Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Science ; 373(6556): 760-767, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385390

RESUMO

The origin of human metaplastic states and their propensity for cancer is poorly understood. Barrett's esophagus is a common metaplastic condition that increases the risk for esophageal adenocarcinoma, and its cellular origin is enigmatic. To address this, we harvested tissues spanning the gastroesophageal junction from healthy and diseased donors, including isolation of esophageal submucosal glands. A combination of single-cell transcriptomic profiling, in silico lineage tracing from methylation, open chromatin and somatic mutation analyses, and functional studies in organoid models showed that Barrett's esophagus originates from gastric cardia through c-MYC and HNF4A-driven transcriptional programs. Furthermore, our data indicate that esophageal adenocarcinoma likely arises from undifferentiated Barrett's esophagus cell types even in the absence of a pathologically identifiable metaplastic precursor, illuminating early detection strategies.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Cárdia/citologia , Neoplasias Esofágicas/patologia , Esôfago/patologia , Esôfago de Barrett/genética , Esôfago de Barrett/metabolismo , Cárdia/química , Diferenciação Celular , Linhagem da Célula , Transformação Celular Neoplásica , Epigênese Genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Glândulas Exócrinas/química , Glândulas Exócrinas/citologia , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Queratina-7/análise , Metaplasia , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA-Seq , Análise de Célula Única , Transcrição Gênica , Transcriptoma
2.
Eur J Histochem ; 65(2)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33845566

RESUMO

There is a prominent local raised pad called nuptial pad on the forelimb of Chinese brown frog (Rana dybowskii), which is hypothetically concluded as an enhancement of the grip and a spreader of pheromone during the amplexus. In this study, we investigated the immunolocalization and protein expression levels of AR, ERα, ERß and aromatase in the nuptial pad of R. dybowskii during pre-hibernation and the breeding period. Histologically, the annual development of the nuptial pad in R. dybowskii is manifested as the larger area of specialized mucous gland and the longer length of papillary epidermal projection during the breeding period. AR, ERα, ERß and aromatase are present in the stratum granulosum, stratum spinosum, stratum basale and the secretory portion of specialized mucous glands during both periods. Western blotting results confirmed that AR, ERα and ERß protein levels are higher during pre-hibernation than those during the breeding season. These results suggest that nuptial pad is the direct target organ of androgen and estrogen. Androgen may participate in the regulation of annual development and glandular function of nuptial pad, and estrogen may play an endocrine, autocrine or paracrine role during pre-hibernation and the breeding period.


Assuntos
Aromatase/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Glândulas Exócrinas/metabolismo , Ranidae/metabolismo , Receptores Androgênicos/metabolismo , Animais , Cruzamento , Glândulas Exócrinas/citologia , Membro Anterior/citologia , Membro Anterior/metabolismo , Hibernação/fisiologia , Imuno-Histoquímica , Masculino , Fatores de Tempo
3.
Reprod Sci ; 28(9): 2468-2479, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33591562

RESUMO

Morphophysiological changes of the female prostate during pregnancy are still little known. Considering that this gland is highly influenced by steroid hormones, the aim of this study was to evaluate the impact of the pregnancy on female prostate morphophysiology in gerbils. Pregnant females were timed, and the prostates were analyzed at pregnancy days 6 (P6), 12 (P12), 18 (P18), and 24 (P24). Virgin females were used as the control group (C). We observed a profound change in the hormonal profile during gestation, which was marked by a high oscillation of the progesterone (P4) hormone. P4 serum levels increased, peaking at the middle of gestation, and decreased to the end of the pregnancy. The morphology of the gland in pregnant females also changed, being marked by an increase of acini lumen, and a decrease in stroma. Indeed, the acinar changes during pregnancy were followed by a significant reduction of the epithelial height, besides a change of the smooth muscle cells' morphology that became more relaxed. The number of progesterone receptor (PR) and androgen receptor (AR)-positives cells decreased with the increase of progesterone serum levels, showing an inverse relationship. Finally, we observed a reduction of epithelial proliferation and a significant increase of gland PAS-positive secretion at the end of pregnancy. Altogether, these results showed, for the first time, that the female prostate morphophysioloy is profoundly influenced by the gestational period, suggesting that the fluctuation of the P4 serum levels is the main factor influencing the gland during this period.


Assuntos
Células Epiteliais/fisiologia , Glândulas Exócrinas/fisiologia , Próstata/fisiologia , Animais , Biomarcadores/sangue , Proliferação de Células , Células Epiteliais/metabolismo , Glândulas Exócrinas/citologia , Glândulas Exócrinas/metabolismo , Feminino , Gerbillinae , Masculino , Gravidez , Progesterona/sangue , Antígeno Nuclear de Célula em Proliferação/metabolismo , Próstata/citologia , Próstata/metabolismo , Antígeno Prostático Específico/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Progesterona/metabolismo , Células Estromais/metabolismo , Células Estromais/fisiologia , Fatores de Tempo
4.
Mol Biol Evol ; 37(10): 2777-2790, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32462210

RESUMO

A central goal in biology is to determine the ways in which evolution repeats itself. One of the most remarkable examples in nature of convergent evolutionary novelty is animal venom. Across diverse animal phyla, various specialized organs and anatomical structures have evolved from disparate developmental tissues to perform the same function, that is, produce and deliver a cocktail of potent molecules to subdue prey or predators. Venomous organisms therefore offer unique opportunities to investigate the evolutionary processes of convergence of key adaptive traits, and the molecular mechanisms underlying the emergence of novel genes, cells, and tissues. Indeed, some venomous species have already proven to be highly amenable as models for developmental studies, and recent work with venom gland organoids provides manipulatable systems for directly testing important evolutionary questions. Here, we provide a synthesis of the current knowledge that could serve as a starting point for the establishment of venom systems as new models for evolutionary and molecular biology. In particular, we highlight the potential of various venomous species for the study of cell differentiation and cell identity, and the regulatory dynamics of rapidly evolving, highly expressed, tissue-specific, gene paralogs. We hope that this review will encourage researchers to look beyond traditional study organisms and consider venom systems as useful tools to explore evolutionary novelties.


Assuntos
Evolução Biológica , Glândulas Exócrinas/citologia , Regulação da Expressão Gênica , Peçonhas , Animais
5.
Dev Genes Evol ; 230(1): 39-45, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960123

RESUMO

The molluscan larval shell formation is a complicated process. There is evidence that the mantle of the primary larva (trochophore) contains functionally different cell populations with distinct gene expression profiles. However, it remains unclear how these cells are specified. In the present study, we identified three cell populations from the shell gland in earlier stages (gastrula) from the bivalve mollusc Crassostrea gigas. These cell populations were determined by analyzing the co-expression relationships among six potential shell formation (pSF) genes using two-color hybridization. The three cell populations, which we designated as SGCPs (shell gland cell populations), formed a concentric-circle pattern from outside to inside of the shell gland. SGCP I was located in the outer edge of the shell gland and the cells expressed pax2/5/8, gata2/3, and bmp2/4. SGCP II was located more internally and the cells expressed two engrailed genes. The last population, SGCP III, was located in the central region of the shell gland and the cells expressed lox4. Determination of the gene expression profiles of SGCPs would help trace their origins and fates and elucidate how these cell populations are specified. Moreover, potential roles of the SGCPs, e.g., development of sensory cells and shell biogenesis, are suggested. Our results reveal the internal organization of the embryonic shell gland at the molecular level and add to the knowledge of larval shell formation.


Assuntos
Crassostrea/citologia , Exoesqueleto/citologia , Exoesqueleto/metabolismo , Animais , Crassostrea/genética , Crassostrea/crescimento & desenvolvimento , Crassostrea/metabolismo , Glândulas Exócrinas/citologia , Glândulas Exócrinas/metabolismo , Feminino , Masculino , Fatores de Transcrição/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-31636079

RESUMO

Calcium (Ca2+) and cyclic AMP (cAMP) signaling cross talk and synergize to stimulate the cardinal functions of exocrine cells, regulated exocytosis, and fluid and electrolyte secretion. This physiological process requires the organization of the two signaling pathways into complexes at defined cellular domains and close placement. Such domains are formed by membrane contact sites (MCS). This review discusses the basic properties of Ca2+ signaling in exocrine cells, the role of MCS in the organization of cell signaling and in cross talk and synergism between the Ca2+ and cAMP signaling pathways and, finally, the mechanism by which the Ca2+ and cAMP pathways synergize to stimulate epithelial fluid and electrolyte secretion.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Glândulas Exócrinas/citologia , Transdução de Sinais , Animais , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Eletrólitos , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Glândulas Exócrinas/metabolismo , Exocitose/fisiologia , Humanos , Domínios Proteicos
7.
Cells ; 8(11)2019 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744245

RESUMO

Excretory and secretory products are crucial for parasite infectivity and host immunomodulation, but the functioning and ultrastructure of the excretory gland cell (EC) that produces these products are still scarcely understood and described. In light of growing reports on anisakiasis cases in Europe, we aimed to characterise the EC of larval Anisakispegreffii and adult Pseudoterranovaazarasi. In the latter, EC starts 0.85 mm from the head tip, measuring 1.936 × 0.564 mm. Larval EC shows a long nucleus with thorn-like extravaginations toward the cytoplasm, numerous electron-dense and -lucent secretory granules spanning from the perinuclear to subplasmalemmal space, an elevated number of free ribosomes, small, spherical mitochondria with few cristae and a laminated matrix, small and few Golgi apparatuses, and few endoplasmic reticula, with wide cisternae complexes. Ultrastructure suggests that anaerobic glycolysis is the main metabolic pathway, obtained through nutrient endocytosis across the pseudocoelomic surface of the EC plasmalemma and its endocytic canaliculi. Thorn-like extravaginations of EC karyotheca likely mediate specific processes (Ca2+ signaling, gene expression, transport, nuclear lipid metabolism) into the extremely wide EC cytosol, enabling focal delivery of a signal to specific sites in a short time. These functional annotations of parasitic EC should help to clarify anisakiasis pathogenesis.


Assuntos
Ascaridoidea/ultraestrutura , Glândulas Exócrinas/citologia , Anaerobiose , Animais , Ascaridoidea/citologia , Ascaridoidea/metabolismo , Ascaridoidea/patogenicidade , Glândulas Exócrinas/ultraestrutura , Glicólise , Larva/metabolismo , Larva/ultraestrutura , Microscopia Confocal , Microtomografia por Raio-X
8.
Dev Dyn ; 248(11): 1155-1174, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31310039

RESUMO

BACKGROUND: Aquatic species in several clades possess cement glands producing adhesive secretions of various strengths. In vertebrates, transient adhesive organs have been extensively studied in Xenopus laevis, other anurans, and in several fish species. However, the development of these structures is not fully understood. RESULTS: Here, we report on the development and functional morphology of the adhesive gland of a giant danio species, Devario malabaricus. We found that the gland is localized on the larval head, is composed of goblet-like secretory cells framed by basal, bordering, and intercalated apical epithelial cells, and is innervated by the trigeminal ganglion. The gland allows nonswimming larvae to adhere to various substrates. Its secretory cells differentiate by 12 hours postfertilization and begin to disappear in the second week of life. Exogenous retinoic acid disrupts the gland's patterning. More importantly, the single mature gland emerges from fusion of two differentiated secretory cells fields; this fusion is dependent on nonmuscle myosin II function. CONCLUSIONS: Taken together, our studies provide the first documentation of the embryonic development, structure, and function of the adhesive apparatus of a danioninae. To our knowledge, this is also the first report of a cement gland arising from convergence of two bilateral fields.


Assuntos
Cyprinidae/embriologia , Embrião não Mamífero/embriologia , Glândulas Exócrinas/embriologia , Células Caliciformes/metabolismo , Organogênese/fisiologia , Animais , Embrião não Mamífero/citologia , Glândulas Exócrinas/citologia , Células Caliciformes/citologia , Organogênese/efeitos dos fármacos , Tretinoína/farmacologia
9.
Insect Biochem Mol Biol ; 111: 103175, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150761

RESUMO

The silkworm Bombyx mori is a well-characterized model organism for studying the silk gland development and silk production process. Using positional cloning and gene sequencing, we have previously reported that a truncated fibroin heavy chain was responsible for silkworm naked pupa (Nd) mutant. However, the mechanisms by which the mutant FibH causes developmental defects and secretion-deficiency of the silk gland remain to be fully elucidated. Here, silk gland's developmental features, histomorphology, and transcriptome analyses were used to characterize changes in its structure and gene expression patterns between Nd mutant and WT/Dazao. Whole larval stage investigation showed that Nd-PSG undergoes an arrested/delayed development, which eventually resulted in a gland degeneration. By using section staining and transmission electron microscope, a blockade in intracellular vesicle transport from endoplasmic reticulum to Golgi apparatus (secretion-deficiency) and an increased number of autophagosomes and lysosomes were found in Nd-PSG's cytoplasm. Next, by using RNA sequencing and comparative transcriptomic analysis, 2178 differentially expressed genes were identified between Nd-PSG and WT-PSG, among which most of the DEGs associated with cellular stress responses (autophagy, ubiquitin-proteasome system, and heat shock response) were significantly up-regulated in Nd-PSG, suggesting that mutant FibH perturbed cellular homeostasis and resulted in an activation of adaptive responses in PSG cells. These findings reveal the molecular mechanism of the Naked pupa (Nd) mutation and provide insights into silk gland development as well as silk protein production in silkworm Bombyx mori.


Assuntos
Bombyx/crescimento & desenvolvimento , Bombyx/genética , Seda/metabolismo , Transcriptoma , Animais , Bombyx/metabolismo , Glândulas Exócrinas/citologia , Glândulas Exócrinas/crescimento & desenvolvimento , Fibroínas/biossíntese , Fibroínas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/citologia , Larva/crescimento & desenvolvimento , Mutação , Análise de Sequência de RNA , Seda/genética
10.
J Exp Biol ; 221(Pt 16)2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29941614

RESUMO

Hagfishes use their defensive slime to ward off gill-breathing predators. Slime gland refilling is a surprisingly slow process, and previous research has shown that the composition of the slime exudate changes significantly during refilling, which likely has consequences for the functionality of the slime. This study set out to expand our understanding of slime gland refilling by examining the cellular processes involved in refilling of the glands, as well as determining where in the gland the main slime cells - the gland thread cells and gland mucous cells - arise. Slime glands were electro-stimulated to exhaust their slime stores, left to refill for set periods of time, and harvested for histological and immunohistochemical examination. Whole slime glands, gland thread cell morphometrics and slime cell proportions were examined over the refilling cycle. Slime glands decreased significantly in size after exhaustion, but steadily increased in size over refilling. Gland thread cells were the limiting factor in slime gland refilling, taking longer to replenish and mature than gland mucous cells. Newly produced gland thread cells underwent most of their growth near the edge of the gland, and larger cells were found farthest from the edge of the gland. Immunohistochemical analysis also revealed proliferating cells only within the epithelial lining of the slime gland, suggesting that new slime cells originate from undifferentiated cells lining the gland. Our results provide an in-depth look at the cellular dynamics of slime gland refilling in Pacific hagfish, and provide a model for how slime glands refill at the cellular level.


Assuntos
Glândulas Exócrinas/metabolismo , Feiticeiras (Peixe)/fisiologia , Animais , Glândulas Exócrinas/citologia , Feiticeiras (Peixe)/química , Feiticeiras (Peixe)/citologia , Imuno-Histoquímica , Muco/metabolismo , Fatores de Tempo
11.
PLoS One ; 13(6): e0197287, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856754

