Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5153, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33056991

RESUMO

Correlation networks are frequently used to statistically extract biological interactions between omics markers. Network edge selection is typically based on the statistical significance of the correlation coefficients. This procedure, however, is not guaranteed to capture biological mechanisms. We here propose an alternative approach for network reconstruction: a cutoff selection algorithm that maximizes the overlap of the inferred network with available prior knowledge. We first evaluate the approach on IgG glycomics data, for which the biochemical pathway is known and well-characterized. Importantly, even in the case of incomplete or incorrect prior knowledge, the optimal network is close to the true optimum. We then demonstrate the generalizability of the approach with applications to untargeted metabolomics and transcriptomics data. For the transcriptomics case, we demonstrate that the optimized network is superior to statistical networks in systematically retrieving interactions that were not included in the biological reference used for optimization.


Assuntos
Algoritmos , Glicômica/métodos , Metabolômica/métodos , RNA-Seq/métodos , Interpretação Estatística de Dados , Glicômica/estatística & dados numéricos , Humanos , Imunoglobulina G/metabolismo , Metabolômica/estatística & dados numéricos , RNA-Seq/estatística & dados numéricos
2.
PLoS One ; 9(6): e100939, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24978019

RESUMO

Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All the implemented features are provided as part of the Glycosylation Network Analysis Toolbox (GNAT), an open-source, platform-independent, MATLAB based toolbox for studies of Systems Glycobiology.


Assuntos
Glicômica/métodos , Glicosídeo Hidrolases/química , Glicosiltransferases/química , Polissacarídeos/química , Software , Sequência de Carboidratos , Glicômica/estatística & dados numéricos , Glicosídeo Hidrolases/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Espectrometria de Massas/estatística & dados numéricos , Redes e Vias Metabólicas , Dados de Sequência Molecular , Polissacarídeos/biossíntese , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA