Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.135
Filtrar
1.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34905510

RESUMO

Through their ability to regulate gene expression in most organs, glucocorticoid (GC) hormones influence numerous physiological processes and are therefore key regulators of organismal homeostasis. In bone, GC hormones inhibit expression of the hormone Osteocalcin for poorly understood reasons. Here, we show that in a classical endocrine feedback loop, osteocalcin in return enhanced the biosynthesis of GC as well as mineralocorticoid hormones (adrenal steroidogenesis) in rodents and primates. Conversely, inactivation of osteocalcin signaling in adrenal glands significantly impaired adrenal growth and steroidogenesis in mice. Embryo-made osteocalcin was necessary for normal Sf1 expression in fetal adrenal cells and adrenal cell steroidogenic differentiation and therefore determined the number of steroidogenic cells present in the adrenal glands of adult animals. Embryonic, not postnatal, osteocalcin also governed adrenal growth, adrenal steroidogenesis, blood pressure, electrolyte equilibrium, and the rise in circulating corticosterone levels during the acute stress response in adult offspring. This osteocalcin-dependent regulation of adrenal development and steroidogenesis occurred even in the absence of a functional hypothalamus/pituitary/adrenal axis and explains why osteocalcin administration during pregnancy promoted adrenal growth and steroidogenesis and improved the survival of adrenocorticotropic hormone signaling-deficient animals. This study reveals that a bone-derived embryonic hormone influences lifelong adrenal functions and organismal homeostasis in the mouse.


Assuntos
Glândulas Suprarrenais/embriologia , Homeostase , Sistema Hipotálamo-Hipofisário/embriologia , Osteocalcina/metabolismo , Sistema Hipófise-Suprarrenal/embriologia , Transdução de Sinais , Animais , Feminino , Glucocorticoides/genética , Glucocorticoides/metabolismo , Macaca mulatta , Camundongos , Camundongos Knockout , Osteocalcina/genética
2.
Toxicology ; 462: 152932, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508824

RESUMO

Triadimefon is a broad-spectrum antifungal agent, which is widely used in agriculture to control mold and fungal infections. It is considered an endocrine disruptor. Whether triadimefon exposure can inhibit the development of fetal adrenal glands and the underlying mechanism remain unclear. Thirty-two pregnant female Sprague-Dawley rats were randomly divided into four groups. Dams were gavaged triadimefon (0, 25, 50, and 100 mg/kg/day) daily for 10 days from gestational day (GD) 12 to GD 21. Triadimefon significantly reduced the thickness of the zona fasciculata of male fetuses at 100 mg/kg, although it did not change the thickness of the zona glomerulosa. It significantly reduced the serum aldosterone levels of male fetuses at a dose of 100 mg/kg, and significantly reduced serum corticosterone and adrenocorticotropic hormone levels at doses of 50 and 100 mg/kg. Triadimefon significantly down-regulated the expression of Agtr1, Mc2r, Star, Cyp11b1, Cyp11b2, Igf1, Nr5a1, Sod2, Gpx1, and Cat, but did not affect the mRNA levels of Scarb1, Cyp11a1, Cyp21, Hsd3b1, and Hsd11b2. Triadimefon markedly reduced AT1R, CYP11B2, IGF1, NR5A1, and MC2R protein levels. Triadimefon significantly reduced the phosphorylation of AKT1 and ERK1/2 at 100 mg/kg without affecting the phosphorylation of AKT2. In contrast, it significantly increased AMPK phosphorylation at 100 mg/kg. In conclusion, exposure to triadimefon during gestation inhibits the development of fetal adrenal cortex in male fetuses. This inhibition is possibly due to the reduction of several proteins required for the synthesis of steroid hormones, and may be involved in changes in antioxidant contents and the phosphorylation of AKT1, ERK1/2, and AMPK.


Assuntos
Glândulas Suprarrenais/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Exposição Materna/efeitos adversos , Triazóis/toxicidade , Córtex Suprarrenal/efeitos dos fármacos , Córtex Suprarrenal/embriologia , Glândulas Suprarrenais/embriologia , Animais , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Disruptores Endócrinos/administração & dosagem , Disruptores Endócrinos/toxicidade , Feminino , Fungicidas Industriais/administração & dosagem , Masculino , Fosforilação/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Triazóis/administração & dosagem
3.
Nat Genet ; 53(5): 683-693, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767450

RESUMO

Neuroblastoma is a pediatric tumor of the developing sympathetic nervous system. However, the cellular origin of neuroblastoma has yet to be defined. Here we studied the single-cell transcriptomes of neuroblastomas and normal human developing adrenal glands at various stages of embryonic and fetal development. We defined normal differentiation trajectories from Schwann cell precursors over intermediate states to neuroblasts or chromaffin cells and showed that neuroblastomas transcriptionally resemble normal fetal adrenal neuroblasts. Importantly, neuroblastomas with varying clinical phenotypes matched different temporal states along normal neuroblast differentiation trajectories, with the degree of differentiation corresponding to clinical prognosis. Our work highlights the roles of oncogenic MYCN and loss of TFAP2B in blocking differentiation and may provide the basis for designing therapeutic interventions to overcome differentiation blocks.


Assuntos
Perfilação da Expressão Gênica , Neuroblastoma/genética , Neuroblastoma/patologia , Análise de Célula Única , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma/genética , Resultado do Tratamento
4.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724412

RESUMO

People with NR5A1 mutations experience testicular dysgenesis, ovotestes, or adrenal insufficiency, but we do not completely understand the origin of this phenotypic diversity. NR5A1 is expressed in gonadal soma precursor cells before expression of the sex-determining gene SRY. Many fish have two co-orthologs of NR5A1 that likely partitioned ancestral gene subfunctions between them. To explore ancestral roles of NR5A1, we knocked out nr5a1a and nr5a1b in zebrafish. Single-cell RNA-seq identified nr5a1a-expressing cells that co-expressed genes for steroid biosynthesis and the chemokine receptor Cxcl12a in 1-day postfertilization (dpf) embryos, as does the mammalian adrenal-gonadal (interrenal-gonadal) primordium. In 2dpf embryos, nr5a1a was expressed stronger in the interrenal-gonadal primordium than in the early hypothalamus but nr5a1b showed the reverse. Adult Leydig cells expressed both ohnologs and granulosa cells expressed nr5a1a stronger than nr5a1b. Mutants for nr5a1a lacked the interrenal, formed incompletely differentiated testes, had no Leydig cells, and grew far larger than normal fish. Mutants for nr5a1b formed a disorganized interrenal and their gonads completely disappeared. All homozygous mutant genotypes lacked secondary sex characteristics, including male breeding tubercles and female sex papillae, and had exceedingly low levels of estradiol, 11-ketotestosterone, and cortisol. RNA-seq showed that at 21dpf, some animals were developing as females and others were not, independent of nr5a1 genotype. By 35dpf, all mutant genotypes greatly under-expressed ovary-biased genes. Because adult nr5a1a mutants form gonads but lack an interrenal and conversely, adult nr5a1b mutants lack a gonad but have an interrenal, the adrenal, and gonadal functions of the ancestral nr5a1 gene partitioned between ohnologs after the teleost genome duplication, likely owing to reciprocal loss of ancestral tissue-specific regulatory elements. Identifying such elements could provide hints to otherwise unexplained cases of Differences in Sex Development.


Assuntos
Glândulas Suprarrenais/metabolismo , Proteínas de Ligação a DNA/genética , Disgenesia Gonadal/genética , Gônadas/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Glândulas Suprarrenais/embriologia , Animais , Proteínas de Ligação a DNA/metabolismo , Feminino , Gônadas/embriologia , Masculino , Fenótipo , Processos de Determinação Sexual , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
J Clin Endocrinol Metab ; 106(3): 843-857, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33212489

RESUMO

CONTEXT: Disorders affecting adrenal steroidogenesis promote an imbalance in the normally tightly controlled secretion of mineralocorticoids, glucocorticoids, and androgens. This may lead to differences/disorders of sex development in the fetus, as seen in virilized girls with congenital adrenal hyperplasia (CAH). Despite the important endocrine function of human fetal adrenals, neither normal nor dysregulated adrenal steroidogenesis is understood in detail. OBJECTIVE: Due to significant differences in adrenal steroidogenesis between human and model species (except higher primates), we aimed to establish a human fetal adrenal model that enables examination of both de novo and manipulated adrenal steroidogenesis. DESIGN AND SETTING: Human adrenal tissue from 54 1st trimester fetuses were cultured ex vivo as intact tissue fragments for 7 or 14 days. MAIN OUTCOME MEASURES: Model validation included examination of postculture tissue morphology, viability, apoptosis, and quantification of steroid hormones secreted to the culture media measured by liquid chromatography-tandem mass spectrometry. RESULTS: The culture approach maintained cell viability, preserved cell populations of all fetal adrenal zones, and recapitulated de novo adrenal steroidogenesis based on continued secretion of steroidogenic intermediates, glucocorticoids, and androgens. Adrenocorticotropic hormone and ketoconazole treatment of ex vivo cultured human fetal adrenal tissue resulted in the stimulation of steroidogenesis and inhibition of androgen secretion, respectively, demonstrating a treatment-specific response. CONCLUSIONS: Together, these data indicate that ex vivo culture of human fetal adrenal tissue constitutes a novel approach to investigate local effects of pharmaceutical exposures or emerging therapeutic options targeting imbalanced steroidogenesis in adrenal disorders, including CAH.


Assuntos
Glândulas Suprarrenais/citologia , Avaliação Pré-Clínica de Medicamentos/métodos , Feto/citologia , Cultura Primária de Células/métodos , Esteroides/biossíntese , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/metabolismo , Hiperplasia Suprarrenal Congênita/tratamento farmacológico , Hiperplasia Suprarrenal Congênita/metabolismo , Hiperplasia Suprarrenal Congênita/patologia , Hormônio Adrenocorticotrópico/farmacologia , Androgênios/metabolismo , Sobrevivência Celular , Meios de Cultura/química , Feminino , Glucocorticoides/farmacologia , Humanos , Cetoconazol/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Gravidez , Esteroides/análise , Esteroides/metabolismo
6.
BMC Pregnancy Childbirth ; 20(1): 774, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308174

RESUMO

BACKGROUND: The fetal adrenal gland is a highly vascularized organs and develops two recognizable distinct zones in uetro, inner fetal zone (FZ) and outer definitive zone (DZ). Based on the region supplied, middle adrenal artery (MAA) mainly contribute to FZ while inferior adrenal artery (IAA) mainly to the inferior part of DZ. The purpose of this study was to establish reference ranges of adrenal artery Doppler indices of IAA and MAA, and assess zonal difference of blood supply to fetal adrenal gland. METHODS: The pulsatility index (PI), resistance index (RI), and systolic:diastolic ratio (S/D) of the IAA and MAA were obtained serially at 4-week intervals in normal fetuses. The MAA and IAA were referred based on the course and location in the gland: IAA referring the artery that mainly branches from the renal artery and walks along the renal upper pole, distributing the inferoposterior part of DZ in the adrenal gland while MAA as arterial blood flowing along the single central adrenal vein in the medial part of the gland. Multilevel modeling was performed to establish the gestational age-associated reference ranges for IAA and MAA. Differences in Doppler indices between the IAA and MAA were assessed. RESULTS: One hundred sixty-eight fetuses with 843 observations were included. The IAA had a higher detection rate than the MAA (100% vs 89.2%, p < 0.05). The resistance of IAA had a reduction around 35 weeks of gestation and that of MAA remained unchanged throughout the second half of pregnancy. Lower PI, RI and S/D were observed in the MAA than in the IAA (p < 0.05) from 752 paired measurements. CONCLUSION: There is a zonal difference in blood supply in favor of the fetal zone, which may correspond to its unique function. Reference ranges of Doppler parameters in adrenal artery maybe beneficial for further evaluation of fetal hemodynamics.


Assuntos
Glândulas Suprarrenais/irrigação sanguínea , Fluxo Pulsátil/fisiologia , Artérias Umbilicais/diagnóstico por imagem , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/embriologia , Adulto , Feminino , Humanos , Estudos Longitudinais , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/embriologia , Gravidez , Valores de Referência , Ultrassonografia Doppler em Cores , Ultrassonografia Pré-Natal , Artérias Umbilicais/embriologia
7.
BMC Pregnancy Childbirth ; 20(1): 570, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993527

RESUMO

BACKGROUND: The fetal adrenal gland receives rising awareness as a predictor of spontaneous preterm birth. We hereby provide longitudinal growth assessments of the fetal adrenal gland in a low risk population with an additional focus on trajectories in fetuses born preterm. METHODS: Fetal adrenal gland was assessed via transabdominal ultrasound at gestational weeks (gw) 24-26, 28-30, and 34-36 in a low-risk pregnancy cohort. Longitudinal trajectories of the total gland and the mark (so called fetal zone) as well as ratio of fetal zone width/ total widths (w/W) were analyzed using repeated ANOVA analyses. To compare trajectories of the ratio w/W for preterm and term fetuses respectively, as well as women with and without clinical signs of preterm labor, the propensity score method was applied. RESULTS: Fetal zone width increased over the course of pregnancy (p < 0.0001), while the ratio w/W decreased (p < 0.0001) (n = 327). Comparing the trajectories of the ratio w/W in fetuses born preterm (n = 11) with propensity-score matched term born fetuses (n = 22), a decrease between gw 24-26 and 28-30 was observed in both groups, which continued to decrease for the term born fetuses. However, in preterm born fetuses, the ratio increased above the term born values at gw 34-36. CONCLUSION: Our study provides for the first time longitudinal growth data on the fetal adrenal gland and supports the hypothesis that fetal zone enlargement is associated with preterm birth which could play an important role in risk-prediction.


Assuntos
Glândulas Suprarrenais/anatomia & histologia , Glândulas Suprarrenais/diagnóstico por imagem , Desenvolvimento Fetal , Feto/anatomia & histologia , Feto/diagnóstico por imagem , Nascimento Prematuro/epidemiologia , Ultrassonografia Pré-Natal , Glândulas Suprarrenais/embriologia , Adulto , Feminino , Idade Gestacional , Humanos , Gravidez , Medição de Risco
8.
Cancer Cell ; 38(5): 716-733.e6, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32946775

RESUMO

Neuroblastoma (NB), which is a subtype of neural-crest-derived malignancy, is the most common extracranial solid tumor occurring in childhood. Despite extensive research, the underlying developmental origin of NB remains unclear. Using single-cell RNA sequencing, we generate transcriptomes of adrenal NB from 160,910 cells of 16 patients and transcriptomes of putative developmental cells of origin of NB from 12,103 cells of early human embryos and fetal adrenal glands at relatively late development stages. We find that most adrenal NB tumor cells transcriptionally mirror noradrenergic chromaffin cells. Malignant states also recapitulate the proliferation/differentiation status of chromaffin cells in the process of normal development. Our findings provide insight into developmental trajectories and cellular states underlying human initiation and progression of NB.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , Glândulas Suprarrenais/embriologia , Perfilação da Expressão Gênica/métodos , Neuroblastoma/genética , Análise de Célula Única/métodos , Glândulas Suprarrenais/química , Diferenciação Celular , Proliferação de Células , Células Cromafins/química , Células Cromafins/citologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo , Análise de Sequência de RNA
9.
Ann Anat ; 231: 151526, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32380196

RESUMO

BACKGROUND: Toll-Like Receptors (TLRs) play a critical role in the innate and adaptive immune system. They are the mammalian orthologs of Drosophila melanogaster protein Toll, which has been proved to have an early morphogenetic role in invertebrate embryogenesis that in the adult switches to an immune function. AIM: The aim of this study was to evaluate the expression of TLR4 and TLR7 during dorsal root ganglia (DRG), paravertebral ganglia (PVG), and enteric nervous system (ENS) murine development. METHODS: Mouse embryos from different stages (i.e. E12 to E18) were processed for immunolocalization analysis on formalin-fixed paraffin-embedded sections, and isolated intestine were processed for whole-mount preparations. RESULTS: We observed a differentially regulated expression of TLR4 and TLR7 during embryogenesis and an overall increased expression of both receptors during development. While TLR4 was detectable in neurons of DRG and PVG starting from E14 and only from E18 in the ENS, TLR7 was already expressed in scattered neurons of all the investigated regions at E12. CONCLUSIONS: TLR4 and TRL7 expression temporal patterns suggest a morphogenetic role for these receptors in the development of neural crest derivatives in mammals.


Assuntos
Sistema Nervoso Periférico/embriologia , Sistema Nervoso Periférico/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/crescimento & desenvolvimento , Glândulas Suprarrenais/metabolismo , Animais , Feminino , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Sistema Nervoso Periférico/crescimento & desenvolvimento
10.
J Clin Ultrasound ; 48(7): 377-387, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32333815

RESUMO

PURPOSE: Fetal adrenal gland changes have previously been investigated as novel markers of preterm labor and small for gestational age (SGA) fetuses. We aimed to compare the fetal adrenal gland parameters in SGA and appropriate for gestational age (AGA) fetuses. METHODS: A prospective cohort study was conducted on SGA fetuses with estimated fetal weight (EFW) ≤10th centile and AGA (EFW >10th centile) at 17 to 34 weeks gestation. Fetal adrenal total gland volume (TGV), TGV corrected for EFW (cTGV), fetal zone volume (FZV), FZV corrected for EFW (cFZV), and FZV:TGV ratio were compared and correlated with gestational age and EFW. Receiver operator curves assessed FZV:TGV ratio, cTGV, and cFZV in detecting SGA. RESULTS: Ultrasound examinations from 103 AGA and 50 SGA fetuses showed that (a) SGA fetuses had higher TGV (P = .002), FZV (P = .001), and FZV:TGV (P = .036) compared to AGA fetuses; (b) fetal adrenal TGV, FZV, cFZV, and FZV:TGV increase with advancing gestational age and EFW while cTGV does not; (c) Fetal adrenal changes in cTGV, cFZV, and FZV:TGV have ability to differentiate SGA; (d) FZV:TGV ratio 10 and 25 may be used to identify or exclude SGA in antenatally suspected SGA. CONCLUSIONS: We investigated the concept that SGA fetuses have measurable changes to the adrenal gland. We have shown that fetal TGV, TGV, and FZV:TGV ratio show differences between AGA and SGA with TGV remaining significant after accounting for GA at scan. These findings may be useful as potential biomarkers for diagnosing or excluding SGA.


Assuntos
Glândulas Suprarrenais/diagnóstico por imagem , Retardo do Crescimento Fetal/diagnóstico , Feto/diagnóstico por imagem , Recém-Nascido Pequeno para a Idade Gestacional , Ultrassonografia Pré-Natal/métodos , Adolescente , Glândulas Suprarrenais/embriologia , Adulto , Feminino , Peso Fetal , Idade Gestacional , Humanos , Recém-Nascido , Pessoa de Meia-Idade , Gravidez , Terceiro Trimestre da Gravidez , Estudos Prospectivos , Adulto Jovem
11.
Pediatr Radiol ; 50(6): 840-847, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32060593

RESUMO

BACKGROUND: The adrenal gland plays a vital role in fetal growth. Many disease states such as congenital adrenal hyperplasia, hemorrhage and tumors can lead to morphological changes in the gland. Ultrasound measurements of normal adrenal sizes in the fetus reported in the literature have shown a trend of increasing size with gestational age. There is no literature available on standard fetal adrenal sizes or detailed appearance by fetal MRI. OBJECTIVE: The purpose of this study was to provide MR data on the size and signal characteristics of the fetal adrenal gland throughout the second and third trimesters. MATERIALS AND METHODS: In this retrospective review, we selected 185 prenatal MRIs obtained from Jan. 1, 2014, to May 31, 2017, with normal abdominal findings for inclusion. The adrenal glands were identified in coronal, sagittal or axial T2-W planes and coronal T1-W plane when available. We measured the length and thickness of the medial and lateral limbs of the right and left adrenal glands and recorded signal intensity on T1-W and T2-W sequences, gender and gestational age in each case. RESULTS: The gestational age (GA) ranged 18-37 weeks. Visibility of the adrenal glands on T2-W images was high (90.3-97.2%) up to 30 weeks of GA but declined afterward (47.5-62.2% at 31-37 weeks). Visibility on T1-W images increased with GA, ranging from 21.4% visibility at 18-22 weeks and increasing to 40% at 35-37 weeks. Mean lengths of the adrenal gland limbs steadily increased from 8.2 mm at 18-22 weeks to 11.0 mm at 35-37 weeks. In the second trimester, adrenal glands were low in signal intensity on T2-W images and were surrounded by hyperintense perirenal fatty tissue. In the third trimester, the glands became less distinct, with increasing signal and obliteration of perirenal tissue. The glands were moderately hyperintense on T1-W images throughout pregnancy, with increasing visibility as pregnancy progressed. CONCLUSION: Normal sizes and signal intensities for adrenal glands are reported. Visibility of adrenal glands on T2-W images was 90.3-97.2% up to 30 weeks but declined thereafter. Visibility on T1-W images increased in the third trimester. Adrenal gland sizes increased with gestational age.


Assuntos
Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/embriologia , Imageamento por Ressonância Magnética/métodos , Feminino , Idade Gestacional , Humanos , Gravidez , Valores de Referência , Estudos Retrospectivos
12.
Endocrinol Metab (Seoul) ; 35(4): 765-773, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33397037

RESUMO

The adrenal gland plays a pivotal role in an organism's health span by controlling the endocrine system. Decades of research on the adrenal gland have provided multiscale insights into the development and maintenance of this essential organ. A particularly interesting finding is that founder stem/progenitor cells participate in adrenocortical development and enable the adult adrenal cortex to regenerate itself in response to hormonal stress and injury. Since major advances have been made in understanding the dynamics of the developmental process and the remarkable regenerative capacity of the adrenal gland, understanding the mechanisms underlying adrenal development, maintenance, and regeneration will be of interest to basic and clinical researchers. Here, we introduce the developmental processes of the adrenal gland and discuss current knowledge regarding stem/progenitor cells that regulate adrenal cortex remodeling and regeneration. This review will provide insights into the fascinating ongoing research on the development and regeneration of the adrenal cortex.


Assuntos
Córtex Suprarrenal/embriologia , Glândulas Suprarrenais/embriologia , Desenvolvimento Embrionário/fisiologia , Células-Tronco/metabolismo , Córtex Suprarrenal/crescimento & desenvolvimento , Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/crescimento & desenvolvimento , Glândulas Suprarrenais/metabolismo , Adulto , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Regeneração , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 116(44): 22294-22299, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31611378

RESUMO

Androgen biosynthesis in the human fetus proceeds through the adrenal sex steroid precursor dehydroepiandrosterone, which is converted to testosterone in the gonads, followed by further activation to 5α-dihydrotestosterone in genital skin, thereby facilitating male external genital differentiation. Congenital adrenal hyperplasia due to P450 oxidoreductase deficiency results in disrupted dehydroepiandrosterone biosynthesis, explaining undervirilization in affected boys. However, many affected girls are born virilized, despite low circulating androgens. We hypothesized that this is due to a prenatally active, alternative androgen biosynthesis pathway from 17α-hydroxyprogesterone to 5α-dihydrotestosterone, which bypasses dehydroepiandrosterone and testosterone, with increased activity in congenital adrenal hyperplasia variants associated with 17α-hydroxyprogesterone accumulation. Here we employ explant cultures of human fetal organs (adrenals, gonads, genital skin) from the major period of sexual differentiation and show that alternative pathway androgen biosynthesis is active in the fetus, as assessed by liquid chromatography-tandem mass spectrometry. We found androgen receptor expression in male and female genital skin using immunohistochemistry and demonstrated that both 5α-dihydrotestosterone and adrenal explant culture supernatant induce nuclear translocation of the androgen receptor in female genital skin primary cultures. Analyzing urinary steroid excretion by gas chromatography-mass spectrometry, we show that neonates with P450 oxidoreductase deficiency produce androgens through the alternative androgen pathway during the first weeks of life. We provide quantitative in vitro evidence that the corresponding P450 oxidoreductase mutations predominantly support alternative pathway androgen biosynthesis. These results indicate a key role of alternative pathway androgen biosynthesis in the prenatal virilization of girls affected by congenital adrenal hyperplasia due to P450 oxidoreductase deficiency.


Assuntos
17-alfa-Hidroxiprogesterona/metabolismo , Androgênios/biossíntese , Fenótipo de Síndrome de Antley-Bixler/genética , Feto/metabolismo , Receptores Androgênicos/genética , Virilismo/metabolismo , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/metabolismo , Androgênios/genética , Células Cultivadas , Feminino , Feto/embriologia , Genitália/embriologia , Genitália/metabolismo , Gônadas/embriologia , Gônadas/metabolismo , Humanos , Masculino , Receptores Androgênicos/metabolismo , Diferenciação Sexual , Virilismo/genética
14.
J Perinat Med ; 47(9): 941-946, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31562804

RESUMO

Background The aim of this study was to compare the adrenal gland size of fetuses of women with gestational diabetes mellitus (GDM) with that of healthy control fetuses. Methods This prospective cross-sectional study included measurements of the adrenal gland size of 62 GDM fetuses (GDM group) and 370 normal controls (control group) between the 19th and 41st week of gestation. A standardized transversal plane was used to measure the total width and the medulla width. The cortex width and an adrenal gland ratio (total width/medulla width) were calculated from these data. Adrenal gland size measurements were adjusted to the week of gestation and compared between the two groups in a multivariable linear regression analysis. A variance decomposition metric was used to compare the relative importance of predictors of the different adrenal gland size measurements. Results For all the investigated parameters of the adrenal gland size, increased values were found in the case of GDM (P < 0.05), while adjusting for the week of gestation. GDM seems to have a greater impact on the size of the cortex than on the size of the medulla. Conclusion The fetal adrenal gland is enlarged in pregnancy complicated by GDM. The width of the cortex seems to be particularly affected.


Assuntos
Glândulas Suprarrenais/embriologia , Diabetes Gestacional/fisiopatologia , Desenvolvimento Fetal , Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/patologia , Estudos de Casos e Controles , Estudos Transversais , Diabetes Gestacional/diagnóstico por imagem , Feminino , Idade Gestacional , Humanos , Modelos Lineares , Análise Multivariada , Gravidez , Estudos Prospectivos , Ultrassonografia Pré-Natal
15.
PLoS One ; 14(9): e0221719, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31483805

RESUMO

Biochemical changes in utero may alter normal fetal development, resulting in disease later in life, a phenomenon known as fetal programming. Recent epidemiological studies link fetal programming to negative health outcomes, such as low birth weight and hypertension in adulthood. Here, we used a WKY rat model and studied the molecular changes triggered by prenatal glucocorticoid (GC) exposure on the development of hypertension, and on the regulation of phenylethanolamine N-methyl transferase (PNMT), the enzyme responsible for biosynthesis of epinephrine, and a candidate gene linked to hypertension. Clinically, high doses of the synthetic GC dexamethasone (DEX) are used to treat infant respiratory distress syndrome. Elevated maternal GCs have been correlated with fetal programming of hypertension. The aim of this study was to determine if lower doses of DEX would not lead to detrimental fetal programming effects such as hypertension. Our data suggests that prenatal stress programs for increased expression of PNMT and altered regulation of PNMT in males and females. Importantly, we identified that DEX mediated programming was more apparent in the male rats, and the lower dose 10µg/kg/day of DEX did not lead to changes in blood pressure (BP) in female rats suggesting that this dose is below the threshold for programming of hypertension. Furthermore, sex-specific differences were observed in regards to programming mechanisms that may account for hypertension in males.


Assuntos
Glândulas Suprarrenais/enzimologia , Dexametasona/efeitos adversos , Desenvolvimento Fetal/efeitos dos fármacos , Glucocorticoides/efeitos adversos , Hipertensão/induzido quimicamente , Feniletanolamina N-Metiltransferase/metabolismo , Caracteres Sexuais , Glândulas Suprarrenais/embriologia , Animais , Corticosterona/sangue , Relação Dose-Resposta a Droga , Epinefrina/sangue , Feminino , Hipertensão/metabolismo , Masculino , Gravidez , Ratos , Ratos Endogâmicos WKY , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica/efeitos dos fármacos
16.
J Endocrinol ; 241(1): R51-R63, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30817316

RESUMO

The X-zone is a transient cortical region enriched in eosinophilic cells located in the cortical-medullary boundary of the mouse adrenal gland. Similar to the X-zone, the fetal zone in human adrenals is also a transient cortical compartment, comprising the majority of the human fetal adrenal gland. During adrenal development, fetal cortical cells are gradually replaced by newly formed adult cortical cells that develop into outer definitive zones. In mice, the regression of this fetal cell population is sexually dimorphic. Many mouse models with mutations associated with endocrine factors have been reported with X-zone phenotypes. Increasing findings indicate that the cell fate of this aged cell population of the adrenal cortex can be manipulated by many hormonal and nonhormonal factors. This review summarizes the current knowledge of this transient adrenocortical zone with an emphasis on genes and signaling pathways that affect X-zone cells.


Assuntos
Córtex Suprarrenal/metabolismo , Glândulas Suprarrenais/metabolismo , Medula Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Córtex Suprarrenal/citologia , Córtex Suprarrenal/embriologia , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/embriologia , Medula Suprarrenal/citologia , Medula Suprarrenal/embriologia , Animais , Apoptose/genética , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos
17.
J Matern Fetal Neonatal Med ; 32(9): 1485-1491, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29251009

RESUMO

OBJECTIVES: Comparing the sonographic measurements of fetal adrenal gland in pregnancies with intrauterine growth restriction (IUGR) versus healthy controls and to assess whether the changes in adrenal gland measurements could predict adverse pregnancy outcomes in IUGR fetuses. METHODS: This prospective cohort study evaluated 97 pregnant women (48 with IUGR pregnancies and 49 healthy controls) during their third gestational trimester. All mothers underwent two dimensional ultrasonography of the fetal adrenal gland, and the fetal zone in transverse, sagittal, and coronal planes. Adrenal gland volume (AGV) and fetal zone volume (FZV) were calculated and corrected (c) for fetal weight. The mothers were then followed until delivery. RESULTS: Fetuses in the IUGR group had larger corrected adrenal gland volume (c_AGV) and smaller corrected fetal zone volume (c_FZV) compared to the fetuses in the control groups (p < .001). In the IUGR group, significantly smaller c_AGV and higher fetal/adrenal were detected in IUGR fetuses who had nonreassuring fetal status before delivery, preterm birth, very low birth weight delivery, and also those who required neonatal intensive care unit admission (p < .01 for all). CONCLUSIONS: Third trimester fetal adrenal gland sonography could potentially be used as an easy noninvasive method for identifying those IUGR fetuses who might have poorer outcomes.


Assuntos
Glândulas Suprarrenais/diagnóstico por imagem , Glândulas Suprarrenais/embriologia , Retardo do Crescimento Fetal/diagnóstico , Resultado da Gravidez/epidemiologia , Glândulas Suprarrenais/patologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal/estatística & dados numéricos , Modelos Logísticos , Gravidez , Terceiro Trimestre da Gravidez , Nascimento Prematuro/epidemiologia , Estudos Prospectivos , Ultrassonografia Pré-Natal , Adulto Jovem
19.
Ann Endocrinol (Paris) ; 79(3): 95-97, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29673697

RESUMO

The adrenocortical gland undergoes structural and functional remodelling in the fetal and postnatal periods. After birth, the fetal zone of the gland undergoes rapid involution in favor of the definitive cortex, which reaches maturity with the emergence of the zona reticularis(zR) at the adrenarche. The mechanisms underlying the adrenarche, the process leading to pre-puberty elevation of plasma androgens in higher primates, remain unknown, largely due to lack of any experimental model. By following up fetal and definitive cortex cell lines in mice, we showed that activation of protein kinase A (PKA) signaling mainly impacts the adult cortex by stimulating centripetal regeneration, with differentiation and then conversion of the zona fasciculata into a functional zR. Animals developed Cushing syndrome associated with primary hyperaldosteronism, suggesting possible coexistence of these hypersecretions in certain patients. Remarkably, all of these traits were sex-dependent: testicular androgens promoted WNT signaling antagonism on PKA, slowing cortical renewal and delaying onset of Cushing syndrome and the establishment of the zR in male mice, this being corrected by orchidectomy. In conclusion, zR derives from centripetal conversion of the zona fasciculata under cellular renewal induced by PKA signaling, determining the size of the adult cortex. Finally, we demonstrated that this PKA-dependent mobilization of cortical progenitors is sexually dimorphic and could, if confirmed in humans, account for female preponderance in adrenocortical pathologies.


Assuntos
Córtex Suprarrenal/embriologia , Córtex Suprarrenal/crescimento & desenvolvimento , Camundongos , Modelos Animais , Glândulas Suprarrenais/embriologia , Glândulas Suprarrenais/crescimento & desenvolvimento , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos Knockout , Maturidade Sexual/fisiologia
20.
Ann Endocrinol (Paris) ; 79(3): 174-181, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29661472

RESUMO

Primary adrenal insufficiency (PAI) is characterized by impaired production of steroid hormones due to an adrenal cortex defect. This condition incurs a risk of acute insufficiency which may be life-threatening. Today, 80% of pediatric forms of PAI have a genetic origin but 5% have no clear genetic support. Recently discovered mutations in genes relating to oxidative stress have opened the way to research on genes unrelated to the adrenal gland. Identification of causal mutations in a gene responsible for PAI allows genetic counseling, guidance of follow-up and prevention of complications. This is particularly true for stress oxidative anomalies, as extra-adrenal manifestations may occur due to the sensitivity to oxidative stress of other organs such as the heart, thyroid, liver, kidney and pancreas.


Assuntos
Insuficiência Adrenal/congênito , Doença de Addison/genética , Glândulas Suprarrenais/anormalidades , Glândulas Suprarrenais/embriologia , Insuficiência Adrenal/classificação , Insuficiência Adrenal/genética , Glucocorticoides/deficiência , Glucocorticoides/genética , Humanos , Mineralocorticoides/deficiência , Mineralocorticoides/genética , Mutação , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...