RESUMO

Pheromones, low molecular weight chemical entities that bind to pheromone carrier proteins, are chemical signals that play an important role in the communication system in animals. This has been rather fairly well-studied in the rodents. The preputial gland, a rich source of pheromones in many rodents, contains a low molecular mass protein (18-20 kDa) that acts as one such pheromone carrier. However, the presence of this protein in the notorious rodent pest Millardia meltada has not yet been proven. Therefore, we aimed at identifying this protein, and the pheromones that are bound to it, in this rodent so as to utilize the information in the control of this pest. Twenty volatile compounds were identified in the preputial gland using GC-MS. Total protein of the gland was fractioned by both one and two-dimensional electrophoresis when we identified a low molecular mass protein (19 kDa, pI-4.7). Adopting MALDI-TOF MS and LC-MS analyses, the protein was confirmed as α 2u-globulin. To identify the volatiles bound to this protein, we used column chromatography and GC-MS. We found that farnesol and 6-methyl-1-heptanol are the volatiles that would bind to the protein, which we propose to be putative pheromones. Immunohistochemical analysis confirmed localization of α 2u-globulin in the acinar cells of the preputial gland. Thus, we show that α 2u-globulin, a pheromone-carrier protein, is present in the preputial gland acinar cells of M. meltada and suggest farnesol and 6-methyl-1-heptanol to be the volatiles which would bind to it. The α 2u-globulin together with farnesol and 6-methyl-1-heptanol contribute to pheromonal communication of M. meltada.


Assuntos
Células Acinares/metabolismo , alfa-Globulinas/metabolismo , Glândulas Exócrinas/metabolismo , Farneseno Álcool/metabolismo , Murinae/metabolismo , Feromônios/metabolismo , Células Acinares/citologia , Animais , Glândulas Exócrinas/citologia , Masculino
12.
Cell Stem Cell ; 22(5): 668-683.e6, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656943

RESUMO

Cells demonstrate plasticity following injury, but the extent of this phenomenon and the cellular mechanisms involved remain underexplored. Using single-cell RNA sequencing (scRNA-seq) and lineage tracing, we uncover that myoepithelial cells (MECs) of the submucosal glands (SMGs) proliferate and migrate to repopulate the airway surface epithelium (SE) in multiple injury models. Specifically, SMG-derived cells display multipotency and contribute to basal and luminal cell types of the SMGs and SE. Ex vivo expanded MECs have the potential to repopulate and differentiate into SE cells when grafted onto denuded airway scaffolds. Significantly, we find that SMG-like cells appear on the SE of both extra- and intra-lobular airways of large animal lungs following severe injury. We find that the transcription factor SOX9 is necessary for MEC plasticity in airway regeneration. Because SMGs are abundant and present deep within airways, they may serve as a reserve cell source for enhancing human airway regeneration.


Assuntos
Células Epiteliais/citologia , Glândulas Exócrinas/citologia , Mucosa Respiratória/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Camundongos , Camundongos Endogâmicos , Suínos
13.
Cell Stem Cell ; 22(5): 653-667.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656941

RESUMO

The mouse trachea is thought to contain two distinct stem cell compartments that contribute to airway repair-basal cells in the surface airway epithelium (SAE) and an unknown submucosal gland (SMG) cell type. Whether a lineage relationship exists between these two stem cell compartments remains unclear. Using lineage tracing of glandular myoepithelial cells (MECs), we demonstrate that MECs can give rise to seven cell types of the SAE and SMGs following severe airway injury. MECs progressively adopted a basal cell phenotype on the SAE and established lasting progenitors capable of further regeneration following reinjury. MECs activate Wnt-regulated transcription factors (Lef-1/TCF7) following injury and Lef-1 induction in cultured MECs promoted transition to a basal cell phenotype. Surprisingly, dose-dependent MEC conditional activation of Lef-1 in vivo promoted self-limited airway regeneration in the absence of injury. Thus, modulating the Lef-1 transcriptional program in MEC-derived progenitors may have regenerative medicine applications for lung diseases.


Assuntos
Células Epiteliais/citologia , Glândulas Exócrinas/citologia , Mucosa Respiratória/citologia , Células-Tronco/citologia , Traqueia/citologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos
14.
Arthropod Struct Dev ; 47(3): 229-237, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29698688

RESUMO

Besides the common labial and metapleural glands, four novel exocrine glands are described in the thorax of both workers and queens of the ponerine ant Myopias hollandi. From anterior to posterior, these glands were designated as the propleural pit gland, the posterolateral pronotal gland, the anterolateral propodeal gland and the metasternal process gland. They all correspond with class-3 glands, that are made up of bicellular units that each comprise a secretory cell and a duct cell. In the propleural pit gland, the ducts are characterized by a gradually widening diameter, while in the three other glands the ducts show a portion which displays a balloon-like expansion, that on semithin sections stains very dark. For none of these novel glands the function is known as yet, although ultrastructural examination indicates that they produce a non-proteinaceous and therefore possibly pheromonal secretion.


Assuntos
Formigas/anatomia & histologia , Glândulas Exócrinas/citologia , Animais , Formigas/ultraestrutura , Glândulas Exócrinas/ultraestrutura , Feminino , Microscopia Eletrônica de Varredura
15.
J Insect Physiol ; 107: 68-80, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29477467

RESUMO

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.


Assuntos
Venenos de Artrópodes/química , Glândulas Exócrinas/citologia , Transcriptoma , Vespas/fisiologia , Animais , Glândulas Exócrinas/ultraestrutura , Feminino , Heterópteros , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Microscopia Eletrônica de Transmissão , Fenótipo , Vespas/citologia , Vespas/genética , Vespas/ultraestrutura
17.
PLoS One ; 13(2): e0191344, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447197

RESUMO

The honeybee (Apis mellifera L.) uses various chemical signals produced by the worker exocrine glands to maintain the functioning of its colony. The roles of worker postcerebral glands (PcGs), thoracic glands (TGs), and mandibular glands (MGs) and the functional changes they undergo according to the division of labor from nursing to foraging are not as well studied. To comprehensively characterize the molecular roles of these glands in workers and their changes according to the division of labor of workers, we analyzed the proteomes of PcGs, TGs, and MGs from nurse bees and foragers using shotgun proteomics technology. We identified approximately 2000 proteins from each of the nurse bee or forager glands and highlighted the features of these glands at the molecular level by semiquantitative enrichment analyses of frequently detected, gland-selective, and labor-selective proteins. First, we found the high potential to produce lipids in PcGs and MGs, suggesting their relation to pheromone production. Second, we also found the proton pumps abundant in TGs and propose some transporters possibly related to the saliva production. Finally, our data unveiled candidate enzymes involved in labor-dependent acid production in MGs.


Assuntos
Abelhas/genética , Glândulas Exócrinas/fisiologia , Proteômica/métodos , Fatores Etários , Sequência de Aminoácidos , Animais , Abelhas/metabolismo , Comportamento Animal/fisiologia , Glândulas Exócrinas/citologia , Glândulas Exócrinas/metabolismo , Proteínas de Insetos/metabolismo , Feromônios/metabolismo , Proteoma/metabolismo
18.
PLoS One ; 11(8): e0161190, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27526291

RESUMO

A promising approach to new diabetes therapies is to generate ß cells from other differentiated pancreatic cells in vivo. Because the acinar cells represent the most abundant cell type in the pancreas, an attractive possibility is to reprogram acinar cells into ß cells. The transcription factor Pdx1 (Pancreas/duodenum homeobox protein 1) is essential for pancreatic development and cell lineage determination. Our objective is to examine whether exogenous expression of Pdx1 in acinar cells of adult mice might induce reprogramming of acinar cells into ß cells. We established a transgenic mouse line in which Pdx1 and EGFP (enhanced green fluorescent protein) could be inducibly expressed in the acinar cells. After induction of Pdx1, we followed the acinar cells for their expression of exocrine and endocrine markers using cell-lineage tracing with EGFP. The acinar cell-specific expression of Pdx1 in adult mice reprogrammed the acinar cells as endocrine precursor cells, which migrated into the pancreatic islets and differentiated into insulin-, somatostatin-, or PP (pancreatic polypeptide)-producing endocrine cells, but not into glucagon-producing cells. When the mice undergoing such pancreatic reprogramming were treated with streptozotocin (STZ), the newly generated insulin-producing cells were able to ameliorate STZ-induced diabetes. This paradigm of in vivo reprogramming indicates that acinar cells hold promise as a source for new islet cells in regenerative therapies for diabetes.


Assuntos
Células Acinares/citologia , Transdiferenciação Celular/genética , Pâncreas/citologia , Transativadores/genética , Células Acinares/metabolismo , Animais , Glicemia/metabolismo , Reprogramação Celular , Glândulas Exócrinas/citologia , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Insulina/metabolismo , Camundongos , Camundongos Transgênicos
19.
Insect Biochem Mol Biol ; 76: 95-108, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27395780

RESUMO

The molt-intermolt cycle is an essential feature in holometabolous and hemimetabolous insects' development. In the silkworm, silk glands are under dramatic morphological and functional changes with fibroin genes' transcription being repeatedly turned off and on during the molt-intermolt cycles. However, the molecular mechanisms controlling it are still unknown. Here, silk gland's histomorphology and transcriptome analysis were used to characterize changes in its structure and gene expression patterns from molt to intermolt stages. By using section staining and transmission electron microscope, a renewable cell damage was detected in the silk gland at the molt stage, and an increased number of autophagosomes and lysosomes were found in silk gland cells' cytoplasm. Next, by using RNA sequencing, 54,578,413 reads were obtained, of which 85% were mapped to the silkworm reference genome. The expression level analysis of silk protein genes and silk gland transcription factors revealed that fibroin heavy chain, fibroin light chain, P25/fhx, sericin1, sericin3 and Dimm had consistent alteration trends in temporal expression. In addition, differentially expressed genes (DEGs) were identified, and most of the DEGs associated with ecdysone signal transduction, mRNA degradation, protein proteolysis, and autophagy were significantly down-regulated in the transition from molt to intermolt, suggesting that these pathways were activated for the silk gland renewal. These findings provide insights into the molecular mechanisms of silk gland development and silk protein genes transcriptional regulation during the molt to intermolt transition process.


Assuntos
Bombyx/crescimento & desenvolvimento , Bombyx/genética , Animais , Bombyx/metabolismo , Glândulas Exócrinas/citologia , Glândulas Exócrinas/crescimento & desenvolvimento , Glândulas Exócrinas/ultraestrutura , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Microscopia Eletrônica de Transmissão , Muda , Seda
20.
Stem Cells ; 34(11): 2758-2771, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27341073

RESUMO

Wnt signaling is required for lineage commitment of glandular stem cells (SCs) during tracheal submucosal gland (SMG) morphogenesis from the surface airway epithelium (SAE). Whether similar Wnt-dependent processes coordinate SC expansion in adult SMGs following airway injury remains unknown. We found that two Wnt-reporters in mice (BAT-gal and TCF/Lef:H2B-GFP) are coexpressed in actively cycling SCs of primordial glandular placodes and in a small subset of adult SMG progenitor cells that enter the cell cycle 24 hours following airway injury. At homeostasis, these Wnt reporters showed nonoverlapping cellular patterns of expression in the SAE and SMGs. Following tracheal injury, proliferation was accompanied by dynamic changes in Wnt-reporter activity and the analysis of 56 Wnt-related signaling genes revealed unique temporal changes in expression within proximal (gland-containing) and distal (gland-free) portions of the trachea. Wnt stimulation in vivo and in vitro promoted epithelial proliferation in both SMGs and the SAE. Interestingly, slowly cycling nucleotide label-retaining cells (LRCs) of SMGs were spatially positioned near clusters of BAT-gal positive serous tubules. Isolation and culture of tet-inducible H2B-GFP LRCs demonstrated that SMG LRCs were more proliferative than SAE LRCs and culture expanded SMG-derived progenitor cells outcompeted SAE-derived progenitors in regeneration of tracheal xenograft epithelium using a clonal analysis competition assay. SMG-derived progenitors were also multipotent for cell types in the SAE and formed gland-like structures in xenografts. These studies demonstrate the importance of Wnt signals in modulating SC phenotypes within tracheal niches and provide new insight into phenotypic differences of SMG and SAE SCs. Stem Cells 2016;34:2758-2771.


Assuntos
Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo , Traqueia/metabolismo , Proteína Wnt1/metabolismo , Proteína Wnt3A/metabolismo , Animais , Ciclo Celular/genética , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Glândulas Exócrinas/citologia , Glândulas Exócrinas/efeitos dos fármacos , Glândulas Exócrinas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Xenoenxertos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Naftalenos/toxicidade , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Cultura Primária de Células , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Traqueia/efeitos dos fármacos , Traqueia/lesões , Traqueia/cirurgia , Proteína Wnt1/genética , Proteína Wnt3A/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...