Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
J Neuroinflammation ; 21(1): 144, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822334

RESUMO

Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-ß or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-ß and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-ß-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-ß. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.


Assuntos
Antígeno CD11b , Encefalomielite Autoimune Experimental , Interferon gama , Camundongos Endogâmicos C57BL , Células Mieloides , Baço , Animais , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Camundongos , Interferon gama/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Baço/imunologia , Antígeno CD11b/metabolismo , Feminino , Glicoproteína Mielina-Oligodendrócito/toxicidade , Glicoproteína Mielina-Oligodendrócito/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Fatores de Transcrição Forkhead/metabolismo , Modelos Animais de Doenças
2.
CNS Neurosci Ther ; 30(5): e14736, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739106

RESUMO

AIMS: Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease. Microglia are reportedly involved in the pathogenesis of MS. However, the key molecules that control the inflammatory activity of microglia in MS have not been identified. METHODS: Experimental autoimmune encephalomyelitis (EAE) mice were randomized into CD22 blockade and control groups. The expression levels of microglial CD22 were measured by flow cytometry, qRT-PCR, and immunofluorescence. The effects of CD22 blockade were examined via in vitro and in vivo studies. RESULTS: We detected increased expression of microglial CD22 in EAE mice. In addition, an in vitro study revealed that lipopolysaccharide upregulated the expression of CD22 in microglia and that CD22 blockade modulated microglial polarization. Moreover, an in vivo study demonstrated that CD22 blockade aggravated EAE in mice and promoted microglial M1 polarization. CONCLUSION: Collectively, our study indicates that CD22 may be protective against EAE and may play a critical role in the maintenance of immune homeostasis in EAE mice.


Assuntos
Encefalomielite Autoimune Experimental , Microglia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Animais , Feminino , Camundongos , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/fisiologia , Células Cultivadas , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidade , Glicoproteína Mielina-Oligodendrócito/imunologia
3.
J Neuroimmunol ; 391: 578351, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703720

RESUMO

Myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) is a demyelinating central nervous system disorder. We aimed to uncover immune pathways altered in MOGAD to predict disease progression. Using nanostring nCounter technology, we analyzed immune gene expression in PBMCs from MOGAD patients and compare it with healthy controls (HCs). We found 35 genes that distinguished MOGAD patients and HCs. We then validated those results in a larger cohort including MS and NMOSD patients. Expressions of HLA-DRA was significantly lower in MOGAD patients. This reduction in HLA-DRA, correlated with a monophasic disease course and greater brain volume, enhancing our ability to predict MOGAD progression.


Assuntos
Glicoproteína Mielina-Oligodendrócito , Humanos , Masculino , Feminino , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Adulto , Pessoa de Meia-Idade , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/genética , Autoanticorpos/sangue , Autoanticorpos/imunologia , Estudos de Coortes , Esclerose Múltipla/imunologia
4.
J Pain ; 25(1): 73-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37524220

RESUMO

Myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) is a murine model for multiple sclerosis. This model is characterized by chronic and progressive demyelination, leading to impairment of motor function and paralysis. While the outcomes of the disease, including impaired motor function and immunological changes, are well-characterized, little is known about the impact of EAE on the electrophysiology of the motor and sensory systems. In this study, we assessed evoked potentials as a quantitative marker for in vivo monitoring of nervous system damage. Motor-evoked potentials (MEPs) and sensory-evoked potentials (SEPs) were first standardized in naïve C57BL mice and studied thoroughly in EAE mice. The duration of MEPs and the number of connotative potentials increased significantly alongside an increase in temporal SEP amplitudes. Moreover, a new SEP wave was identified in naïve animals, which significantly increased in MOG-induced EAE animals with no or mild symptoms (clinical score 0-2, 0-5 scale). This wave occurred ∼25 milliseconds poststimulation, thus named p25. P25 was correlated with increased vocalization and was also reduced in amplitude following treatment with morphine. As the EAE score progressed (clinical score 3-4, 0-5 scale), the amplitude of MEPs and SEPs decreased drastically. Our results demonstrate that desynchronized neural motor activity, along with hypersensitivity in the early stages of EAE, leads to a complete loss of motor and sensory functions in the late stages of the disease. The findings also suggest an increase in p25 amplitude before motor deficits appear, indicating SEP as a predictive marker for disease progression. PERSPECTIVE: This article assesses p25, a new sensory electrophysiology wave that correlates with pain-related behavior in MOG-induced EAE mice and appears prior to the clinical symptoms. Motor electrophysiology correlates with traditional motor behavior scoring and histology.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
J Neuroinflammation ; 20(1): 291, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057803

RESUMO

Current effective therapies for autoimmune diseases rely on systemic immunomodulation that broadly affects all T and/or B cell responses. An ideal therapeutic approach would combine autoantigen-specific targeting of both T and B cell effector functions, including efficient removal of pathogenic autoantibodies. Albeit multiple strategies to induce T cell tolerance in an autoantigen-specific manner have been proposed, therapeutic removal of autoantibodies remains a significant challenge. Here, we devised an approach to target both autoantigen-specific T cells and autoantibodies by producing a central nervous system (CNS) autoantigen myelin oligodendrocyte glycoprotein (MOG)-Fc fusion protein. We demonstrate that MOG-Fc fusion protein has significantly higher bioavailability than monomeric MOG and is efficient in clearing anti-MOG autoantibodies from circulation. We also show that MOG-Fc promotes T cell tolerance and protects mice from MOG-induced autoimmune encephalomyelitis. This multipronged targeting approach may be therapeutically advantageous in the treatment of autoimmunity.


Assuntos
Autoanticorpos , Encefalomielite Autoimune Experimental , Camundongos , Animais , Linfócitos T , Glicoproteína Associada a Mielina , Encefalomielite Autoimune Experimental/patologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Autoantígenos
6.
J Neuroinflammation ; 20(1): 183, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37533053

RESUMO

BACKGROUND: Protein arginine methyltransferase 5 (Prmt5) is the main type II methyltransferase, catalyzes protein arginine residue symmetric dimethylation, and modulates normal cellular physiology and disease progression. Prmt5 inhibition or deletion in CD4+ T cells has been reported to ameliorate experimental autoimmune encephalomyelitis (EAE), but the detailed molecular mechanisms have not yet been elucidated. METHODS: EAE was induced by administration of myelin oligodendrocyte glycoprotein (MOG35-55) in T cells Prmt5 conditional knockout (CD4-cre-Prmt5fl/fl, Prmt5cko) and Prmt5fl/fl (WT) mice. Flow cytometry, single-cell RNA sequencing, ATAC sequencing and chromatin immunoprecipitation assay (ChIP) approaches were used to explore the detail mechanisms. RESULTS: We find that Prmt5cko mice are resistant to EAE; infiltrating inflammatory CD4+ T cells in the central nervous system (CNS) are greatly reduced. However, in Prmt5cko mice, T cells in the spleen show much more proliferation and activation properties, the total number of CD4+ T cells in the spleen is not reduced, and the percentage of Rora+ CD4+ T cells is elevated. Also, CD4+ T cells express lower levels of S1pr1 and Klf2 than WT mice, which may influence pathogenic CD4+ T-cell egress from the spleen and migration to the CNS. Moreover, the single-cell ATAC sequence and ChIP assay reveal that the transcription factor Klf2 is enriched at the S1pr1 promoter and that Klf2 motif activity is reduced in Prmt5cko mice. CONCLUSIONS: Our study delineates the undiscovered role of Prmt5 in T-cell biology in which Prmt5 may inhibit Klf2-S1pr1 pathway to ameliorate EAE disease. Controlling T-cell Prmt5 expression may be helpful for the treatment of autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Proteína-Arginina N-Metiltransferases , Animais , Camundongos , Linfócitos T CD4-Positivos , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fatores de Transcrição/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo
7.
J Neuroimmune Pharmacol ; 18(3): 235-247, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526817

RESUMO

Relapsing-remitting multiple sclerosis (RRMS) is an autoimmune neurological disease and is the most common subtype of MS. In addition, it is associated with the development of depression and anxiety. To date, depressive- and anxiety-like behaviours were only studied using models of progressive MS, which causes severe motor alterations. Thus, we sought to standardise the depressive and anxiety-like behaviours in an RRMS model induced by experimental autoimmune encephalomyelitis (RR-EAE) in mice. The RR-EAE model was induced in C57BL/6 female mice using myelin oligodendrocyte glycoprotein (MOG35-55) antigen and Quillaja saponin (Quil A) as an adjuvant. The immunisation of RR-EAE did not induce locomotor alteration but caused relapsing-remitting induction of clinical scores in mice until 35 post-immunization (p.i.). Also, increased levels of tumour necrosis factor alpha (TNF-α), astrocyte marker (GFAP), and microglial markers (IBA-1) were detected in the prefrontal cortex at 35 p.i. of RR-EAE. In the open field test, RR-EAE mice showed decreased time spent at the centre and sniffing behaviour (at days 21 and 34 p.i.). Also, on day 35 p.i. the RR-EAE group spent less time in the open arms and had decreased open-arm entries compared to control mice in the elevated plus maze (EPM) test, confirming the anxiety-like behaviour. At day 36° p.i. in the tail suspension test, mice showed depression-like behaviour with decreased latency time and increased immobility time. Thus, the RR-EAE model mimics the neuroinflammatory and behavioural features of the RRMS, including depression- and anxiety-like symptoms.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Camundongos , Feminino , Animais , Depressão , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Ansiedade , Modelos Animais de Doenças
8.
Neuroscience ; 524: 89-93, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290683

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of Inflammatory central nervous system (CNS) disease. Dark agouti (DA) rats immunized with full-length myelin oligodendrocyte glycoprotein (MOG1-125) typically develop a relapsing-remitting EAE form characterized by predominant demyelinating involvement of the spinal cord and optic nerve. Visually evoked potentials (VEP) are a useful objective tool to assess the optic nerve function and monitor electrophysiological changes in optic neuritis (ON). The current study aimed to assess the VEP changes in MOG-EAE DA rats using a minimally invasive recording device and to correlate them with histological findings. Twelve MOG-EAE DA rats and four controls underwent VEP recording at day 0, 7, 14, 21, and 28 post-EAE induction. Tissue samples were obtained on days 14, 21, and 28 from two EAE rats and one control. The median VEP latencies were significantly higher on days 14, 21, and 28 compared to baseline, with maximal latencies observed on day 21. The histological analyses on day 14 demonstrated inflammation with largely preserved myelin and axonal structures. Inflammation and demyelination with largely preserved axons were evident on days 21 and 28, which correlated with prolonged VEP latencies. These findings suggest that VEPs may be a reliable biomarker reflecting the optic nerve involvement in EAE. Moreover, the use of a minimally invasive device enables observation of VEP changes over time in MOG-EAE DA rats. Our findings may have important implications for testing the potential neuroprotective and regenerative effects of new therapies for CNS demyelinating diseases.


Assuntos
Encefalomielite Autoimune Experimental , Neurite Óptica , Ratos , Animais , Encefalomielite Autoimune Experimental/patologia , Medula Espinal/patologia , Inflamação/patologia , Nervo Óptico/patologia , Glicoproteína Mielina-Oligodendrócito/toxicidade
9.
J Neuroinflammation ; 20(1): 135, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264394

RESUMO

INTRODUCTION: Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS: To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαß+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS: Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαß+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαß+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαß+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS: These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Receptores de Antígenos de Linfócitos T alfa-beta , Camundongos , Animais , Autoimunidade , Disbiose , Sistema Nervoso Central , Glicoproteína Mielina-Oligodendrócito/toxicidade , Peptídeos , Camundongos Endogâmicos C57BL
10.
Epilepsy Res ; 192: 107125, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963302

RESUMO

PURPOSE: Inflammation plays a role in drug-resistant epilepsy (DRE). We have previously reported an increased proportion of CD4 T cells displaying a pro-inflammatory profile in the peripheral blood of adults with DRE. Specific anti-epileptic drugs (AEDs) exhibit immunomodulatory properties that could increase the risk of infections but also contribute to their beneficial impact on DRE and other neurological diseases. The impact of novel generation AEDs on the profile of immune cells and on neuroinflammatory processes remains unclear. METHODS: We compared the influence of brivaracetam and lacosamide on the activation of human and murine peripheral immune cells in vitro and in vivo in active experimental autoimmune encephalomyelitis (EAE), a common mouse model of central nervous system inflammation. RESULTS: We found that brivaracetam and lacosamide at 2.5 µg/ml did not impair the survival and activation of human immune cells, but a higher dose of 25 µg/ml decreased mitogen-induced proliferation of CD8 T cells in vitro. Exposure to high doses of brivaracetam, and to a lesser extent lacosamide, reduced the proportion of CD25+ and CD107a+ CD8+ human T cells in vitro, and the frequency of CNS-infiltrating CD8+ T cells at EAE onset and CD11b+ myeloid cells at peak in vivo. Prophylactic administration of brivaracetam or lacosamide did not delay EAE onset but significantly improved the clinical course in the chronic phase of EAE compared to control. CONCLUSION: Novel generation AEDs do not impair the response to immunization with MOG peptide but improve the course of EAE, possibly through a reduction of neuroaxonal damage.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Humanos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/prevenção & controle , Lacosamida/uso terapêutico , Linfócitos T CD8-Positivos , Glicoproteína Mielina-Oligodendrócito/toxicidade , Anti-Inflamatórios , Inflamação , Camundongos Endogâmicos C57BL
11.
J Neuroinflammation ; 19(1): 239, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183103

RESUMO

BACKGROUND: In neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), neutrophils are found in CNS lesions. We previously demonstrated that NMOSD neutrophils show functional deficiencies. Thus, we hypothesized that neutrophil accumulation in the CNS may be facilitated by impairments affecting mechanisms of neutrophil death. OBJECTIVE: To evaluate cell death in blood neutrophils from aquaporin-4 (AQP4)-IgG-seropositive NMOSD and MOGAD patients as well as matched healthy controls (HC) using in vitro assays. METHODS: Twenty-eight AQP4 + NMOSD and 19 MOGAD patients in stable disease phase as well as 45 age- and sex-matched HC were prospectively recruited. To induce cell death, isolated neutrophils were cultured with/without phorbol 12-myristate 13-acetate (PMA). Spontaneous and PMA-induced NETosis and apoptosis were analyzed using 7-AAD and annexin-V by flow cytometry. Caspase-3 was assessed by western blot. Myeloperoxidase-DNA complexes (MPO-DNA), MPO and elastase were evaluated by ELISA, and cell-free DNA (cfDNA) by a fluorescence-based assay. Reactive oxygen species (ROS) were evaluated by a dihydrorhodamine 123-based cytometric assay. Serum GM-CSF, IL-6, IL-8, IL-15, TNF-ɑ and IL-10 were evaluated by multiplex assays, and neurofilament light chain (NfL) by single-molecule array assay. RESULTS: In response to PMA, neutrophils from AQP4 + NMOSD but not from MOGAD patients showed an increased survival, and subsequent reduced cell death (29.6% annexin V+ 7-AAD+) when compared to HC (44.7%, p = 0.0006). However, AQP4 + NMOSD also showed a mild increase in annexin V+ 7-AAD- early apoptotic neutrophils (24.5%) compared to HC (20.8%, p = 0.048). PMA-induced reduction of caspase-3 activation was more pronounced in HC (p = 0.020) than in AQP4 + NMOSD neutrophils (p = 0.052). No differences were observed in neutrophil-derived MPO-DNA or serum levels of MPO, elastase, IL-6, IL-8 and TNF-ɑ. IL-15 levels were increased in both groups of patients. In AQP4 + NMOSD, an increase in cfDNA, GM-CSF and IL-10 was found in serum. A positive correlation among cfDNA and NfL was found in AQP4 + NMOSD. CONCLUSIONS: AQP4 + NMOSD neutrophils showed an increased survival capacity in response to PMA when compared to matched HC neutrophils. Although the data indicate that the apoptotic but not the NETotic response is altered in these neutrophils, additional evaluations are required to validate this observation.


Assuntos
Ácidos Nucleicos Livres , Neuromielite Óptica , Forbóis , Acetatos , Anexina A5 , Aquaporina 4 , Autoanticorpos , Caspase 3 , Morte Celular , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunoglobulina G , Interleucina-10 , Interleucina-15 , Interleucina-6 , Interleucina-8 , Glicoproteína Mielina-Oligodendrócito/toxicidade , Miristatos , Neutrófilos , Elastase Pancreática , Peroxidase , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa
12.
J Neurosci Res ; 100(3): 855-868, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35043454

RESUMO

Female Dark Agouti rats were immunized with increasing doses of myelin oligodendrocyte glycoprotein (MOG) to develop experimental autoimmune encephalomyelitis (EAE), a preclinical model of multiple sclerosis. Typical EAE motor impairments were assessed daily and noninvasive visual evoked potentials (VEPs) were recorded at baseline and 5 weeks after immunization, with final histopathology of optic nerves (ONs). Immunized rats exhibited a relapsing-remitting clinical course. Both VEP and histological abnormalities were detected in a MOG dose-dependent gradient. Increasing MOG dosage augmented visual function impairment in EAE, which could be monitored with VEP recording to assess demyelination and axonal loss along ONs.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Encefalomielite Autoimune Experimental/patologia , Potenciais Evocados Visuais , Feminino , Esclerose Múltipla/patologia , Glicoproteína Associada a Mielina , Glicoproteína Mielina-Oligodendrócito/toxicidade , Nervo Óptico/patologia , Ratos
13.
J Neurosci Methods ; 367: 109443, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920025

RESUMO

BACKGROUND: Myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (EAE) is the most commonly used animal model of multiple sclerosis. However, variations in the induction protocol can affect EAE progression, and may reduce the comparability of data. OPTIMIZED METHOD: In the present study, we investigated the influence of the different components used for EAE induction in C57BL/6J mice on disease progression. In the present study, MOG35-55-induced chronic EAE in C57BL/6J mice has been applied as a model to challenge optimal pertussis toxin (PTx) dosing, while considering variations in batch potency. RESULTS: We demonstrate that the dosage of PTx, adjusted to its potency, influences EAE development in a dose-dependent manner. Our data show that with our protocol, which considers PTx potency, C57BL/6J mice consistently develop symptoms of EAE. The mice show a typical chronic course with symptom onset after 10.5 ± 1.08 days and maximum severity around day 16 postimmunization followed by a mild remission of symptoms. COMPARISON WITH EXISTING METHODS: Previously studies reveal that alterations in PTx dosing directly modify EAE progression. Our present study highlights that PTx batches differ in potency, resulting in inconsistent EAE induction. We also provide a clear protocol that allows a reduction in the number of mice used in EAE experiments, while maintaining consistent results. CONCLUSION: Higher standards for comparability and reproducibility are needed to ensure and maximize the generation of reliable EAE data. Specifically, consideration of PTx potency. With our method of establishing consistent EAE pathogenesis, improved animal welfare standards and a reduction of mice used in experimentation can be achieved.


Assuntos
Encefalomielite Autoimune Experimental , Animais , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos , Reprodutibilidade dos Testes
14.
J Neuroinflammation ; 18(1): 240, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666785

RESUMO

BACKGROUND: Lysophosphatidic acid receptors (LPARs) are G-protein-coupled receptors involved in many physiological functions in the central nervous system. However, the role of the LPARs in multiple sclerosis (MS) has not been clearly defined yet. METHODS: Here, we investigated the roles of LPARs in myelin oligodendrocyte glycoprotein peptides-induced experimental autoimmune encephalomyelitis (EAE), an animal model of MS. RESULTS: Pre-inhibition with LPAR1-3 antagonist Ki16425 deteriorated motor disability of EAElow. Specifically, LPAR1-3 antagonist (intraperitoneal) deteriorated symptoms of EAElow associated with increased demyelination, chemokine expression, cellular infiltration, and immune cell activation (microglia and macrophage) in spinal cords of mice compared to the sham group. This LPAR1-3 antagonist also increased the infiltration of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells into spinal cords of EAElow mice along with upregulated mRNA expression of IFN-γ and IL-17 and impaired blood-brain barrier (BBB) in the spinal cord. The underlying mechanism for negative effects of LPAR1-3 antagonist was associated with the overproduction of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) 2 and NOX3. Interestingly, LPAR1/2 agonist 1-oleoyl-LPA (LPA 18:1) (intraperitoneal) ameliorated symptoms of EAEhigh and improved representative pathological features of spinal cords of EAEhigh mice. CONCLUSIONS: Our findings strongly suggest that some agents that can stimulate LPARs might have potential therapeutic implications for autoimmune demyelinating diseases such as MS.


Assuntos
Encefalomielite Autoimune Experimental/metabolismo , Isoxazóis/toxicidade , Estresse Oxidativo/fisiologia , Propionatos/toxicidade , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/induzido quimicamente , Feminino , Isoxazóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores
15.
Sci Rep ; 11(1): 14466, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262061

RESUMO

Despite advances in therapeutic strategies for multiple sclerosis (MS), the therapy options remain limited with various adverse effects. Here, the therapeutic potential of CKD-506, a novel HDAC6-selective inhibitor, against MS was evaluated in mice with myelin oligodendrocyte glycoprotein35-55 (MOG35-55)-induced experimental autoimmune encephalitis (EAE) under various treatment regimens. CKD-506 exerted prophylactic and therapeutic effects by regulating peripheral immune responses and maintaining blood-brain barrier (BBB) integrity. In MOG35-55-re-stimulated splenocytes, CKD-506 decreased proliferation and downregulated the expression of IFN-γ and IL-17A. CKD-506 downregulated the levels of pro-inflammatory cytokines in the blood of EAE mice. Additionally, CKD-506 decreased the leakage of intravenously administered Evans blue into the spinal cord; CD4+ T cells and CD4-CD11b+CD45+ macrophage/microglia in the spinal cord was also decreased. Moreover, CKD-506 exhibited therapeutic efficacy against MS, even when drug administration was discontinued from day 15 post-EAE induction. Disease exacerbation was not observed when fingolimod was changed to CKD-506 from day 15 post-EAE induction. CKD-506 alleviated depression-like behavior at the pre-symptomatic stage of EAE. In conclusion, CKD-506 exerts therapeutic effects by regulating T cell- and macrophage-mediated peripheral immune responses and strengthening BBB integrity. Our results suggest that CKD-506 is a potential therapeutic agent for MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/etiologia , Animais , Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/etiologia , Feminino , Cloridrato de Fingolimode/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/toxicidade , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/patologia
16.
Neurotox Res ; 39(4): 1300-1309, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33999356

RESUMO

Neuromyelitis optica (NMO) and myelin oligodendrocyte glycoprotein (MOG) antibody-related disease (MOG disease) are inflammatory demyelinating diseases of the central nervous system (CNS). The disruption of the blood-brain barrier (BBB) is considered a key step in the pathogenesis of NMO and MOG disease. Although a previous report indicated that circulating immunoglobulin G (IgG) from NMO patients disrupts the BBB, the effect of IgG from patients with MOG disease has not been elucidated. In addition, it has been reported that some disease-modifying drugs for multiple sclerosis are harmful to NMO by an unknown mechanism. This study aimed to examine the effects of IgG from patients with NMO or MOG disease on BBB integrity. We also examined the effects of disease-modifying drugs (fingolimod [FTY720] and dimethyl fumarate [DMF]) on IgG-treated brain capillary endothelial cells. We used in vitro BBB models constructed with rat brain capillary endothelial cells (RBECs) to examine the effects on BBB function. The integrity of the RBECs was assessed by measuring transendothelial resistance (TEER) and cell viability. NMO or MOG-IgG treatment decreased TEER and cell viability in the endothelial monolayer model. Although FTY720 and DMF did not affect barrier function or cell viability under normal conditions, disease IgG-induced barrier dysfunctions were worsened by the presence of FTY720. These data indicate that circulating IgG in patients with NMO or MOG disease worsens BBB function. Furthermore, in patients with NMO or MOG disease treated with FTY720, changes in the integrity of the BBB were found to exacerbate the disease.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Cloridrato de Fingolimode/toxicidade , Imunoglobulina G/toxicidade , Glicoproteína Mielina-Oligodendrócito/toxicidade , Neuromielite Óptica , Moduladores do Receptor de Esfingosina 1 Fosfato/toxicidade , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Masculino , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Ratos , Ratos Wistar
17.
Neurotherapeutics ; 18(2): 889-904, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33479802

RESUMO

The significance of monocytes has been demonstrated in multiple sclerosis (MS). One of the therapeutic challenges is developing medications that induce mild immunomodulation that is solely targeting specific monocyte subsets without affecting microglia. Muramyl dipeptide (MDP) activates the NOD2 receptor, and systemic MDP administrations convert Ly6Chigh into Ly6Clow monocytes. Here, we report selective immunomodulatory and therapeutic effects of MDP on cuprizone and experimental autoimmune encephalomyelitis (EAE) mouse models of MS. MDP treatment exerted various therapeutic effects in EAE, including delaying EAE onset and reducing infiltration of leukocytes into the CNS before EAE onset. Of great interest is the robust beneficial effect of the MDP treatment in mice already developing the disease several days after EAE onset. Finally, we found that the NOD2 receptor plays a critical role in MDP-mediated EAE resistance. Our results demonstrate that MDP is beneficial in both early and progressive phases of EAE. Based on these results, and upon comprehensive basic and clinical research, we anticipate developing NOD2 agonist-based medications for MS in the future.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/uso terapêutico , Encefalomielite Autoimune Experimental/prevenção & controle , Agentes de Imunomodulação/uso terapêutico , Esclerose Múltipla/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Proteína Adaptadora de Sinalização NOD2/agonistas , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/imunologia , Adjuvante de Freund/toxicidade , Agentes de Imunomodulação/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade
18.
J Mol Neurosci ; 71(2): 215-224, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32812186

RESUMO

Multiple sclerosis (MS) is known as a chronic neuroinflammatory disorder typified by an immune-mediated demyelination process with ensuing axonal damage and loss. Sinomenine is a natural alkaloid with different therapeutic benefits, including anti-inflammatory and immunosuppressive activities. In this study, possible beneficial effects of sinomenine in an MOG-induced model of MS were determined. Sinomenine was given to MOG35-55-immunized C57BL/6 mice at doses of 25 or 100 mg/kg/day after onset of MS clinical signs till day 30 post-immunization. Analyzed data showed that sinomenine reduces severity of the clinical signs and to some extent decreases tissue level of pro-inflammatory cytokines IL-1ß, IL-6, IL-18, TNFα, IL-17A, and increases level of anti-inflammatory IL-10. In addition, sinomenine successfully attenuated tissue levels of inflammasome NLRP3, ASC, and caspase 1 besides its reduction of intensity of neuroinflammation, demyelination, and axonal damage and loss in lumbar spinal cord specimens. Furthermore, immunoreactivity for MBP decreased and increased for GFAP and Iba1 after MOG-immunization, which was in part reversed upon sinomenine administration. Overall, sinomenine decreases EAE severity, which is attributed to its alleviation of microglial and astrocytic mobilization, demyelination, and axonal damage along with its suppression of neuroinflammation, and its beneficial effect is also associated with its inhibitory effects on inflammasome and pyroptotic pathways; this may be of potential benefit for the primary progressive phenotype of MS.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Morfinanos/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Astrócitos/efeitos dos fármacos , Peso Corporal , Citocinas/análise , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Morfinanos/administração & dosagem , Morfinanos/farmacologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Piroptose/efeitos dos fármacos , Distribuição Aleatória , Organismos Livres de Patógenos Específicos , Medula Espinal/química
19.
Int Immunopharmacol ; 88: 106998, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33182064

RESUMO

Multiple sclerosis (MS) is an autoimmune disease for which conventional treatments have limited efficacy or side effects. Free radicals are primarily involved in blood-brain barrier disruption and induce neuronal and axonal damage, thus promoting the development of MS. Amifostine, a radioprotective drug used as a cytoprotective agent, attenuates oxidative stress and improves radiation damage by acting as a direct scavenger of reactive oxygen and nitrogen species. The aim of this study was to evaluate the effects of amifostine on MS in a mouse model of experimental autoimmune encephalomyelitis (EAE), which was developed by immunizing C57BL/6 mice with myelin oligodendrocyte glycoprotein and pertussis toxin. EAE mice received intraperitoneal injections of amifostine prior to onset of clinical symptoms and were monitored up to day 15 post induction. We observed abnormal clinical behavioral scores and a decrease in body weight. Histological analysis showed severe inflammatory infiltration and demyelination in the brain and spinal cord lumbar enlargements where significant upregulation of the mRNA expression of the pro-inflammatory cytokines interleukin-6 and interleukin-8, downregulation of the anti-inflammatory cytokine interleukin-10, and obvious microgliosis were also observed. Amifostine treatment potently reversed these abnormal changes. The anti-inflammatory effect of amifostine was associated with the inhibition of reactive oxygen species generation. Furthermore, the expression of proteins involved in the NLRP3 signaling pathway and pyroptosis was decreased. In conclusion, our study showed that amifostine ameliorates induction of experimental autoimmune encephalomyelitis via anti-inflammatory and anti-pyroptosis effects, providing further insights into the use of amifostine for the treatment of MS.


Assuntos
Amifostina/uso terapêutico , Encefalomielite Autoimune Experimental/induzido quimicamente , Esclerose Múltipla/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Glicoproteína Mielina-Oligodendrócito/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fragmentos de Peptídeos/toxicidade , Protetores contra Radiação/uso terapêutico , Espécies Reativas de Oxigênio
20.
Biochem Pharmacol ; 177: 114000, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32353424

RESUMO

Multiple sclerosis (MS) is the most popular chronic and debilitating inflammatory disease of the central nervous system (CNS) that remains incurable. Dihydroorotate dehydrogenase (DHODH) is critical to the activity of T lymphocytes and represents a potential therapeutic target for MS. Here we identify piperine, a bioactive constituent of black pepper, as a potent inhibitor of DHODH with an IC50 value of 0.88 µM. Isothermal titration calorimetry and thermofluor assay demonstrate the directly interaction between piperine and DHODH. The co-complex crystal structure of DHODH and piperine at 1.98 Å resolution further reveal that Tyr356 residue of DHODH is crucial for piperine binding. Importantly, we show that piperine can inhibit T cell overactivation in a DHODH-dependent manner in concanavalin A-triggered T-cell assay and mixed lymphocyte reaction assay. Finally, piperine exhibits strong preventive and therapeutic effect in the MOG-induced experimental allergic encephalomyelitis (EAE), a useful model for studying potential treatments for MS, by restricting inflammatory cells infiltration into the CNS and preventing myelin destruction and blood-brain barrier (BBB) disruption. Taken together, these findings highlight DHODH as a therapeutic target for autoimmune disease of the nervous system, and demonstrate a novel role for piperine in the treatment of MS.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Alcaloides/química , Alcaloides/metabolismo , Animais , Benzodioxóis/química , Benzodioxóis/metabolismo , Produtos Biológicos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Cristalografia por Raios X , Di-Hidro-Orotato Desidrogenase , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Feminino , Humanos , Células Jurkat , Camundongos Endogâmicos C57BL , Modelos Moleculares , Terapia de Alvo Molecular , Bainha de Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidade , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fragmentos de Peptídeos/toxicidade , Piperidinas/química , Piperidinas/metabolismo , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/metabolismo , Baço/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA