Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(17): 10242-10258, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973457

RESUMO

Recently, it was discovered that exposure to mainstream antibiotics activate numerous bacterial riboregulators that control antibiotic resistance genes including metabolite-binding riboswitches and other transcription attenuators. However, the effects of commonly used antibiotics, many of which exhibit RNA-binding properties, on the widespread T-box riboswitches, remain unknown. In Staphylococcus aureus, a species-specific glyS T-box controls the supply of glycine for both ribosomal translation and cell wall synthesis, making it a promising target for next-generation antimicrobials. Here, we report that specific protein synthesis inhibitors could either significantly increase T-box-mediated transcription antitermination, while other compounds could suppress it, both in vitro and in vivo. In-line probing of the full-length T-box combined with molecular modelling and docking analyses suggest that the antibiotics that promote transcription antitermination stabilize the T-box:tRNA complex through binding specific positions on stem I and the Staphylococcal-specific stem Sa. By contrast, the antibiotics that attenuate T-box transcription bind to other positions on stem I and do not interact with stem Sa. Taken together, our results reveal that the transcription of essential genes controlled by T-box riboswitches can be directly modulated by commonly used protein synthesis inhibitors. These findings accentuate the regulatory complexities of bacterial response to antimicrobials that involve multiple riboregulators.


Assuntos
Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , RNA Bacteriano/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Riboswitch/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Glicina/metabolismo , Glicina-tRNA Ligase/biossíntese , Glicina-tRNA Ligase/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Filogenia , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência de Glicina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas com Domínio T/metabolismo
2.
Hum Mol Genet ; 24(15): 4397-406, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25972375

RESUMO

Charcot-Marie-Tooth (CMT) neuropathies are collectively the most common hereditary neurological condition and a major health burden for society. Dominant mutations in the gene GARS, encoding the ubiquitous enzyme, glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and lead to CMT disease type 2D. This genetic disorder exemplifies a recurring motif in neurodegeneration, whereby mutations in essential, widely expressed genes have selective deleterious consequences for the nervous system. Here, using novel Drosophila models, we show a potential solution to this phenomenon. Ubiquitous expression of mutant GlyRS leads to motor deficits, progressive neuromuscular junction (NMJ) denervation and pre-synaptic build-up of mutant GlyRS. Intriguingly, neuronal toxicity is, at least in part, non-cell autonomous, as expression of mutant GlyRS in mesoderm or muscle alone results in similar pathology. This mutant GlyRS toxic gain-of-function, which is WHEP domain-dependent, coincides with abnormal NMJ assembly, leading to synaptic degeneration, and, ultimately, reduced viability. Our findings suggest that mutant GlyRS gains access to ectopic sub-compartments of the motor neuron, providing a possible explanation for the selective neuropathology caused by mutations in a widely expressed gene.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Glicina-tRNA Ligase/genética , Degeneração Neural/genética , Junção Neuromuscular/genética , Animais , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Glicina-tRNA Ligase/biossíntese , Humanos , Corpos Pedunculados/patologia , Mutação , Degeneração Neural/patologia , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/patologia , Bulbo Olfatório/patologia , Nervos Periféricos/patologia
3.
PLoS One ; 7(3): e33363, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438917

RESUMO

Aminoacyl-tRNA synthetases are a large family of housekeeping enzymes that are pivotal in protein translation and other vital cellular processes. Saccharomyces cerevisiae possesses two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 encodes both cytoplasmic and mitochondrial activities, while GRS2 is essentially silent and dispensable under normal conditions. We herein present evidence that expression of GRS2 was drastically induced upon heat shock, ethanol or hydrogen peroxide addition, and high pH, while expression of GRS1 was somewhat repressed under those conditions. In addition, GlyRS2 (the enzyme encoded by GRS2) had a higher protein stability and a lower K(M) value for yeast tRNA(Gly) under heat shock conditions than under normal conditions. Moreover, GRS2 rescued the growth defect of a GRS1 knockout strain when highly expressed by a strong promoter at 37 °C, but not at the optimal temperature of 30 °C. These results suggest that GRS2 is actually an inducible gene that may function to rescue the activity of GRS1 under stress conditions.


Assuntos
Glicina-tRNA Ligase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Indução Enzimática , Estabilidade Enzimática , Técnicas de Inativação de Genes , Genes Fúngicos , Glicina-tRNA Ligase/biossíntese , Glicina-tRNA Ligase/química , Cinética , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Leveduras/enzimologia , Leveduras/genética
4.
Gene ; 209(1-2): 45-50, 1998 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-9524218

RESUMO

Glycine tRNA synthetase (glyRS) catalyses the addition of the amino acid glycine to its cognate tRNA molecules. In the silk moth worm Bombyx mori, this gene is subject to complex transcriptional regulation because of the predominance of glycine in silk. In vertebrates, glycine is a major constituent of collagen but there have been no studies of glyRS regulation. In this study we have isolated and mapped a genomic clone containing the 5'-end of glyRS. Primer extension studies identified only one transcriptional start point (TSP) in three different cell lines. Expression of the transcript identified may be regulated translationally because it contains five potential initiation codons, three of which are in good context for initiation. The most 3' of the potential initiation codons has previously been predicted to be the initiating codon for cytoplasmic glyRS. Two of the upstream codons are in-frame with this codon, and both are predicted to extend the N-terminus of glyRS to include a mitochondrial targeting sequence. Sequencing of genomic DNA surrounding the TSP showed features common to the promoters of housekeeping genes, as well as a canonical TATA box at the unusual position of +9. Surprisingly, promoter activity in vitro was not specified by a 1.9 kb genomic fragment containing the TSP and TATA box, but by a contiguous 0.4 kb fragment immediately downstream. These studies suggest that the transcription of glyRS from a single start point requires downstream promoter elements.


Assuntos
Glicina-tRNA Ligase/biossíntese , Glicina-tRNA Ligase/genética , Regiões Promotoras Genéticas , Animais , Sequência de Bases , Bombyx/genética , Linhagem Celular , Mapeamento Cromossômico , Primers do DNA , Biblioteca Genômica , Mesângio Glomerular/enzimologia , Células HeLa , Humanos , Pulmão , Dados de Sequência Molecular , Fases de Leitura Aberta , TATA Box , Transcrição Gênica
5.
Eur J Biochem ; 251(3): 744-57, 1998 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9490048

RESUMO

The tRNA glycylation system is amongst the most complex aminoacylation systems since neither the oligomeric structure of the enzymes nor the discriminator base in tRNAs are conserved in the phylae. To understand better this structural diversity and its functional consequences, the prokaryotic glycylation system from Thermus thermophilus, an extreme thermophile, was investigated and its structural and functional inter-relations with those of other origins analyzed. Alignments of the protein sequence of the dimeric thermophilic glycyl-tRNA synthetase (Gly-tRNA synthetase) derived from its gene with sequences of other dimeric Gly-tRNA synthetases revealed an atypical character of motif 1 in all these class 2 synthetases. Interestingly, the sequence of the prokaryotic thermophilic enzyme resembles eukaryotic and archaebacterial Gly-tRNA synthetases, which are all dimeric, and diverges drastically from the tetrameric enzymes from other prokaryotes. Cross aminoacylations with tRNAs and synthetases of different origins provided information about functional interrelations between the glycylation systems. Efficient glycylations involving partners from T. thermophilus and Escherichia coli showed conservation of the recognition process in prokaryotes despite strong structural variations of the synthetases. However, Gly-tRNA synthetase from T. thermophilus acylates eukaryotic tRNA(Gly) while the charging ability of the E. coli enzyme is restricted to prokaryotic tRNA(Gly). A similar behaviour is found in eukaryotic systems where the restricted species specificity for tRNA glycylation of mammalian Gly-tRNA synthetase contrasts with the relaxed specificity of the yeast enzyme. The consensus sequence of the tRNAs charged by the various Gly-tRNA synthetases reveals conservation of only G1-C72 in the acceptor arm, C35 and C36 in the anticodon, and the (G10-Y25)-G45 triplet involved in tRNA folding. Conservation of these nucleotides indicates their key role in glycylation and suggests that they were part of the ancestral glycine identity set. These features are discussed in the context of the phylogenic connections between prokaryotes, eukaryotes, and archaebacteria, and of the particular place of T. thermophilus in this phylogeny.


Assuntos
Variação Genética , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/genética , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Sequência Consenso , Primers do DNA , Glicina-tRNA Ligase/biossíntese , Humanos , Mamíferos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Células Procarióticas , RNA de Transferência de Glicina/biossíntese , RNA de Transferência de Glicina/química , RNA de Transferência de Glicina/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Thermus thermophilus/genética
7.
EMBO J ; 14(16): 4050-5, 1995 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-7664744

RESUMO

RNA minihelices which reconstruct the 12 base pair acceptor-T psi C domains of transfer RNAs interact with their cognate tRNA synthetases. These substrates lack the anticodons of the genetic code and, therefore, cannot participate in steps of protein synthesis subsequent to aminoacylation. We report here that expression in Escherichia coli of either of two minihelices, each specific for a different amino acid, inhibited cell growth. Inhibition appears to be due to direct competition between the minihelix and its related tRNA for binding to their common synthetase. This competition, in turn, sharply lowers the pool of the specific charged tRNA for protein synthesis. Inhibition is relieved by single nucleotide changes which disrupt the minihelix-synthetase interaction. The results suggest that sequence-specific RNA minihelix substrates bind to cognate synthetases in vivo and can, in principle, act as cell growth regulators. Naturally occurring non-tRNA substrates for aminoacylation may serve a similar purpose.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Inibidores do Crescimento/química , Conformação de Ácido Nucleico , RNA de Transferência de Alanina/química , RNA de Transferência de Glicina/química , Alanina-tRNA Ligase/biossíntese , Anticódon , Sequência de Bases , Escherichia coli/genética , Glicina-tRNA Ligase/biossíntese , Inibidores do Crescimento/genética , Inibidores do Crescimento/fisiologia , Dados de Sequência Molecular , Mutação Puntual , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/fisiologia , Aminoacil-RNA de Transferência/biossíntese , RNA de Transferência de Glicina/genética , RNA de Transferência de Glicina/fisiologia , Análise de Sequência de RNA
8.
Nucleic Acids Res ; 23(8): 1307-10, 1995 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-7753621

RESUMO

The human glycine tRNA synthetase gene (GlyRS) has been cloned and sequenced. The 2462 bp cDNA for this gene contains a large open reading frame (ORF) encoding 685 amino acids with predicted M(r) = 77,507 Da. The protein sequence has approximately 60% identity with B. mori GlyRS and 45% identity with S. cerevisiae GlyRS and contains motifs 2 and 3 characteristic of Class II tRNA synthetases. A second ORF encoding 47 amino acids is found upstream of the large ORF. Translation of this ORF may precede the expression of GlyRS as a possible regulatory mechanism. The enzyme was expressed in E. coli as a fusion protein with a 13 kDa biotinylated tag with an apparent M(r) = 90 kDa. The fusion protein was immunoprecipitated from crude bacterial extract with human EJ serum, which contains autoantibodies directed against GlyRS, and with rabbit polyclonal serum raised against a synthetic peptide derived from the predicted amino acid sequence of human GlyRS. Bacterial extract containing the fusion protein catalyses the aminoacylation of bovine tRNA with [14C]-gly at 10-fold increased level above normal bacterial extract and confirms that the cDNA encodes human GlyRS.


Assuntos
Glicina-tRNA Ligase/genética , Acilação , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Glicina-tRNA Ligase/biossíntese , Glicina-tRNA Ligase/metabolismo , Humanos , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
9.
J Biomol Struct Dyn ; 1(1): 225-9, 1983 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-6086058

RESUMO

E. coli aminoacyl tRNA synthetases are typically comprised of a single type of polypeptide chain. Glycine tRNA synthetase is an exception, and is comprised of two different subunits. Previous work showed that glyS encodes both subunits in a tandem arrangement of coding regions which are in the same reading frame. Nine nucleotides separate the TAA stop of the first coding segment (alpha-subunit) from the ATG start of the second one (beta-subunit). A plasmid containing glyS was put into four different ochre suppressor strains. In three of them, significant quantities of an alpha-beta fusion protein were synthesized in maxicells, in genetic backgrounds which retained cellular proteases. This shows that the fusion protein is stable in vivo and suggests that Gly-tRNA synthetase is operationally a single polypeptide which is the ancestor of the two subunits.


Assuntos
Aminoacil-tRNA Sintetases/biossíntese , Glicina-tRNA Ligase/biossíntese , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/enzimologia , Escherichia coli/genética , Glicina-tRNA Ligase/genética , Dados de Sequência Molecular , Conformação Proteica , RNA Bacteriano/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
11.
J Bacteriol ; 129(2): 702-6, 1977 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-320192

RESUMO

The steady-state levels of a number of aminoacyl-transfer ribonucleic acid synthetases are known to be positively correlated with growth rate in Escherichia coli. To describe the regulation of these enzymes during a nutritional shift-up, use was made of the recent identification of polypeptide chains of several synthetases in whole cell lysates resolved by the O'Farrell two-dimensional gel system. A culture growing in acetate minimal medium was shifted to glucose-rich medium and pulse labeled with [3H]leucine and [3H]isoleucine for 30- or 6-s intervals during the 20 min after the shift. After mixing with a uniformly [35S]sulfate-labeled reference culture, the samples were subjected to two-dimensional gel electrophoresis. The 3H/35S ratio in the resolved synthetase polypeptides provided an accurate estimation of their transient rates of synthesis. Five aminoacyl-transfer ribonucleic acid synthetases (those for argnine, glycine, isoleucine, phenylalanine, and valine) exhibited an increase in formation within 30 to 90 s after the shift-up. The magnitude of the increases corresponded to the final steady-state values and were reached within 2 to 3 min. The addition to rifampin revealed that the increase in the differential rate of valyl-transfer ribonucleic acid synthetase formation was the result of increased messenger ribonucleic acid transcription and not of a relaxation of some translation restriction.


Assuntos
Aminoacil-tRNA Sintetases/biossíntese , Escherichia coli/enzimologia , Acetatos/metabolismo , Arginina-tRNA Ligase/biossíntese , Escherichia coli/metabolismo , Glucose/metabolismo , Glicina-tRNA Ligase/biossíntese , Isoleucina-tRNA Ligase/biossíntese , Biossíntese Peptídica , Fenilalanina-tRNA Ligase/biossíntese , Rifampina/farmacologia , Valina-tRNA Ligase/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA