Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Cell Biol ; 38(11): 1292-1302, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31560570

RESUMO

Endogenous phytohormones auxin (indole-3-acetic acid [IAA]), abscisic acid (ABA), gibberellin (GA3), and brassinosteroid (BR) play a role in responses to drought stress in higher plants. Tea plant is one of the major economic corps worldwide. The tender shoots of tea plants are the main source for tea production. The effects of drought stress on endogenous IAA, ABA, GA3, and BR metabolisms in tender shoots of tea plants need to be illustrated. In this study, a total of 17 IAA-related genes, 17 ABA-related genes, 18 GA3-related genes, and 8 BR-related genes were identified under drought stress in tender shoots of tea plants, respectively. By using a combination of phytohormone determination, phylogenetic tree construction and sequence analysis, gene expression profiles, functional classification, Kyoto encyclopedia of genes and genomes enrichment, and distribution of genes analysis, we have demonstrated that IAA, ABA, GA3, and BR metabolisms might participate in the regulation of the response to drought stress in tender shoots of tea plants. The expression level of CsLYCE negatively correlated with ABA accumulation under drought stress. Our findings could shed new light on the effects of drought stress on the IAA, ABA, GA3, and BR metabolisms in tender shoots of tea plants.


Assuntos
Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Camellia sinensis , Secas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/genética , Camellia sinensis/genética , Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Redes e Vias Metabólicas/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Estresse Fisiológico/genética
2.
Nat Commun ; 10(1): 2738, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227696

RESUMO

The breeding of cereals with altered gibberellin (GA) signaling propelled the 'Green Revolution' by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Giberelinas/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Brotos de Planta/fisiologia , Grão Comestível , Giberelinas/genética , Mutação , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteólise , Transdução de Sinais/fisiologia
3.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759868

RESUMO

Although phytohormones are known to be important signal molecules involved in wood formation, their roles are still largely unclear. Here, Populus simonii × P. nigra seedlings were treated with different concentrations of exogenous phytohormones, indole-3-acetic acid (IAA), gibberellin (GA3), and brassinosteroid (BR), and the effects of phytohormones on growth were investigated. Next, 27 genes with known roles in wood formation were selected for qPCR analysis to determine tissue-specificity and timing of responses to phytohormone treatments. Compared to the control, most IAA, GA3, and BR concentrations significantly increased seedling height. Meanwhile, IAA induced significant seedling stem diameter and cellulose content increases that peaked at 3 and 30 mg·L-1, respectively. Significant increase in cellulose content was also observed in seedlings treated with 100 mg·L-1 GA3. Neither stem diameter nor cellulose content of seedlings were affected by BR treatment significantly, although slight effects were observed. Anatomical measurements demonstrated improved xylem, but not phloem, development in IAA- and BR-treated seedlings. Most gene expression patterns induced by IAA, GA3, and BR differed among tissues. Many IAA response genes were also regulated by GA3, while BR-induced transcription was weaker and slower in Populus than for IAA and GA3. These results reveal the roles played by phytohormones in plant growth and lay the foundation for exploring molecular regulatory mechanisms of wood formation in Populus.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Floema/genética , Reguladores de Crescimento de Plantas/genética , Populus/genética , Madeira/genética , Regulação Enzimológica da Expressão Gênica/genética , Giberelinas/genética , Ácidos Indolacéticos/metabolismo , Especificidade de Órgãos/genética , Plântula/genética , Xilema/genética
4.
Plant Mol Biol ; 99(4-5): 461-476, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30710225

RESUMO

KEY MESSAGE: ABA/GA4 ratio, stress resistance, carbon and nitrogen metabolism, and chromatin structure play important roles in vigour differences of seeds located at different maize ear positions. Seed vigour, which ensures rapid and uniform field emergence across diverse environments, differs at different maize ear positions. However, little is known regarding the associated mechanisms. In this study, we determined that seed vigour, stress resistance, and carbon and nitrogen metabolism were higher in seeds from middle and bottom section of the ear, while the ABA/GA4 ratio in the embryos was significantly lower. Compared with the seeds subjected to repeated pollination during silking, less variation in seed vigour and the ABA/GA4 ratio in the embryos was observed in seeds at different ear positions subjected to single pollination after complete silking. This indicated that single pollination can reduce, but not eliminate, the differences in seed vigour at different ear positions. RNA-seq analysis indicated that the seed vigour differences at the different locations of the maize ears of the single pollinated treatment were related to carbon and nitrogen metabolism. In contrast, the differences in seed vigour under repeated pollination were related to chromatin structure. The present study contributes to our understanding of the mechanisms underlying differences in seed vigour at different positions on the maize ear.


Assuntos
Adaptação Fisiológica , Reguladores de Crescimento de Plantas/metabolismo , Sementes/metabolismo , Análise de Sequência de RNA , Estresse Fisiológico , Zea mays/metabolismo , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Carbono/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Giberelinas/metabolismo , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/genética , Polinização , RNA de Plantas/análise , Sementes/genética , Zea mays/genética
5.
Plant Mol Biol ; 99(3): 205-217, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30627860

RESUMO

KEY MESSAGE: We identified three dormant stages of Polygonatum kingianum and changes that occurred during dormancy transition in the following aspects including cell wall and hormones, as well as interaction among them. Polygonatum kingianum Coll.et Hemsl (P. kingianum) is an important traditional Chinese medicine, but the mechanism of its rhizome bud dormancy has not yet been studied systematically. In this study, three dormancy phases were induced under controlled conditions, and changes occurring during the transition were examined, focusing on phytohormones and the cell wall. As revealed by HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) analysis, the endo- to non-dormancy transition was association with a reduced abscisic acid (ABA)/gibberellin (GA3) ratio, a decreased level of auxin (IAA) and an increased level of trans-zeatin (tZR). Transmission electron microscopy showed that plasmodesmata (PDs) and the cell wall of the bud underwent significant changes between endo- and eco-dormancy. A total of 95,462 differentially expressed genes (DEGs) were identified based on transcriptomics, and clustering and principal component analysis confirmed the different physiological statuses of the three types of bud samples. Changes in the abundance of transcripts associated with IAA, cytokinins (CTKs), GA, ABA, brassinolide (BR), jasmonic acid (JA), ethylene, salicylic acid (SA), PDs and cell wall-loosening factors were analysed during the bud dormancy transition in P. kingianum. Furthermore, nitrilase 4 (NIT4) and tryptophan synthase alpha chain (TSA1), which are related to IAA synthesis, were identified as hub genes of the co-expression network, and strong interactions between hormones and cell wall-related factors were observed. This research will provide a good model for chilling-treated rhizome bud dormancy in P. kingianum and cultivation of this plant.


Assuntos
Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/genética , Polygonatum/genética , Rizoma/genética , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Análise por Conglomerados , Ciclopentanos/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/genética , Giberelinas/metabolismo , Medicina Tradicional Chinesa , Oxilipinas/metabolismo , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polygonatum/metabolismo , Rizoma/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esteroides Heterocíclicos/metabolismo , Triptofano Sintase/metabolismo
6.
Gene ; 688: 119-131, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30529094

RESUMO

The HAP3 subfamily gene RcLEC1-B, was isolated from protocorm-like body (PLB) of Rosa canina, encodes 213 amino acid residues. It was shown that RcLEC1-B was specifically expressed in PLB of R. canina and its subcellular localization is in the nucleus. Overexpression of RcLEC1-B in Arabidopsis resulted in a decrease in endogenous ABA level, an increase in GA, IAA and CTK contents, and an increased number of branches. RcLEC1-B promotes the formation of spontaneous embryoids, suggesting that it may be a homolog of the Arabidopsis LEC1 gene. RcLEC1-B-OE changed the number and morphology of flower organs and resulted in open carpels and exposed ovules, along with a reduced percentage of fertile fruit. This is the first observation that overexpression of a homolog of LEC1 in Arabidopsis can lead to morphological changes in floral organs, cuticle defects, and adhesions between organs; this may result from the increased level of gibberellin in the transgenic plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/genética , Rosa/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Núcleo Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Alinhamento de Sequência
7.
Sci Rep ; 8(1): 17719, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30531945

RESUMO

Gibberellins (GAs) are phytohormones that regulate various developmental processes in plants. The initial GA signalling events involve the binding of a GA to the soluble GA receptor protein GID1, followed by the binding of the complex to the negative transcriptional regulator of GA signaling, the DELLA protein. Although X-ray structures for certain Arabidopsis GID1/GA/DELLA protein complexes have previously been determined, examination of these complexes did not fully clarify how a DELLA protein recognizes and binds to a GID1/GA complex. Herein, we present a study aimed at physically defining, via a combination of gel chromatography, isothermal titration calorimetry (ITC), small-angle X-ray scattering experiments (SAXS), NMR spectroscopy and mutagenesis, how the rice DELLA protein (SLR1) binds to the rice GID1/GA complex. We have identified the shortest SLR1 sequence (M28-A112) that binds the rice GID/GA complex tightly. The binding constant for the ternary complex that includes SLR1(M28-A112) is 2.9 × 107 M-1; the binding is enthalpically driven and does not depend on the chemical nature of the bound GA. Furthermore, the results of SAXS, ITC, and gel filtration experiments indicate that when free in solution, SLR1(M28-A112) is a natively unfolded protein. The NMR experiments expand this observation to show that the unfolded mutant also contains a small amount of marginally stable secondary structure. Conversely, the protein has a highly ordered structure when bound one-to-one to GID1/GA.


Assuntos
Proteínas de Arabidopsis/genética , Giberelinas/genética , Oryza/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas/genética , Imageamento por Ressonância Magnética/métodos , Mutagênese/genética , Mutação/genética , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Ligação Proteica/genética , Receptores de Superfície Celular/genética , Espalhamento a Baixo Ângulo , Transdução de Sinais/genética , Termodinâmica , Difração de Raios X/métodos
8.
Int J Mol Sci ; 19(11)2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380795

RESUMO

The SQUAMOSA promoter binding protein (SBP)-box gene family is a plant-specific transcription factor family. This family plays a crucial role in plant growth and development. In this study, 20 SBP-box genes were identified in the tea plant genome and classified into six groups. The genes in each group shared similar exon-intron structures and motif positions. Expression pattern analyses in five different tissues demonstrated that expression in the buds and leaves was higher than that in other tissues. The cis-elements and expression patterns of the CsSBP genes suggested that the CsSBP genes play active roles in abiotic stress responses; these responses may depend on the abscisic acid (ABA), gibberellic acid (GA), and methyl jasmonate (MeJA) signaling pathways. Our work provides a comprehensive understanding of the CsSBP family and will aid in genetically improving tea plants.


Assuntos
Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/biossíntese , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Camellia sinensis/genética , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/genética , Giberelinas/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética
9.
BMC Plant Biol ; 18(1): 218, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286716

RESUMO

BACKGROUND: Zinc-finger transcription factors play central roles in plant growth, development and abiotic stress responses. PLATZ encodes a class of plant-specific zinc-finger transcription factor. However, biological functions or physiological mechanism controlled by PLATZ are currently limited. RESULTS: GhPLATZ1 transcripts were considerably up-regulated by NaCl, mannitol, abscisic acid (ABA) and gibberellin (GA) treatments. Transgenic Arabidopsis by ectopic expression of GhPLATZ1 exhibited faster seed germination and higher seedling establishment under salt and mannitol stresses than those of wild type (WT), indicating enhanced osmotic insensitivity in GhPLATZ1 transgenic Arabidopsis. The ABA content in dry seeds of GhPLATZ1 transgenic Arabidopsis was lower than that of WT whereas the ABA content was not changed in germinating seeds under salt stress. Seed germination was faster than but the seedling establishment of transgenic Arabidopsis was similar to WT. Besides, GhPLATZ1 transgenic and WT Arabidopsis exhibited insensitivity to paclobutrazol (PAC), a GA biosynthesis inhibitor, whereas exogenous GA could eliminate the growth difference between GhPLATZ1 transgenic and WT Arabidopsis under salt stress. Moreover, exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene precursor, exerted similar effects to GA. Furthermore, ABI4 and ETO1 transcripts were significantly down-regulated, whereas ACS8 was up-regulated in GhPLATZ1 transgenic Arabidopsis under salt stress. CONCLUSIONS: In conclusion, GhPLATZ1 had broad influence in responses to salt and mannitol stresses in transgenic Arabidopsis during seed germination and seedling establishment. The effect of GhPLATZ1 expression in transgenic Arabidopsis might be mediated by the ABA, GA, and ethylene pathways. Thus, this study provided new insights into the regulatory network in response to abiotic stresses in plants.


Assuntos
Arabidopsis/fisiologia , Gossypium/genética , Pressão Osmótica/fisiologia , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tolerância ao Sal/genética , Plântula/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Sci Rep ; 8(1): 14261, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250053

RESUMO

In cucurbitaceous crops, sex differentiation of flower buds is a crucial developmental process that directly affects fruit yield. Here we showed that the induction of female flower was the highest in the blue light-treated monoecious cucumber plants compared with that in other light qualities (white, green and red). High-throughput RNA-Seq analysis of the shoot apexes identified a total of 74 differently-expressed genes (DEGs), in which 52 up-regulated and 22 down-regulated under the blue light compared with that in white light. The DEGs were mainly involved in metabolic pathways, biosynthesis of secondary metabolites, plant hormone signal transduction, starch and sucrose metabolism and phenylpropanoid biosynthesis. While the  ethylene and gibberellins synthesis and signaling related genes were down-regulated, the abscisic acid and auxin signal transduction pathways were up-regulated by the blue light treatment. Furthermore, the blue light treatment up-regulated the transcription of genes relating to photosynthesis, starch and sucrose metabolism. Meanwhile, the blue light suppressed the GA3 concentration but promoted the concentrations of auxin and photosynthetic pigments. Taken together, the results suggest that the blue light-induced female floral sex expression is closely associated with the blue light-induced changes in abscisic acid, auxin, gibberellins, photosynthesis, starch and sucrose metabolism pathways, which is potentially different from the traditional ethylene-dependent pathway.


Assuntos
Cucumis sativus/genética , Flores/genética , Reguladores de Crescimento de Plantas/genética , Transcriptoma/genética , Ácido Abscísico/metabolismo , Metabolismo dos Carboidratos/genética , Cucumis sativus/crescimento & desenvolvimento , Etilenos/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Ácidos Indolacéticos/metabolismo , Luz , Fotossíntese/genética , Transdução de Sinais
11.
Sci Rep ; 8(1): 13178, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181601

RESUMO

Barley (Hordeum vulgare) is the fourth crop cultivated in the world for human consumption and animal feed, making it important to breed healthy and productive plants. Among the threats for barley are lodging, diseases, and pathogens. To avoid lodging, dwarf and semi-dwarf mutants have been selected through breeding processes. Most of these mutants are affected on hormonal biosynthesis or signalling. Here, we present the metabolic characterization of a brassinosteroid insensitive semi-dwarf mutant, BW312. The hormone profile was determined through a targeted metabolomics analysis by UHPLC-triple quadrupole-MS/MS, showing an induction of gibberellic acid and jasmonic acid in the semi-dwarf mutant. A non-targeted metabolomics analysis by UHPLC-QTOF-MS/MS revealed a differential metabolic profile, with 16 and 9 metabolites showing higher intensities in the mutant and wild-type plants respectively. Among these metabolites, azelaic acid was identified. Gibberellic acid, jasmonic acid, and azelaic acid are involved in pathogen resistance, showing that this semi-dwarf line has an enhanced basal pathogen resistance in absence of pathogens, and therefore is of interest in breeding programs to fight against lodging, but also probably to increase pathogen resistance.


Assuntos
Hordeum/metabolismo , Metaboloma , Brassinosteroides/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Ciclopentanos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Giberelinas/genética , Giberelinas/metabolismo , Hordeum/genética , Metabolômica , Mutação , Oxilipinas/metabolismo , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem
12.
Sci Rep ; 8(1): 12043, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104574

RESUMO

Parthenocarpy, or pollination-independent fruit set, is an attractive trait for fruit production and can be induced by increased responses to the phytohormone gibberellin (GA), which regulates diverse aspects of plant development. GA signaling in plants is negatively regulated by DELLA proteins. A loss-of-function mutant of tomato DELLA (SlDELLA), procera (pro) thus exhibits enhanced GA-response phenotypes including parthenocarpy, although the pro mutation also confers some disadvantages for practical breeding. This study identified a new milder hypomorphic allele of SlDELLA, procera-2 (pro-2), which showed weaker GA-response phenotypes than pro. The pro-2 mutant contains a single nucleotide substitution, corresponding to a single amino acid substitution in the SAW subdomain of the SlDELLA. Accumulation of the mutated SlDELLA transcripts in wild-type (WT) resulted in parthenocarpy, while introduction of intact SlDELLA into pro-2 rescued mutant phenotypes. Yeast two-hybrid assays revealed that SlDELLA interacted with three tomato homologues of GID1 GA receptors with increasing affinity upon GA treatment, while their interactions were reduced by the pro and pro-2 mutations. Both pro and pro-2 mutants produced higher fruit yields under high temperature conditions, which were resulted from higher fruit set efficiency, demonstrating the potential for genetic parthenocarpy to improve yield under adverse environmental conditions.


Assuntos
Frutas/crescimento & desenvolvimento , Giberelinas/genética , Giberelinas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Alelos , Substituição de Aminoácidos/genética , Regulação da Expressão Gênica de Plantas/genética , Reguladores de Crescimento de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/metabolismo , Triazóis/farmacologia
13.
Int J Mol Sci ; 19(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096896

RESUMO

Pear (Pyrus L.) is an important commercial fruit in the world. The fruit size is one of the important characters in fruit quality. The previous research reported that the fruit size of pear was mainly caused by the number of cell in about 40 days after blossom (DAB) in nature. However, studies about the mechanisms underlying cell division in young fruit development are very limited in pear. Two pear accessions codenamed 'GH59B' with big fruit and 'GH81S' with small fruit in three stages were sampled and the RNA-seq high-throughput sequencing was used to evaluate changes of gene transcription levels in the early stage of fruit development. The difference of cell size among two samples was little in 40 DAB, implying that the difference of the fruit size was caused by the number of the cell. More than 274,517,982 high quality reads from six libraries of fruit development were sequenced. A total of 797 differentially expressed genes (DEGs) were identified. Three cytokinin dehydrogenase genes and two gibberellin 2-beta-dioxygenase gene were identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to zeatin and gibberellin. Their expression was upregulated at 20 DAB in 'GH81S' and at 30 DAB in 'GH59B', suggesting that the small fruit size might be related to the early degradation of cytokinin and gibberellin inducing a short period of cell division. A total of 38 DEGs of transcription factors were found and 23 DEGs including NAC, ERF and bHLH transcription factors were highly related with cytokinin dehydrogenase and gibberellin dioxygenase genes. Altogether, the results of the present study provide information from a comprehensive gene expression analysis and insight into the molecular mechanism underlying the difference of fruit size in Pyrus pyrifolia.


Assuntos
Frutas/genética , Proteínas de Plantas/genética , Pyrus/genética , Transcriptoma/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Pyrus/crescimento & desenvolvimento
14.
Molecules ; 23(8)2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065188

RESUMO

The 'Hongyu' apple is an early ripening apple cultivar and usually used for fresh marketing. Due to the short ripening period, most of the fruit are harvested at the commercial maturity stage for proper marketing distribution and a longer shelf life. Fruit ripening involves delicate changes to its metabolic and physiological traits through well-organized synchronization of several hormones and regulatory steps. A clear understanding of these hormonal alterations is crucial for extending the period from commercial to physiological ripening. This study was intended to clarify the hormonal alterations and anthocyanin biosynthesis process prior to and immediate after, the harvesting of apple fruit considering the commercial maturity stage. Fruits harvested at 120 Days after flowering (DAF) (HY_4th) was considered as commercially ripened, 110 DAF (HY_3rd) as pre-ripening and 120 DAF followed by five days storage at 20 °C (HY_20 °C_5) as post-ripening samples. Three different stages of fruit were used for transcriptome assembly using RNA-Seq. Results revealed 9187 differentially expressed genes (DEGs) in the post-ripening samples, which was comparatively lower (922 DEGs) in the pre-ripening fruits. DEGs were subjected to Gene Ontology analysis and 31 categories were significantly enriched in the groups 'biological process,' 'molecular function' and 'cellular component.' The DEGs were involved in hormonal signaling pathways like ethylene, abscisic acid (ABA), auxin, gibberellin (GA), brassinosteroid (BR) and anthocyanin biosynthesis pathways such as PAL, 4CL, CHI, DFR, F3H, UFGT. Several transcription factors like the MADS-box gene, MYB, bHLH, NAC, WRKY and HSF were differentially expressed between the pre- and post-ripening fruits. Selected DEGs were subjected to gene expression analysis using quantitative RT-PCR (qRT-PCR) and the results were consistent with those of RNA-Seq. Our data suggested that in addition to ethylene, ABA and other hormones also play key roles in regulating apple fruit ripening and may interact with the ethylene signaling process. Additionally, our data provided an exhibition of the expression pattern of genes in the anthocyanin biosynthesis pathway.


Assuntos
Antocianinas/biossíntese , Frutas/genética , Regulação da Expressão Gênica de Plantas , Malus/genética , Proteínas de Plantas/genética , Transcriptoma , Ácido Abscísico/biossíntese , Ácido Abscísico/genética , Antocianinas/genética , Brassinosteroides/biossíntese , Etilenos/biossíntese , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Giberelinas/biossíntese , Giberelinas/genética , Ácidos Indolacéticos/metabolismo , Malus/crescimento & desenvolvimento , Malus/metabolismo , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/biossíntese , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Science ; 361(6398): 181-186, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30002253

RESUMO

Most plants do poorly when flooded. Certain rice varieties, known as deepwater rice, survive periodic flooding and consequent oxygen deficiency by activating internode growth of stems to keep above the water. Here, we identify the gibberellin biosynthesis gene, SD1 (SEMIDWARF1), whose loss-of-function allele catapulted the rice Green Revolution, as being responsible for submergence-induced internode elongation. When submerged, plants carrying the deepwater rice-specific SD1 haplotype amplify a signaling relay in which the SD1 gene is transcriptionally activated by an ethylene-responsive transcription factor, OsEIL1a. The SD1 protein directs increased synthesis of gibberellins, largely GA4, which promote internode elongation. Evolutionary analysis shows that the deepwater rice-specific haplotype was derived from standing variation in wild rice and selected for deepwater rice cultivation in Bangladesh.


Assuntos
Adaptação Fisiológica , Etilenos/metabolismo , Inundações , Genes de Plantas/fisiologia , Giberelinas/fisiologia , Oryza/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Alelos , Giberelinas/genética , Haplótipos , Oryza/genética , Fatores de Transcrição/genética
16.
Genes Genomics ; 40(7): 735-745, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934808

RESUMO

Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.


Assuntos
Cocos/genética , Giberelinas/genética , Filogenia , Folhas de Planta/genética , Sequência de Bases/genética , Éxons/genética , Giberelinas/biossíntese , Fases de Leitura Aberta/genética , Fenótipo
17.
Plant Cell Physiol ; 59(7): 1415-1431, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648652

RESUMO

Seed storage proteins (SSPs) provide free amino acids and energy for the process of seed germination. Although degradation of SSPs by the aspartic proteases isolated from seeds has been documented in vitro, there is still no genetic evidence for involvement of aspartic proteases in seed germination. Here we report that the aspartic protease ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1) plays an important role in the process of dormancy, viability and germination of Arabidopsis seeds. We show that aspg1-1 mutants have enhanced seed dormancy and reduced seed viability. A significant increase in expression of DELLA genes which act as repressors in the gibberellic acid signal transduction pathway were detected in aspg1-1 during seed germination. Seed germination of aspg1-1 mutants was more sensitive to treatment with paclobutrazol (PAC; a gibberellic acid biosynthesis inhibitor). In contrast, seed germination of ASPG1 overexpression (OE) transgenic lines showed resistant to PAC. The degradation of SSPs in germinating seeds was severely impaired in aspg1-1 mutants. Moreover, the development of aspg1-1 young seedlings was arrested when grown on the nutrient-free medium. Thus ASPG1 is important for seed dormancy, seed longevity and seed germination, and its function is associated with degradation of SSPs and regulation of gibberellic acid signaling in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ácido Aspártico Endopeptidases/metabolismo , Germinação/genética , Dormência de Plantas/genética , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Ácido Aspártico Endopeptidases/genética , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Giberelinas/genética , Giberelinas/metabolismo , Mutação , Plantas Geneticamente Modificadas , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/genética , Sementes/fisiologia , Transdução de Sinais/genética , Triazóis/farmacologia
18.
Microbiol Res ; 208: 85-98, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29551215

RESUMO

Gibberellins (GAs) are natural complex biomolecules initially identified as secondary metabolites in the fungus Gibberella fujikuroi with strong implications in plant physiology. GAs have been identified in different fungal and bacterial species, in some cases related to virulence, but the full understanding of the role of these metabolites in the different organisms would need additional investigation. In this review, we summarize the current evidence regarding a common pathway for GA synthesis in fungi, bacteria and plant from the genes depicted as part of the GA production cluster to the enzymes responsible for the catalytic transformations and the biosynthetical routes involved. Moreover, we present the relationship between these observations and the biotechnological applications of GAs in plants, which has shown an enormous commercial impact.


Assuntos
Bactérias/metabolismo , Fungos/metabolismo , Giberelinas/biossíntese , Giberelinas/metabolismo , Plantas/metabolismo , Bactérias/enzimologia , Bactérias/genética , Biotecnologia , Fungos/enzimologia , Fungos/genética , Fusarium/genética , Fusarium/metabolismo , Genes Bacterianos , Genes Fúngicos , Genes de Plantas , Giberelinas/química , Giberelinas/genética , Plantas/enzimologia , Plantas/genética , Metabolismo Secundário/genética
19.
Plant Physiol ; 177(1): 168-180, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545269

RESUMO

Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these "overgrowth" mutants showed that they contained independent mutations in the coding region of GA2oxA9GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110 Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.


Assuntos
Giberelinas/metabolismo , Proteínas de Plantas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Giberelinas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese , Proteínas de Plantas/metabolismo , Poliploidia , Regiões Promotoras Genéticas , Triticum/metabolismo
20.
Sci Rep ; 8(1): 3285, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459728

RESUMO

Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.


Assuntos
Complexo Mediador/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas/genética , Inativação Gênica , Giberelinas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...