Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Psychiatr Genet ; 33(4): 160-163, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222231

RESUMO

The myelin oligodendrocyte glycoprotein ( MOG ) gene plays an important role in myelination and has been implicated in the genetics of white matter changes in obsessive-compulsive disorder (OCD). We examined the association between variations of two microsatellite markers across MOG for association and total white matter volume as measured using volumetric MRI in 37 pediatric OCD patients 7-18 years. We compared white matter volumes between microsatellite allele groups using analysis of covariance with covariates of age, gender, and total intracranial volume. After controlling for multiple comparisons, a significant relationship was detected between MOG (TAAA)n and increased total white matter volume ( P  = 0.018-0.028). Although preliminary, our findings provide further support for the involvement of MOG in OCD.


Assuntos
Transtorno Obsessivo-Compulsivo , Substância Branca , Humanos , Encéfalo , Imageamento por Ressonância Magnética , Glicoproteína Mielina-Oligodendrócito/genética , Transtorno Obsessivo-Compulsivo/genética
2.
J Biol Chem ; 299(4): 103065, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841486

RESUMO

The peptide spanning residues 35 to 55 of the protein myelin oligodendrocyte glycoprotein (MOG) has been studied extensively in its role as a key autoantigen in the neuroinflammatory autoimmune disease multiple sclerosis. Rodents and nonhuman primate species immunized with this peptide develop a neuroinflammatory condition called experimental autoimmune encephalomyelitis, often used as a model for multiple sclerosis. Over the last decade, the role of citrullination of this antigen in the disease onset and progression has come under increased scrutiny. We recently reported on the ability of these citrullinated MOG35-55 peptides to aggregate in an amyloid-like fashion, suggesting a new potential pathogenic mechanism underlying this disease. The immunodominant region of MOG is highly conserved between species, with the only difference between the murine and human protein, a polymorphism on position 42, which is serine in mice and proline for humans. Here, we show that the biophysical and biochemical behavior we previously observed for citrullinated murine MOG35-55 is fundamentally different for human and mouse MOG35-55. The citrullinated human peptides do not show amyloid-like behavior under the conditions where the murine peptides do. Moreover, we tested the ability of these peptides to stimulate lymphocytes derived from MOG immunized marmoset monkeys. While the citrullinated murine peptides did not produce a proliferative response, one of the citrullinated human peptides did. We postulate that this unexpected difference is caused by disparate antigen processing. Taken together, our results suggest that further study on the role of citrullination in MOG-induced experimental autoimmune encephalomyelitis is necessary.


Assuntos
Citrulinação , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Glicoproteína Mielina-Oligodendrócito , Animais , Humanos , Camundongos , Amiloide , Proteínas Amiloidogênicas , Autoantígenos/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/induzido quimicamente , Camundongos Endogâmicos C57BL , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/química , Fragmentos de Peptídeos/química
3.
Front Immunol ; 13: 755900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185870

RESUMO

The key role of B cells in the pathophysiology of multiple sclerosis (MS) is supported by the presence of oligoclonal bands in the cerebrospinal fluid, by the association of meningeal ectopic B cell follicles with demyelination, axonal loss and reduction of astrocytes, as well as by the high efficacy of B lymphocyte depletion in controlling inflammatory parameters of MS. Here, we use a spontaneous model of experimental autoimmune encephalomyelitis (EAE) to study the clonality of the B cell response targeting myelin oligodendrocyte glycoprotein (MOG). In particular, 94% of SJL/j mice expressing an I-As: MOG92-106 specific transgenic T cell receptor (TCR1640) spontaneously develop a chronic paralytic EAE between the age of 60-500 days. The immune response is triggered by the microbiota in the gut-associated lymphoid tissue, while there is evidence that the maturation of the autoimmune demyelinating response might occur in the cervical lymph nodes owing to local brain drainage. Using MOG-protein-tetramers we tracked the autoantigen-specific B cells and localized their enrichment to the cervical lymph nodes and among the brain immune infiltrate. MOG-specific IgG1 antibodies were detected in the serum of diseased TCR1640 mice and proved pathogenic upon adoptive transfer into disease-prone recipients. The ontogeny of the MOG-specific humoral response preceded disease onset coherent with their contribution to EAE initiation. This humoral response was, however, not sufficient for disease induction as MOG-antibodies could be detected at the age of 69 days in a model with an average age of onset of 197 days. To assess the MOG-specific B cell repertoire we FACS-sorted MOG-tetramer binding cells and clonally expand them in vitro to sequence the paratopes of the IgG heavy chain and kappa light chains. Despite the fragility of clonally expanding MOG-tetramer binding effector B cells, our results indicate the selection of a common CDR-3 clonotype among the Igk light chains derived from both disease-free and diseased TCR1640 mice. Our study demonstrates the pre-clinical mobilization of the MOG-specific B cell response within the brain-draining cervical lymph nodes, and reiterates that MOG antibodies are a poor biomarker of disease onset and progression.


Assuntos
Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/genética
4.
J Immunol ; 207(6): 1513-1521, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400521

RESUMO

B cells have been implicated in the pathogenesis of multiple sclerosis, but the mechanisms that guide B cell activation in the periphery and subsequent migration to the CNS remain incompletely understood. We previously showed that systemic inflammation induces an accumulation of B cells in the spleen in a CCR6/CCL20-dependent manner. In this study, we evaluated the role of CCR6/CCL20 in the context of myelin oligodendrocyte glycoprotein (MOG) protein-induced (B cell-dependent) experimental autoimmune encephalomyelitis (EAE). We found that CCR6 is upregulated on murine B cells that migrate into the CNS during neuroinflammation. In addition, human B cells that migrate across CNS endothelium in vitro were found to be CCR6+, and we detected CCL20 production by activated CNS-derived human endothelial cells as well as a systemic increase in CCL20 protein during EAE. Although mice that lack CCR6 expression specifically on B cells exhibited an altered germinal center reaction in response to MOG protein immunization, CCR6-deficient B cells did not exhibit any competitive disadvantage in their migration to the CNS during EAE, and the clinical and pathological presentation of EAE induced by MOG protein was unaffected. These data, to our knowledge, provide new information on the role of B cell-intrinsic CCR6 expression in a B cell-dependent model of neuroinflammation.


Assuntos
Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Centro Germinativo/imunologia , Imunização/métodos , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Receptores CCR6/deficiência , Animais , Linfócitos B/metabolismo , Doadores de Sangue , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/imunologia , Movimento Celular/genética , Movimento Celular/imunologia , Células Cultivadas , Quimiocina CCL20/metabolismo , Encefalomielite Autoimune Experimental/induzido quimicamente , Células Endoteliais/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/genética , Receptores CCR6/genética , Proteínas Recombinantes/administração & dosagem
5.
Front Immunol ; 12: 668487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149706

RESUMO

There is a great interest in developing antigen-specific therapeutic approaches for the treatment of autoimmune diseases without compromising normal immune function. The key challenges are to control all antigen-specific lymphocyte populations that contribute to pathogenic inflammatory processes and to provide long-term protection from disease relapses. Here, we show that myelin oligodendrocyte glycoprotein (MOG)-specific tolerance can be established by ectopic expression of MOG in the immune organs. Using transgenic mice expressing MOG-specific CD4, CD8, and B cell receptors, we show that MOG expression in the bone marrow cells results in impaired development of MOG-specific lymphocytes. Ectopic MOG expression has also resulted in long-lasting protection from MOG-induced autoimmunity. This finding raises hope that transplantation of autoantigen-expressing bone marrow cells as a therapeutic strategy for specific autoantigen-driven autoimmune diseases.


