify the public health risk of Cryptosporidium and Giardia from rabbits.


Assuntos
Criptosporidiose , Cryptosporidium , Cuniculidae , Cistos , Giardia lamblia , Giardíase , Doenças dos Roedores , Coelhos , Humanos , Animais , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Giardia , Criptosporidiose/parasitologia , Zoonoses/parasitologia , Água/parasitologia , Fezes/parasitologia , Cistos/veterinária
9.
Water Res ; 251: 121165, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290188

RESUMO

Rodents represent the single largest group within mammals and host a diverse array of zoonotic pathogens. Urbanisation impacts wild mammals, including rodents, leading to habitat loss but also providing new resources. Urban-adapted (synanthropic) rodents, such as the brown rat (R. norvegicus), black rat (R. rattus), and house mouse (Mus musculus), have long successfully adapted to living close to humans and are known carriers of zoonotic pathogens. Two important enteric, zoonotic protozoan parasites, carried by rodents, include Cryptosporidium and Giardia. Their environmental stages (oocysts/cysts), released in faeces, can contaminate surface and wastewaters, are resistant to common drinking water disinfectants and can cause water-borne related gastritis outbreaks. At least 48 species of Cryptosporidium have been described, with C. hominis and C. parvum responsible for the majority of human infections, while Giardia duodenalis assemblages A and B are the main human-infectious assemblages. Molecular characterisation is crucial to assess the public health risk linked to rodent-related water contamination due to morphological overlap between species. This review explores the global molecular diversity of these parasites in rodents, with a focus on evaluating the zoonotic risk from contamination of water and wasterwater with Cryptosporidium and Giardia oocysts/cysts from synanthropic rodents. Analysis indicates that while zoonotic Cryptosporidium and Giardia are prevalent in farmed and pet rodents, host-specific Cryptosporidium and Giardia species dominate in urban adapted rodents, and therefore the risks posed by these rodents in the transmission of zoonotic Cryptosporidium and Giardia are relatively low. Many knowledge gaps remain however, and therefore understanding the intricate dynamics of these parasites in rodent populations is essential for managing their impact on human health and water quality. This knowledge can inform strategies to reduce disease transmission and ensure safe drinking water in urban and peri­urban areas.


Assuntos
Criptosporidiose , Cryptosporidium , Cistos , Água Potável , Giardíase , Camundongos , Humanos , Animais , Ratos , Qualidade da Água , Roedores , Giardíase/epidemiologia , Giardíase/parasitologia , Giardia , Fezes , Oocistos
10.
Parasitol Res ; 123(1): 107, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253768

RESUMO

Marsupials, inhabiting diverse ecosystems, including urban and peri-urban regions in Australasia and the Americas, intersect with human activities, leading to zoonotic spill-over and anthroponotic spill-back of pathogens, including Cryptosporidium and Giardia. This review assesses the current knowledge on the diversity of Cryptosporidium and Giardia species in marsupials, focusing on the potential zoonotic risks. Cryptosporidium fayeri and C. macropodum are the dominant species in marsupials, while in possums, the host-specific possum genotype dominates. Of these three species/genotypes, only C. fayeri has been identified in two humans and the zoonotic risk is considered low. Generally, oocyst shedding in marsupials is low, further supporting a low transmission risk. However, there is some evidence of spill-back of C. hominis into kangaroo populations, which requires continued monitoring. Although C. hominis does not appear to be established in small marsupials like possums, comprehensive screening and analysis are essential for a better understanding of the prevalence and potential establishment of zoonotic Cryptosporidium species in small marsupials. Both host-specific and zoonotic Giardia species have been identified in marsupials. The dominance of zoonotic G. duodenalis assemblages A and B in marsupials may result from spill-back from livestock and humans and it is not yet understood if these are transient or established infections. Future studies using multilocus typing tools and whole-genome sequencing are required for a better understanding of the zoonotic risk from Giardia infections in marsupials. Moreover, much more extensive screening of a wider range of marsupial species, particularly in peri-urban areas, is required to provide a clearer understanding of the zoonotic risk of Cryptosporidium and Giardia in marsupials.


Assuntos
Criptosporidiose , Cryptosporidium , Giardíase , Humanos , Animais , Giardia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Ecossistema , Macropodidae
11.
J Am Acad Dermatol ; 90(4): 790-797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992812

RESUMO

BACKGROUND: Anti-p200 pemphigoid is a subepidermal autoimmune blistering disease (AIBD) characterized by autoantibodies against a 200 kDa protein. Laminin γ1 has been described as target antigen in 70% to 90% of patients. No diagnostic assay is widely available for anti-p200 pemphigoid, which might be due to the unclear pathogenic relevance of anti-laminin γ1 autoantibodies. OBJECTIVE: To identify a target antigen with higher clinical and diagnostic relevance. METHODS: Immunoprecipitation, mass spectrometry, and immunoblotting were employed for analysis of skin extracts and sera of patients with anti-p200 pemphigoid (n = 60), other AIBD (n = 33), and healthy blood donors (n = 29). To localize the new antigen in skin, cultured keratinocytes and fibroblasts, quantitative real-time polymerase chain reaction and immunofluorescence microscopy were performed. RESULTS: Laminin ß4 was identified as target antigen of anti-p200 pemphigoid in all analyzed patients. It was located at the level of the basement membrane zone of the skin with predominant expression in keratinocytes. LIMITATIONS: A higher number of sera needs to be tested to verify that laminin ß4 is the diagnostically relevant antigen of anti-p200 pemphigoid. CONCLUSION: The identification of laminin ß4 as an additional target antigen in anti-p200 pemphigoid will allow its differentiation from other AIBD and as such, improve the management of these rare disorders.


Assuntos
Penfigoide Bolhoso , Humanos , Autoanticorpos , Autoantígenos , Membrana Basal , Vesícula , Laminina , Giardia
12.
Sci Total Environ ; 912: 169032, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123098

RESUMO

Cryptosporidium and Giardia are important waterborne protozoan parasites that are resistant to disinfectants commonly used for drinking water. Wild birds, especially wild migratory birds, are often implicated in the contamination of source and wastewater with zoonotic diseases, due to their abundance near water and in urban areas and their ability to spread enteric pathogens over long distances. This review summarises the diversity of Cryptosporidium and Giardia in birds, with a focus on zoonotic species, particularly in wild and migratory birds, which is critical for understanding zoonotic risks. The analysis revealed that both avian-adapted and zoonotic Cryptosporidium species have been identified in birds but that avian-adapted Cryptosporidium species dominate in wild migratory birds. Few studies have examined Giardia species and assemblages in birds, but the non-zoonotic Giardia psittaci and Giardia ardeae are the most commonly reported species. The identification of zoonotic Cryptosporidium and Giardia in birds, particularly C. parvum and G. duodenalis assemblages A and B in wild migratory birds, is likely due to mechanical carriage or spillback from birds co-grazing pastures contaminated with C. parvum from livestock. Therefore, the role of wild migratory birds in the transmission of zoonotic Cryptosporidium and Giardia to source water is likely overestimated. To address knowledge gaps, it is important to conduct more extensive studies on the prevalence of Cryptosporidium and Giardia in a broader range of migratory wild birds. There is also a need to investigate the extent to which zoonotic infections with C. hominis/C. parvum and G. duodenalis assemblages A and B are mechanical and/or transient, and to assess the load and viability of zoonotic oo/cysts shed in avian faeces. Understanding the contribution of birds to zoonoses is essential for effective disease surveillance, prevention, and control.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Giardia lamblia , Giardíase , Animais , Giardia , Criptosporidiose/epidemiologia , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Zoonoses/epidemiologia , Fezes , Aves
13.
Parasitol Res ; 123(1): 38, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091122

RESUMO

Giardia duodenalis is a common pathogenic intestinal protozoan parasite with high prevalence in developing countries, especially among children. The distribution of giardia assemblages among humans and their clinical relevance remains controversial. This study aimed to determine the prevalence and assemblage of Giardia among children under 5 years of age in Jimma, Southwest Ethiopia. Employing a case-control design, 606 children presenting with diarrhea at Jimma university medical center and Serbo Health Center were enrolled from December 2016 to July 2018 along with 617 matched controls without diarrhea. Giardia was detected and typed using real-time PCR. Univariate and multivariate regression analysis was performed. The total prevalence of Giardia was 41% (501/1223) and did not differ significantly between cases and controls (40% vs 42%). Prevalence increased by age, with the highest prevalence seen in children aged ≥ 25 months. Children without diarrhea with a history of diarrhea during the last month were more likely to be Giardia positive compared to children with no history diarrhea (OR 1.8 and 95%CI; 1.1-2.9). Regardless of current diarrhea symptoms, assemblage B predominated with 89%, followed by assemblage A (8%) and mixed infection assemblage A and B (3%). We report a high prevalence of Giardia by PCR detection in Jimma, Ethiopia, with assemblage B being predominant. There was a similar distribution of Giardia assemblages between children with and without diarrhea. Increasing age was a risk factor for Giardia infection. Community-based prevention and control strategies need to be employed to decrease the risk of giardia infection.


Assuntos
Giardia lamblia , Giardíase , Criança , Humanos , Pré-Escolar , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Prevalência , Etiópia/epidemiologia , Estudos de Casos e Controles , Genótipo , Giardia/genética , Diarreia/epidemiologia , Diarreia/parasitologia , Reação em Cadeia da Polimerase em Tempo Real , Fezes/parasitologia
14.
Am J Case Rep ; 24: e942394, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38142296

RESUMO

BACKGROUND Immunoglobulin A (IgA) vasculitis is a small-vessel vasculitis characterized by the deposition of IgA immune complexes primarily in the skin, kidneys, and gastrointestinal tract. While it predominantly affects children, cases in adults are associated with more severe manifestations. Evidence suggests that infectious triggers play a pivotal role in its etiology. Often, it follows a self-limiting course and doesn't necessitate intervention. CASE REPORT We present the case of a 51-year-old man who presented with a maculopapular rash, arthralgia, and abdominal pain. An examination revealed a purpuric rash on lower extremities and abdomen. A lower extremity duplex ultrasound identified deep vein thrombosis (DVT) in the right leg. Skin biopsy of the rash confirmed the diagnosis of IgA vasculitis, demonstrating perivascular neutrophilic infiltrate and IgA complex deposition. Stool studies revealed co-infection with Cryptosporidium and Giardia. The patient was treated with a prednisone taper with significant improvement in symptoms. CONCLUSIONS This case highlights the potential role of Cryptosporidium as a trigger for IgA vasculitis. The presence of concurrent infections underscores the complex interplay between infections and the development of IgA vasculitis. The co-infection with Giardia suggests that a secondary infection may be involved, further complicating the disease's etiology. The observation of DVT suggests a possible link between IgA vasculitis and a prothrombotic state. This report serves to expand the knowledge of IgA vasculitis triggers and associated complications, guiding clinicians in diagnosing and managing similar cases while emphasizing the importance of vigilance in adults with these symptoms.


Assuntos
Coinfecção , Criptosporidiose , Cryptosporidium , Exantema , Vasculite por IgA , Vasculite , Masculino , Adulto , Criança , Humanos , Pessoa de Meia-Idade , Vasculite por IgA/complicações , Vasculite por IgA/diagnóstico , Vasculite por IgA/patologia , Giardia , Criptosporidiose/complicações , Imunoglobulina A , Vasculite/complicações , Vasculite/diagnóstico
15.
Vet Parasitol ; 324: 110073, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976897

RESUMO

Intestinal parasites, including cestodes like Dipylidium caninum, are common in dogs in the United States of America (USA), but fecal flotation consistently, and, at times, dramatically, fails to identify many of these infections. To determine the extent to which including coproantigen testing for D. caninum would improve the identification of dogs infected with this cestode, we evaluated fecal samples from 877 dogs (589 pet and 288 from municipal shelters) from six USA states using zinc sulfate (specific gravity 1.24) fecal flotation with centrifugation along with coproantigen detection for Giardia sp., hookworms, ascarids, and Trichuris vulpis. For D. caninum, PCR of perianal swabs was included. Intestinal parasite infections were identified, using centrifugal fecal flotation or coproantigen, in 265 dogs (13.2 % pet, 64.9 % shelter). Dipylidium caninum infection was detected in 5.6 % of dogs with the combination of coproantigen and centrifugal fecal flotation, and 7.3 % of dogs when perianal swab results were included; prevalence varied by diagnostic method, population, and geographic region. In pet dogs, D. caninum infection was identified by fecal flotation (0), coproantigen (2.2 %), or perianal swabs (1.2 %). The same methods revealed infection in 0.3 %, 12.5 %, and 11.1 % of shelter dogs, respectively. Frequent use of praziquantel in shelter dogs (116/288; 40.3 %) may have reduced prevalence. Positive and negative agreement of D. caninum coproantigen with perianal swab PCR in pet dogs was 85.7 % and 98.8 %, respectively. Multiple logistic regression analysis accounting for region, population, and age found D. caninum infection to be more common in shelter dogs relative to pet (adjusted OR 4.91 [2.48, 10.24]) and in the Southcentral and Southeast regions relative to North (adjusted OR 9.59 [1.92, 174.13] and 17.69 [3.67, 318.09] respectively). Coproantigen testing also enhanced the detection of other intestinal parasites over fecal flotation alone, including Giardia sp. (14.7 % vs 3.3 %), hookworms (13.8 % vs 8.4 %), ascarids (2.9 % vs 2.2 %), and T. vulpis (2.9 % vs 1.4 %). Together, these data indicate that the coproantigen assay employed increases detection of D. caninum infections several fold, supporting the use of this test in clinical practice, and add to a growing body of research documenting enhanced diagnosis through implementation of multiple laboratory-based methods.


Assuntos
Infecções por Cestoides , Doenças do Cão , Enteropatias Parasitárias , Parasitos , Animais , Cães , Enteropatias Parasitárias/diagnóstico , Enteropatias Parasitárias/epidemiologia , Enteropatias Parasitárias/veterinária , Infecções por Cestoides/diagnóstico , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/veterinária , Trichuris , Giardia , Fezes/parasitologia , Prevalência , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia
16.
Mem Inst Oswaldo Cruz ; 118: e230088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37971095

RESUMO

BACKGROUND: The parasite Giardia duodenalis infects a wide range of vertebrate hosts, including domestic and wild animals as well as humans. Giardia is genotyped into eight assemblages (A-H). Zoonotic assemblages A and B have already been identified in humans and wild and domestic animals (non-human primates and cats) from Brazilian Amazon and in the world. Due to its zoonotic/zooanthroponotic nature, surveillance initiatives and the definition of Giardia assemblages are important in order to characterise the epidemiological scenario and to implement further control measures. OBJECTIVES: Determine assemblages of G. duodenalis in sloths from the Brazilian Amazon Region. METHODS: Faecal parasitological examination of sloths from Amazonas State. Polymerase chain reaction (PCR) targeting the beta giardin (BG), and genes from multilocus sequence typing (MLST) scheme, amplicon sequencing and phylogenetic analysis. FINDINGS: Here, we identified, by microscopy, Giardia in two northern sloths (Bradypus tridactylus). These two samples were submitted to molecular assays and it was revealed that both were infected by G. duodenalis assemblage A. Phylogenetic analysis showed that they belong to assemblage A within sequences from humans and wild and domestic animals. CONCLUSION: Therefore, besides showing, by the first time, the current presence of this parasite in sloths, our findings reveals that this wild animal species would be part of the zoonotic/zooanthroponotic scenario of this parasite in the Brazilian Amazon.


Assuntos
Giardia lamblia , Giardíase , Bichos-Preguiça , Animais , Humanos , Gatos , Giardia lamblia/genética , Bichos-Preguiça/genética , Tipagem de Sequências Multilocus , Filogenia , Brasil/epidemiologia , Fezes/parasitologia , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/diagnóstico , Zoonoses , Giardia/genética , Genótipo , Animais Domésticos , Animais Selvagens , Prevalência
17.
PLoS Negl Trop Dis ; 17(11): e0011777, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983257

RESUMO

BACKGROUND: There are limited longitudinal data on the acquisition of Giardia lamblia infections in childhood using molecular assays to detect and type assemblages, and measure effects of infections on diarrhea risk and childhood growth. METHODS: We analysed stool samples from a surveillance sample within a birth cohort in a rural district in tropical Ecuador. The cohort was followed to 8 years of age for the presence of G. lamblia in stools by quantitative PCR and A and B assemblages by Taqman assay or Sanger sequencing. We explored risk factors associated with infection using generalized estimating equations applied to longitudinal binary outcomes, and longitudinal panel data analysis to estimate effects of infection on diarrhea and growth trajectories. RESULTS: 2,812 stool samples collected between 1 month and 8 years of age from 498 children were analyzed and showed high rates of infection: 79.7% were infected at least once with peak prevalence (53.9%) at 5 years. Assemblage B was accounted for 56.8% of genotyped infections. Risk factors for infection included male sex (P = 0.001), daycare attendance (P<0.001), having a household latrine (P = 0.04), childhood (P<0.001) and maternal soil-transmitted helminth (P = 0.029) infections, and exposures to donkeys (age interaction P = 0.034). G. lamblia was associated with increased risk of diarrhea (per episode, RR 1.03, 95% CI 1.01-1.06, P = 0.011) during the first 3 years of life and a transient impairment of weight (age interaction P = 0.017) and height-for-age (age interaction P = 0.025) trajectories between 1 and 4 years of age. There was no increased risk of either assemblage being associated with outcomes. CONCLUSION: Our data show a relatively high edemicity of G. lamblia transmission during childhood in coastal Ecuador, and evidence that infection is associated with a transiently increased risk of diarrhea during the first 3 years of life and impairment of weight and height between 1 and 4 years.


Assuntos
Giardia lamblia , Giardíase , Criança , Humanos , Masculino , Pré-Escolar , Recém-Nascido , Giardíase/epidemiologia , Giardia lamblia/genética , Coorte de Nascimento , Equador/epidemiologia , Giardia/genética , Diarreia/epidemiologia , Fezes
18.
Water Res ; 247: 120746, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984031

RESUMO

The discharge of pathogens into urban recreational water bodies during combined sewer overflows (CSOs) pose a potential threat for public health which may increase in the future due to climate change. Improved methods are needed for predicting the impact of these effects on the microbiological urban river water quality and infection risks during recreational use. The aim of this study was to develop a novel probabilistic-deterministic modelling approach for this purpose building on physically plausible generated future rainfall time series. The approach consists of disaggregation and validation of daily precipitation time series from 21 regional climate models for a reference period (1971-2000, C20), a near-term future period (2021-2050, NTF) and a long-term future period (2071-2100, LTF) into sub-daily scale, and predicting the concentrations of enterococci and Giardia and Cryptosporidium, and infection risks during recreational use in the river downstream of the sewage emissions from CSOs. The approach was tested for an urban river catchment in Austria which is used for recreational activities (i.e. swimming, playing, wading, hand-to-mouth contact). According to a worst-case scenario (i.e. children bathing in the river), the 95th percentile infection risks for Giardia and Cryptosporidium range from 0.08 % in winter to 8 % per person and exposure event in summer for C20. The infection risk increase in the future is up to 0.8 log10 for individual scenarios. The results imply that measures to prevent CSOs may be needed to ensure sustainable water safety. The approach is promising for predicting the effect of climate change on urban water safety requirements and for supporting the selection of sustainable mitigation measures. Future studies should focus on reducing the uncertainty of the predictions at local scale.


Assuntos
Criptosporidiose , Cryptosporidium , Giardíase , Criança , Humanos , Esgotos , Mudança Climática , Qualidade da Água , Giardia , Monitoramento Ambiental/métodos
19.
Nat Commun ; 14(1): 7245, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945557

RESUMO

Protozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite Giardia lamblia can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function. Through depletion of the cAMP producing enzyme Adenylate Cyclase 2 (AC2) and the use of a newly developed Giardia-specific cAMP sensor, we show that AC2 is necessary for encystation stimuli-induced cAMP upregulation and activation of downstream signaling. Conversely, over expression of AC2 or exogenous cAMP were sufficient to initiate encystation. Our findings indicate that encystation stimuli induce membrane reorganization, trigger AC2-dependent cAMP upregulation, and initiate encystation-specific gene expression, thereby advancing our understanding of a critical stage in the life cycle of a globally important parasite.


Assuntos
Giardia lamblia , Giardíase , Humanos , Giardia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Giardíase/parasitologia , Giardia lamblia/genética , Giardia lamblia/metabolismo , Ativação Transcricional , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
20.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37833237

RESUMO

The occurrence of Giardia and Cryptosporidium (oo)cysts in drinking source water poses a serious public health risk. Here, we established a method that combines membrane concentration and real-time polymerase chain reaction (PCR) to quantify Giardia and Cryptosporidium in drinking water. The water samples were filtered through a cellulose membrane to collect Giardia and Cryptosporidium, and then nucleic acids were extracted. Specific primers and probes were designed and synthesized according to the gph gene sequence of Giardia and 18S rRNA gene sequence of Cryptosporidium. The concentrations of the two targets were determined using real-time PCR technology. The sensitivity, specificity, and stability of the method were evaluated. Our findings revealed that the detection limits of real-time PCR method for detecting Giardia and Cryptosporidium were 0.926 and 0.65 copy/µL, respectively; the spiked recovery rates were above 60% and 38%, respectively, and relative standard deviations were under 0.95% and 2.26%, respectively. Therefore, this effective procedure based on the membrane concentration method and real-time PCR will be useful for detecting Giardia and Cryptosporidium in drinking water for purpose of continuous environmental monitoring.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Humanos , Cryptosporidium/genética , Giardia/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...