Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 129: 110456, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32603895

RESUMO

BACKGROUND: Modulation of the endocannabinoid system has been shown to alleviate neuropathic pain. The aim of this study was to evaluate if treatment with paclitaxel, a chemotherapeutic agent that induces neuropathic pain, affects endocannabinoid levels at a time when mice develop paclitaxel-induced mechanical allodynia. We also evaluated the peripheral antiallodynic activity of the endocannabinoid 2-arachidonoyl glycerol (2-AG) and an inhibitor of monoacylglycerol lipase (MAGL), an enzyme responsible for 2-AG hydrolysis. METHODS: Female BALB/c mice were treated intraperitoneally with paclitaxel to induce mechanical allodynia. Levels of the endocannabinoids, N-arachidonoylethanolamine (anandamide, AEA), 2-AG, and the N-acylethanolamines (NAEs), N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), which are structurally-related to AEA, in the brain, spinal cord and paw skin were measured using LC-MS/MS. Protein expression of MAGL in the paw skin was measured using Wes™. The effects of subcutaneous (s.c.) injection of 2-AG and JZL184 (a MAGL inhibitor) into the right hind paw of mice with paclitaxel-induced mechanical allodynia were assessed using the dynamic plantar aesthesiometer. The effects of pretreatment, s.c., into the right hind paw, with cannabinoid type 1 (CB1) receptor antagonist AM251 and CB2 receptor antagonist AM630 on the antiallodynic effects of 2-AG were also evaluated. RESULTS: The levels of 2-AG were reduced only in the paw skin of paclitaxel-treated mice, whilst the levels of AEA, PEA and OEA were not significantly altered. There was no change in the expression of MAGL in the paw skin. Administration of 2-AG and JZL184 produced antiallodynic effects against paclitaxel-induced mechanical allodynia in the injected right paw, but did not affect the uninjected left paw. The antiallodynic activity of 2-AG was antagonized by both AM251 and AM630. CONCLUSION: These results indicate that during paclitaxel-induced mechanical allodynia there is a deficiency of 2-AG in the periphery, but not in the CNS. Increasing 2-AG in the paw by local administration of 2-AG or a MAGL inhibitor, alleviates mechanical allodynia in a CB1 and CB2 receptor-dependent manner.


Assuntos
Analgésicos/administração & dosagem , Ácidos Araquidônicos/administração & dosagem , Benzodioxóis/administração & dosagem , Agonistas de Receptores de Canabinoides/administração & dosagem , Endocanabinoides/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Glicerídeos/administração & dosagem , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Paclitaxel , Piperidinas/administração & dosagem , Pele/efeitos dos fármacos , Animais , Ácidos Araquidônicos/deficiência , Modelos Animais de Doenças , Endocanabinoides/deficiência , Feminino , Glicerídeos/deficiência , Hiperalgesia/sangue , Hiperalgesia/induzido quimicamente , Camundongos Endogâmicos BALB C , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Pele/metabolismo
2.
Neuroscience ; 421: 1-16, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31682822

RESUMO

The endocannabinoid system modulates synaptic transmission, controls neuronal excitability, and is involved in various brain functions including learning and memory. 2-arachidonoylglycerol, a major endocannabinoid produced by diacylglycerol lipase-α (DGLα), is released from postsynaptic neurons, retrogradely activates presynaptic CB1 cannabinoid receptors, and induces short-term or long-term synaptic plasticity. To examine whether and how the endocannabinoid system contributes to reward-based learning of a motor sequence, we subjected male CB1-knockout (KO) and DGLα-KO mice to three types of operant lever-press tasks. First, we trained mice to press one of three levers labeled A, B, and C for a food reward (one-lever task). Second, we trained mice to press the three levers in the order of A, B, and C (three-lever task). Third, the order of the levers was reversed to C, B, and A (reverse three-lever task). We found that CB1-KO mice and DGLα-KO mice exhibited essentially the same deficits in the operant lever-press tasks. In the one-lever task, both strains of knockout mice showed a slower rate of learning to press a lever for food. In the three-lever task, both strains of knockout mice showed a slower rate of learning of the motor sequence. In the reverse three-lever task, both strains of knockout mice needed more lever presses for reversal learning. These results suggest that the endocannabinoid system facilitates reward-based learning of a motor sequence by conferring the flexibility with which animals can switch between strategies.


Assuntos
Ácidos Araquidônicos/deficiência , Endocanabinoides/fisiologia , Glicerídeos/deficiência , Aprendizagem/fisiologia , Receptor CB1 de Canabinoide/deficiência , Recompensa , Animais , Endocanabinoides/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Biol Psychiatry ; 84(4): 304-315, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29458998

RESUMO

BACKGROUND: Endocannabinoid signaling plays an important role in regulating synaptic transmission in the striatum, a brain region implicated as a central node of dysfunction in autism spectrum disorder. Deficits in signaling mediated by the endocannabinoid 2-arachidonoylglycerol (2-AG) have been reported in mouse models of autism spectrum disorder, but a causal role for striatal 2-AG deficiency in phenotypes relevant to autism spectrum disorder has not been explored. METHODS: Using conditional knockout mice, we examined the electrophysiological, biochemical, and behavioral effects of 2-AG deficiency by deleting its primary synthetic enzyme, diacylglycerol lipase α (DGLα), from dopamine D1 receptor-expressing or adenosine A2a receptor-expressing medium spiny neurons (MSNs) to determine the role of 2-AG signaling in striatal direct or indirect pathways, respectively. We then used viral-mediated deletion of DGLα to study the effects of 2-AG deficiency in the ventral and dorsal striatum. RESULTS: Targeted deletion of DGLα from direct-pathway MSNs caused deficits in social interaction, excessive grooming, and decreased exploration of a novel environment. In contrast, deletion from indirect-pathway MSNs had no effect on any measure of behavior examined. Loss of 2-AG in direct-pathway MSNs also led to increased glutamatergic drive, which is consistent with a loss of retrograde feedback inhibition. Subregional DGLα deletion from the dorsal striatum produced deficits in social interaction, whereas deletion from the ventral striatum resulted in repetitive grooming. CONCLUSIONS: These data suggest a role for 2-AG deficiency in social deficits and repetitive behavior, and they demonstrate a key role for 2-AG in regulating striatal direct-pathway MSNs.


Assuntos
Ácidos Araquidônicos/metabolismo , Corpo Estriado/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/metabolismo , Comportamento Social , Animais , Ácidos Araquidônicos/deficiência , Transtorno do Espectro Autista/metabolismo , Endocanabinoides/deficiência , Glicerídeos/deficiência , Camundongos , Camundongos Knockout , Transdução de Sinais , Transmissão Sináptica
4.
Science ; 352(6285): 555-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26989199

RESUMO

Steroids regulate cell proliferation, tissue development, and cell signaling via two pathways: a nuclear receptor mechanism and genome-independent signaling. Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the latter pathway, the key components of which remain unknown. Here, we present characterization of the human sperm progesterone receptor that is conveyed by the orphan enzyme α/ß hydrolase domain-containing protein 2 (ABHD2). We show that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as a progesterone-dependent lipid hydrolase by depleting the endocannabinoid 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm calcium channel (CatSper), and its removal leads to calcium influx via CatSper and ensures sperm activation. This study reveals that progesterone-activated endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone exerts its genome-independent action and primes sperm for fertilization.


Assuntos
Ácidos Araquidônicos/deficiência , Endocanabinoides/deficiência , Glicerídeos/deficiência , Hidrolases/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Adulto , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Membrana Celular/metabolismo , Fertilização , Humanos , Hidrolases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Progesterona/farmacologia , Ratos , Ratos Wistar , Receptores de Progesterona/genética , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...