Assuntos
Autoimunidade , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Encefalomielite Autoimune Experimental/prevenção & controle , Tolerância Imunológica , Glicoproteína Mielina-Oligodendrócito/metabolismo , Linfócitos T/metabolismo , Animais , Linfócitos B/imunologia , Medula Óssea/imunologia , Transplante de Medula Óssea , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Genes Codificadores dos Receptores de Linfócitos T , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos , Fenótipo , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T/imunologia
6.
Ann Clin Transl Neurol ; 8(7): 1502-1507, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991459

RESUMO

Improvements in assays for detecting serum antibodies against myelin oligodendrocyte glycoprotein (MOG) have led to the appreciation of MOG-antibody-associated disease (MOGAD) as a novel disorder. However, much remains unknown about its etiology. We performed human leukocyte antigen (HLA) analysis in 82 MOGAD patients of European ancestry in the UK population. No HLA class II associations were observed, thus questioning the mechanism of anti-MOG antibody generation. A weak protective association of HLA-C*03:04 was observed (OR = 0.26, 95% CI = 0.10-0.71, pc  = 0.013), suggesting a need for continued efforts to better understand MOGAD genetics and pathophysiology.


Assuntos
Autoanticorpos/sangue , Estudos de Associação Genética/métodos , Antígenos HLA/sangue , Glicoproteína Mielina-Oligodendrócito/sangue , Neuromielite Óptica/sangue , Neuromielite Óptica/epidemiologia , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Antígenos HLA/genética , Humanos , Masculino , Pessoa de Meia-Idade , Glicoproteína Mielina-Oligodendrócito/genética , Neuromielite Óptica/genética , Reino Unido/epidemiologia , Adulto Jovem
7.
Mol Biol Rep ; 48(2): 1055-1068, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33595783

RESUMO

Exact mechanisms of autoimmune disease development are still yet unknown. However, it is known that the development of autoimmune diseases is associated with defects in the immune system, namely, the violation of the bone marrow hematopoietic stem cells (HSCs) differentiation profiles. Different characteristics of autoimmune reaction development in experimental autoimmune encephalomyelitis (EAE) prone Th mice characterizing T-lymphocytes response were analyzed using standard approaches. Profiles of several HSCs differentiation of bone marrow (BFU-E, CFU-E, CFU-GM, CFU-GEMM, T- and B-lymphocytes) of Th male and female mice during spontaneous development of EAE were noticeably different. Patterns of total lymphocytes, B- and T-cells proliferation in several different organs (bone marrow, blood, spleen, thymus, and lymph nodes) were also remarkably different. In addition, there were in time noticeable differences in their changes for some organs of male and female mice. Characters of changes in the profiles of CD4 and CD8 cells proliferation in some organs not always coincide with those for total T lymphocytes. The changes in the differentiation profiles of HSCs and the level of lymphocytes proliferation in the bone marrow and other organs were associated with the increase in the concentration of antibodies against DNA, myelin basic protein, and myelin oligodendrocyte glycoprotein, and catalytic antibodies hydrolyzing these substrates. Despite some differences in changes in the analyzed parameters, in general, the spontaneous development of EAE in male and female mice occurs to some extent in a comparable way.


Assuntos
Anticorpos Catalíticos/imunologia , Diferenciação Celular/genética , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/imunologia , Linfócitos/imunologia , Animais , Anticorpos Catalíticos/genética , Células da Medula Óssea/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Ativação Linfocitária/genética , Contagem de Linfócitos , Camundongos , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Baço/imunologia
8.
Ann Clin Transl Neurol ; 8(2): 456-470, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33440071

RESUMO

OBJECTIVE: To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin-specific T cells in their central nervous system (CNS) and periphery. METHODS: Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non-JME conditions were analyzed for the presence of myelin-specific T cells and changes in interleukin 17 (IL-17) and interferon gamma (IFNγ) expression. RESULTS: Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T-cell responses were absent in JME peripheral blood, and in age- and sex-matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. INTERPRETATIONS: JME possesses an immune-mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma-herpesvirus infection.


Assuntos
Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Encefalomielite/diagnóstico por imagem , Encefalomielite/patologia , Bainha de Mielina/imunologia , Linfócitos T/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Desmielinizantes/virologia , Encefalomielite/virologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Feminino , Infecções por Herpesviridae/imunologia , Interferon gama/análise , Interleucina-17/análise , Macaca fuscata , Masculino , Doenças dos Macacos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/imunologia , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/imunologia , Bainha de Mielina/patologia , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Rhadinovirus/genética , Rhadinovirus/imunologia
9.
J Mol Neurosci ; 71(10): 2071-2084, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33492617

RESUMO

Chronic exposure to stress disturbs the homeostasis of the brain, thus, deleteriously affecting the neurological circuits. In literature, there are investigations about the stress-related alterations in behavioral response and adult neurogenesis; however, an effective combating strategy to evade stress is still at stake. Hence, the present study is designed to investigate the effect of an enriched environment in alleviating the anxiety/depressive-like behavioral response and enhancing the adult neurogenesis in the hippocampal region of rats exposed to chronic immobilization stress. The rats were exposed to chronic immobilization stress (IS) for 4 h/day followed by the enriched environment (EE) for 2 h/day for 28 days, and finally, the hippocampal region was dissected out after the behavioral analyses. IS group showed increased behavioral despair to tail suspension test, decrement in the activity for light/dark box test, and less grooming activity towards splash test. In contrast, IS + EE rats exhibited a decrease in the activity of tail suspension test and an increase in the behavioral response to light/dark box test and splash test. The in vitro assessment of primary cultures of neurospheres from the IS group resulted in decreased levels of proliferation in the cell number and metabolic activity of both MTT assay and lactate levels. IS + EE group revealed an increase in the growth curve of neurospheres and higher metabolic activities of MTT and lactate. The IS cultures had reduced neurite length, while the neurite outgrowths were increased in IS + EE group. The IS group showed significant reduction in the protein and mRNA levels of nestin, GFAP, CD11b, MOG, and synaptophysin, whereas the IS + EE cultures exhibited significant increase in the levels of these stem cell markers. Our data highlight the positive impact of EE against stress-related behavioral changes in rats exposed to chronic immobilization stress perhaps by interfering with the differentiation of neurospheres and neurogenesis.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal , Depressão/fisiopatologia , Meio Ambiente , Hipocampo/metabolismo , Neurogênese , Animais , Ansiedade/etiologia , Ansiedade/terapia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Depressão/etiologia , Depressão/terapia , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Elevação dos Membros Posteriores/efeitos adversos , Hipocampo/citologia , Hipocampo/fisiopatologia , Masculino , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Nestina/genética , Nestina/metabolismo , Psicoterapia , Ratos , Ratos Wistar , Sinaptofisina/genética , Sinaptofisina/metabolismo
11.
J Biomol Struct Dyn ; 39(7): 2526-2542, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32242486

RESUMO

The main pathologic hallmark of multiple sclerosis is a demyelinating plaque that contains a prominent immunologic response dominated by T cells of the immune system. PLP (proteolipid protein), MPB (myelin basic protein), and Myelin oligodendrocyte glycoprotein (MOG) proteins are important autoantigens for the demyelinating of CNS in multiple sclerosis. There is good evidence indicating that T CD8+ cells and MHC class I molecules play an important role in this disease. The HLA-A*31:01 allele of MHC class I is a member of HLA-A3 superfamily and there is no clear report concerning the relationship of this allele with MS. Feeling this gap, we studied the possible association of the HLA-A*31:01 with MS by prediction of neuroantigenic epitopes of human MBP, PLP, and MOG proteins of myelin sheath using in silico methods. PLP did not show any neuroantigenic epitope, but the two epitopes of MBP and seven epitopes of MOG for HLA-A*31:01 were determined via bioinformatics servers. In silico study of the nine epitope showed that MOG195-204 (LIICYNWLHR) peptide of the membrane-associated/cytoplasmic part of human MOG has suitable binding affinity to the HLA-A*31:01 allele as a potential neuroantigenic epitope. Further investigations of this peptide revealed that the binding of C-terminal residue of this peptide has a more significant effect on binding to this allele than the N-terminal part of the peptide. Altogether, this combination of "LIICYNWLHR/A*31:01 allele "may play an important role in MS pathogenesis and this complex is suggested for further studies such as T cell receptor.Communicated by Ramaswamy H. Sarma.


Assuntos
Antígenos HLA-A/genética , Esclerose Múltipla , Alelos , Simulação por Computador , Proteínas de Ligação a DNA/genética , Epitopos de Linfócito T/genética , Humanos , Esclerose Múltipla/genética , Proteína Básica da Mielina/genética , Glicoproteína Associada a Mielina/genética , Glicoproteína Mielina-Oligodendrócito/genética , Fatores de Transcrição/genética
12.
Acta Neuropathol ; 141(1): 67-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242149

RESUMO

Aim of our study was to identify the target auto-antigen in the central nervous system recognized by the immune system of a unique patient, who died more than 60 years ago from a disease with pathological changes closely resembling multiple sclerosis (MS), following a misguided immunization with lyophilized calf brain tissue. Total mRNA was isolated from formaldehyde fixed and paraffin embedded archival brain tissue containing chronic active inflammatory demyelinating lesions with inflammatory infiltrates rich in B-lymphocytes and plasma cells. Analysis of the transcriptome by next generation sequencing and reconstruction of the dominant antibody by bioinformatic tools revealed the presence of one strongly expanded B-cell clone, producing an autoantibody against a conformational epitope of myelin oligodendrocytes glycoprotein (MOG), similar to that recognized by the well characterized monoclonal anti-MOG antibody 8-18C5. The reconstructed antibody induced demyelination after systemic or intrathecal injection into animals with T-cell mediated encephalomyelitis. Our study suggests that immunization with bovine brain tissue in humans may-in a small subset of patients-induce a disease with an intermediate clinical and pathological presentation between MS and MOG-antibody associated inflammatory demyelinating disease (MOGAD).


Assuntos
Alergia e Imunologia , Arqueologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Encefalomielite/imunologia , Encefalomielite/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Neurologia , Adulto , Animais , Doenças Autoimunes/genética , Linfócitos B/imunologia , Biologia Computacional , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/imunologia , Encefalomielite/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Esclerose Múltipla/genética , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Inclusão em Parafina , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Fixação de Tecidos , Transcriptoma
13.
Front Immunol ; 11: 2165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072080

RESUMO

Recent genome-wide association studies have identified over 230 genetic risk loci for multiple sclerosis. Current experimental autoimmune encephalomyelitis (EAE) models requiring active induction of disease may not be optimally suited for the characterization of the function of these genes. We have thus used gene expression profiling to study whether spontaneous opticospinal EAE (OSE) or MOG-induced EAE mirrors the genetic contribution to the pathogenesis of multiple sclerosis more faithfully. To this end, we compared gene expression in OSE and MOG EAE models and analyzed the relationship of both models to human multiple sclerosis risk genes and T helper cell biology. We observed stronger gene expression changes and an involvement of more pathways of the adaptive immune system in OSE than MOG EAE. Furthermore, we demonstrated a more extensive enrichment of human MS risk genes among transcripts differentially expressed in OSE than was the case for MOG EAE. Transcripts differentially expressed only in diseased OSE mice but not in MOG EAE were significantly enriched for T helper cell-specific transcripts. These transcripts are part of immune-regulatory pathways. The activation of the adaptive immune system and the enrichment of both human multiple sclerosis risk genes and T helper cell-specific transcripts were also observed in OSE mice showing only mild disease signs. These expression changes may, therefore, be indicative of processes at disease onset. In summary, more human multiple sclerosis risk genes were differentially expressed in OSE than was observed for MOG EAE, especially in TH1 cells. When studying the functional role of multiple sclerosis risk genes and pathways during disease onset and their interactions with the environment, spontaneous OSE may thus show advantages over MOG-induced EAE.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Células Th1/fisiologia , Imunidade Adaptativa/genética , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/genética , Humanos , Imunomodulação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/genética , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Risco , Transcriptoma
15.
J Mol Neurosci ; 70(7): 1088-1099, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32314194

RESUMO

Adipose-derived stem cells (ASCs) have neuroprotective effects, and their repair ability has been approved in neurodegenerative studies. Pregnenolone as a neurosteroid plays significant roles in neurogenesis. We aimed to consider the effect of ADSCs and pregnenolone injection on the multiple sclerosis (MS) model created by cuprizone. Male Wistar rats (n = 36) were fed with an ordinary diet or a diet with cuprizone (0.6%) for 3 weeks. H-ADSCs were taken from patients with lipoaspirate surgery. The rats were divided into six groups (n = 6): healthy, MS, sham, pregnenolone injection, ADSCs injection, pregnenolone and ADSCs injection. Behavioral test, histological examination and TEM were conducted. The specific markers for myelin and cell differentiation were assessed using immunohistochemistry staining. Additionally, the measure of MBP and MOG gene expression and the amount of related proteins were determined using real-time RT-PCR and ELISA techniques, respectively. Histologic results showed that induced demyelination in corpus callosum fibers. TEM revealed an increased thickness of myelin in fibers in the treated groups (P < 0.05). Injection of hADSC and pregnenolone significantly increased the expression levels of MBP and MOG (P < 0.001). The mean percentage of MOG and MBP markers were significantly increased in the treated groups compared to MS and sham groups (P < 0.05). Moreover, the OD level of MBP and MOG proteins showed that their values in the ADSCs/pregnenolone group were close to those of the control group without a significant difference. Our data indicated the remyelination potency and cell differentiation can improve with ADSCs and pregnenolone treatments in the multiple sclerosis model which created by cuprizone in rats.


Assuntos
Corpo Caloso/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Esclerose Múltipla/terapia , Bainha de Mielina/metabolismo , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Corpo Caloso/patologia , Cuprizona/toxicidade , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Esclerose Múltipla/etiologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Pregnenolona/administração & dosagem , Pregnenolona/uso terapêutico , Ratos , Ratos Wistar
16.
Curr Gene Ther ; 19(6): 376-385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32141417

RESUMO

Multiple Sclerosis (MS) is the most common autoimmune demyelinating disease of the Central Nervous System (CNS). It is a multifactorial disease which develops in an immune-mediated way under the influences of both genetic and environmental factors. Demyelination is observed in the brain and spinal cord leading to neuro-axonal damage in patients with MS. Due to the infiltration of different immune cells such as T-cells, B-cells, monocytes and macrophages, focal lesions are observed in MS. Currently available medications treating MS are mainly based on two strategies; i) to ease specific symptoms or ii) to reduce disease progression. However, these medications tend to induce different adverse effects with limited therapeutic efficacy due to the protective function of the blood-brain barrier. Therefore, researchers have been working for the last four decades to discover better solutions by introducing gene therapy approaches in treating MS generally by following three strategies, i) prevention of specific symptoms, ii) halt or reverse disease progression and iii) heal CNS damage by promoting remyelination and axonal repair. In last two decades, there have been some remarkable successes of gene therapy approaches on the experimental mice model of MS - experimental autoimmune encephalomyelitis (EAE) which suggests that it is not far that the gene therapy approaches would start in human subjects ensuring the highest levels of safety and efficacy. In this review, we summarised the gene therapy approaches attempted in different animal models towards treating MS.


Assuntos
Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/terapia , Terapia Genética , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo
17.
J Neuroinflammation ; 17(1): 68, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075650

RESUMO

BACKGROUND: CD8+ T lymphocytes are critical mediators of neuroinflammatory diseases. Understanding the mechanisms that govern the function of this T cell population is crucial to better understanding central nervous system autoimmune disease pathology. We recently identified a novel population of highly cytotoxic c-Met-expressing CD8+ T lymphocytes and found that hepatocyte growth factor (HGF) limits effective murine cytotoxic T cell responses in cancer models. Here, we examined the role of c-Met-expressing CD8+ T cells by using a MOG35-55 T cell-mediated EAE model. METHODS: Mice were subcutaneously immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55 in complete Freund's adjuvant (CFA). Peripheral and CNS inflammation was evaluated at peak disease and chronic phase, and c-Met expression by CD8 was evaluated by flow cytometry and immunofluorescence. Molecular, cellular, and killing function analysis were performed by real-time PCR, ELISA, flow cytometry, and killing assay. RESULTS: In the present study, we observed that a fraction of murine effector CD8+ T cells expressed c-Met receptor (c-Met+CD8+) in an experimental autoimmune encephalitis (EAE) model. Phenotypic and functional analysis of c-Met+CD8+ T cells revealed that they recognize the encephalitogenic epitope myelin oligodendrocyte glycoprotein37-50. We demonstrated that this T cell population produces higher levels of interferon-γ and granzyme B ex vivo and that HGF directly restrains the cytolytic function of c-Met+CD8+ T cells in cell-mediated cytotoxicity reactions CONCLUSIONS: Altogether, our findings suggest that the HGF/c-Met pathway could be exploited to modulate CD8+ T cell-mediated neuroinflammation.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Receptores Proteína Tirosina Quinases/biossíntese , Sequência de Aminoácidos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/genética , Feminino , Adjuvante de Freund/toxicidade , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/toxicidade , Receptores Proteína Tirosina Quinases/genética
18.
Immunol Lett ; 217: 15-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689443

RESUMO

The aetiology of multiple sclerosis (MS) is as yet poorly understood. Multiple mechanisms in different disease stages are responsible for immunopathology in MS. HLA Class II DR2b (DRB1*1501 ß, DRA1*0101 α) is the strongest genetic risk factor for MS. Remnants of ancient retroviruses in the human genome, termed human endogenous retroviruses (HERV), and Epstein-Barr virus (EBV) infection are also associated with MS. In silico analyses of human endogenous retroviral envelope (HERV env) proteins and three myelin proteins that are principal targets of an autoimmune response in MS showed sequence similarities between potential TH epitopes within pairs of viral and myelin peptides predicted to bind HLA DR2b. This led to the proposal that such molecular mimicry may potentially trigger MS. HLA DR2b binding characteristics of previously identified peptides from the three myelin proteins and HERV env proteins as well as additional in silico predicted peptides from other encephalitogenic brain proteins and EBV proteins were studied to further investigate molecular mimicry. Peptides containing potential TH epitopes from the myelin oligodendrocyte glycoprotein and HERV env previously predicted to bind HLA DR2b as well as other pertinent potential HLA DR2b-restricted TH epitopes were confirmed to bind HLA DR2b molecules. Molecular modelling of HLA DR2b in complex with high affinity peptides derived from MOG and HERV env proteins showed that their binding could occur in a similar manner to a HLA DR2b-binding peptide containing a known TH epitope. A structurally related pair of peptides predicted to bind HLA DR2b from the EBV protein EBNA1 and ß synuclein, a brain protein implicated in MS, were also shown to similarly bind HLA DR2b. The findings justify investigating CD4+ T cell responses to the identified peptides.


Assuntos
Retrovirus Endógenos/química , Produtos do Gene env/química , Cadeias beta de HLA-DR/química , Herpesvirus Humano 4/química , Esclerose Múltipla/genética , Proteína Básica da Mielina/química , Glicoproteína Mielina-Oligodendrócito/química , beta-Sinucleína/química , Sequência de Aminoácidos/genética , Retrovirus Endógenos/genética , Epitopos/química , Produtos do Gene env/genética , Cadeias beta de HLA-DR/genética , Herpesvirus Humano 4/genética , Humanos , Modelos Moleculares , Mimetismo Molecular , Esclerose Múltipla/etiologia , Esclerose Múltipla/imunologia , Proteína Básica da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/genética , Ligação Proteica , Fatores de Risco , Linfócitos T/química , Linfócitos T/imunologia , beta-Sinucleína/genética , beta-Sinucleína/metabolismo
19.
Int J Mol Sci ; 20(22)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31752329

RESUMO

The detection of IgG aquaporin-4 antibodies in the serum of patients with Neuromyelitis optica (NMO) has dramatically improved the diagnosis of this disease and its distinction from multiple sclerosis. Recently, a group of patients have been described who have an NMO spectrum disorder (NMOsd) and who are seronegative for AQP4 antibodies but positive for IgG aquaporin-1 (AQP1) or myelin oligodendrocyte glycoprotein (MOG) antibodies. The purpose of this study was to determine whether AQP1 and MOG could be considered new biomarkers of this disease; and if point mutations in the gDNA of AQP4, AQP1 and MOG genes could be associated with the etiology of NMOsd. We evaluated the diagnostic capability of ELISA and cell-based assays (CBA), and analyzed their reliability, specificity, and sensitivity in detecting antibodies against these three proteins. The results showed that both assays can recognize these antigen proteins under appropriate conditions, but only anti-AQP4 antibodies, and not AQP1 or MOG, appears to be a clear biomarker for NMOsd. CBA is the best method for detecting these antibodies; and serum levels of AQP4 antibodies do not correlate with the progression of this disease. So far, the sequencing analysis has not revealed a genetic basis for the etiology of NMOsd, but a more extensive analysis is required before definitive conclusions can be drawn.


Assuntos
Anticorpos/sangue , Aquaporina 1/genética , Aquaporina 4/genética , Glicoproteína Mielina-Oligodendrócito/genética , Neuromielite Óptica/sangue , Neuromielite Óptica/genética , Mutação Puntual/genética , Adulto , Biomarcadores/sangue , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
J Autoimmun ; 102: 38-49, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31054941

RESUMO

Autoreactive CD4+ T-cells are believed to be a main driver of multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG) is considered an autoantigen, yet doubted in recent years. The reason is in part due to low frequency and titers of MOG autoantibodies and the challenge to detect MOG-specific T-cells. In this study we aimed to analyze T-cell reactivity and frequency utilizing a novel method for detection of antigen-specific T-cells with bead-bound MOG as stimulant. Peripheral blood mononuclear cells (PBMCs) from natalizumab treated persons with MS (n = 52) and healthy controls (HCs) (n = 24) were analyzed by IFNγ/IL-22/IL-17A FluoroSpot. A higher number of IFNγ (P = 0.001), IL-22 (P = 0.003), IL-17A (P < 0.0001) as well as double and triple cytokine producing MOG-specific T-cells were detected in persons with MS compared to HCs. Of the patients, 46.2-59.6% displayed MOG-reactivity. Depletion of CD4+ T-cells or monocytes or blocking HLA-DR completely eliminated the MOG specific response. Anti-MOG antibodies did not correlate with T-cell MOG-responses. In conclusion, we present a sensitive method to detect circulating autoreactive CD4+ T-cells producing IFNγ, IL-22 or IL-17A using MOG as a model antigen. Further, we demonstrate that MOG-specific T-cells are present in approximately half of persons with MS.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interferon gama/biossíntese , Interleucina-17/biossíntese , Interleucinas/biossíntese , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Adolescente , Adulto , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoantígenos/imunologia , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Interferon gama/imunologia , Interleucina-17/imunologia , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Glicoproteína Mielina-Oligodendrócito/genética , Natalizumab/uso terapêutico , Adulto Jovem , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...