Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(48): e2309306120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37988471

RESUMO

RNA-DNA hybrids are epigenetic features of all genomes that intersect with many processes, including transcription, telomere homeostasis, and centromere function. Increasing evidence suggests that RNA-DNA hybrids can provide two conflicting roles in the maintenance and transmission of genomes: They can be the triggers of DNA damage, leading to genome change, or can aid the DNA repair processes needed to respond to DNA lesions. Evasion of host immunity by African trypanosomes, such as Trypanosoma brucei, relies on targeted recombination of silent Variant Surface Glycoprotein (VSG) genes into a specialized telomeric locus that directs transcription of just one VSG from thousands. How such VSG recombination is targeted and initiated is unclear. Here, we show that a key enzyme of T. brucei homologous recombination, RAD51, interacts with RNA-DNA hybrids. In addition, we show that RNA-DNA hybrids display a genome-wide colocalization with DNA breaks and that this relationship is impaired by mutation of RAD51. Finally, we show that RAD51 acts to repair highly abundant, localised DNA breaks at the single transcribed VSG and that mutation of RAD51 alters RNA-DNA hybrid abundance at 70 bp repeats both around the transcribed VSG and across the silent VSG archive. This work reveals a widespread, generalised role for RNA-DNA hybrids in directing RAD51 activity during recombination and uncovers a specialised application of this interplay during targeted DNA break repair needed for the critical T. brucei immune evasion reaction of antigenic variation.


Assuntos
Trypanosoma brucei brucei , Estruturas R-Loop , Variação Antigênica/genética , Quebras de DNA , DNA , RNA , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
2.
PLoS Pathog ; 19(7): e1011530, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459347

RESUMO

Several persistent pathogens employ antigenic variation to continually evade mammalian host adaptive immune responses. African trypanosomes use variant surface glycoproteins (VSGs) for this purpose, transcribing one telomeric VSG expression-site at a time, and exploiting a reservoir of (sub)telomeric VSG templates to switch the active VSG. It has been known for over fifty years that new VSGs emerge in a predictable order in Trypanosoma brucei, and differential activation frequencies are now known to contribute to the hierarchy. Switching of approximately 0.01% of dividing cells to many new VSGs, in the absence of post-switching competition, suggests that VSGs are deployed in a highly profligate manner, however. Here, we report that switched trypanosomes do indeed compete, in a highly predictable manner that is dependent upon the activated VSG. We induced VSG gene recombination and switching in in vitro culture using CRISPR-Cas9 nuclease to target the active VSG. VSG dynamics, that were independent of host immune selection, were subsequently assessed using RNA-seq. Although trypanosomes activated VSGs from repressed expression-sites at relatively higher frequencies, the population of cells that activated minichromosomal VSGs subsequently displayed a competitive advantage and came to dominate. Furthermore, the advantage appeared to be more pronounced for longer VSGs. Differential growth of switched clones was also associated with wider differences, affecting transcripts involved in nucleolar function, translation, and energy metabolism. We conclude that antigenic variants compete, and that the population of cells that activates minichromosome derived VSGs displays a competitive advantage. Thus, competition among variants impacts antigenic variation dynamics in African trypanosomes and likely prolongs immune evasion with a limited set of antigens.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Animais , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Trypanosoma brucei brucei/metabolismo , Variação Antigênica/genética , Evasão da Resposta Imune/genética , Glicoproteínas de Membrana/metabolismo , Mamíferos
3.
Nucleic Acids Res ; 51(11): 5678-5698, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37207337

RESUMO

Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.


Assuntos
Proteínas de Protozoários , Trypanosoma brucei brucei , Variação Antigênica/genética , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Telômero/genética , Telômero/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Proteínas de Protozoários/metabolismo , Montagem e Desmontagem da Cromatina
4.
Microbiol Spectr ; 11(3): e0014723, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37097159

RESUMO

The eukaryotic protozoan parasite Trypanosoma brucei is transmitted by the tsetse fly to both humans and animals, where it causes a fatal disease called African trypanosomiasis. While the parasite lacks canonical DNA sequence-specific transcription factors, it does possess histones, histone modifications, and proteins that write, erase, and read histone marks. Chemical inhibition of chromatin-interacting bromodomain proteins has previously been shown to perturb bloodstream specific trypanosome processes, including silencing of the variant surface glycoprotein (VSG) genes and immune evasion. Transcriptomic changes that occur in bromodomain-inhibited bloodstream parasites mirror many of the changes that occur as parasites developmentally progress from the bloodstream to the insect stage. We performed transcriptome sequencing (RNA-seq) time courses to determine the effects of chemical bromodomain inhibition in insect-stage parasites using the compound I-BET151. We found that treatment with I-BET151 causes large changes in the transcriptome of insect-stage parasites and also perturbs silencing of VSG genes. The transcriptomes of bromodomain-inhibited parasites share some features with early metacyclic-stage parasites in the fly salivary gland, implicating bromodomain proteins as important for regulating transcript levels for developmentally relevant genes. However, the downregulation of surface procyclin protein that typically accompanies developmental progression is absent in bromodomain-inhibited insect-stage parasites. We conclude that chemical modulation of bromodomain proteins causes widespread transcriptomic changes in multiple trypanosome life cycle stages. Understanding the gene-regulatory processes that facilitate transcriptome remodeling in this highly diverged eukaryote may shed light on how these mechanisms evolved. IMPORTANCE The disease African trypanosomiasis imposes a severe human and economic burden for communities in sub-Saharan Africa. The parasite that causes the disease is transmitted to the bloodstream of a human or ungulate via the tsetse fly. Because the environments of the fly and the bloodstream differ, the parasite modulates the expression of its genes to accommodate two different lifestyles in these disparate niches. Perturbation of bromodomain proteins that interact with histone proteins around which DNA is wrapped (chromatin) causes profound changes in gene expression in bloodstream-stage parasites. This paper reports that gene expression is also affected by chemical bromodomain inhibition in insect-stage parasites but that the genes affected differ depending on life cycle stage. Because trypanosomes diverged early from model eukaryotes, an understanding of how trypanosomes regulate gene expression may lend insight into how gene-regulatory mechanisms evolved. This could also be leveraged to generate new therapeutic strategies.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Humanos , Animais , Tripanossomíase Africana/parasitologia , Transcriptoma , Glicoproteínas de Membrana , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Trypanosoma/genética , Trypanosoma brucei brucei/genética , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/parasitologia , Proteínas de Membrana/genética , Mamíferos , Cromatina , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/farmacologia , Proteínas de Protozoários/genética
5.
Nat Commun ; 14(1): 1576, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949076

RESUMO

Trypanosoma brucei is a protozoan parasite that causes human African trypanosomiasis. Its major surface antigen VSG is expressed from subtelomeric loci in a strictly monoallelic manner. We previously showed that the telomere protein TbRAP1 binds dsDNA through its 737RKRRR741 patch to silence VSGs globally. How TbRAP1 permits expression of the single active VSG is unknown. Through NMR structural analysis, we unexpectedly identify an RNA Recognition Motif (RRM) in TbRAP1, which is unprecedented for RAP1 homologs. Assisted by the 737RKRRR741 patch, TbRAP1 RRM recognizes consensus sequences of VSG 3'UTRs in vitro and binds the active VSG RNA in vivo. Mutating conserved RRM residues abolishes the RNA binding activity, significantly decreases the active VSG RNA level, and derepresses silent VSGs. The competition between TbRAP1's RNA and dsDNA binding activities suggests a VSG monoallelic expression mechanism in which the active VSG's abundant RNA antagonizes TbRAP1's silencing effect, thereby sustaining its full-level expression.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Motivo de Reconhecimento de RNA , Trypanosoma brucei brucei/metabolismo , RNA/genética , RNA/metabolismo
6.
PLoS Negl Trop Dis ; 17(2): e0011093, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780870

RESUMO

During infection of mammalian hosts, African trypanosomes thwart immunity using antigenic variation of the dense Variant Surface Glycoprotein (VSG) coat, accessing a large repertoire of several thousand genes and pseudogenes, and switching to antigenically distinct copies. The parasite is transferred to mammalian hosts by the tsetse fly. In the salivary glands of the fly, the pathogen adopts the metacyclic form and expresses a limited repertoire of VSG genes specific to that developmental stage. It has remained unknown whether the metacyclic VSGs possess distinct properties associated with this particular and discrete phase of the parasite life cycle. We present here three novel metacyclic form VSG N-terminal domain crystal structures (mVSG397, mVSG531, and mVSG1954) and show that they mirror closely in architecture, oligomerization, and surface diversity the known classes of bloodstream form VSGs. These data suggest that the mVSGs are unlikely to be a specialized subclass of VSG proteins, and thus could be poor candidates as the major components of prophylactic vaccines against trypanosomiasis.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Trypanosoma brucei brucei/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Moscas Tsé-Tsé/parasitologia , Mamíferos , Tripanossomíase Africana/parasitologia
7.
mBio ; 13(6): e0255322, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36354333

RESUMO

Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei gambiense/genética , Glicoproteínas de Membrana
8.
Curr Opin Microbiol ; 70: 102209, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36215868

RESUMO

Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Animais , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Variação Antigênica/genética , Trypanosoma/genética , Trypanosoma brucei brucei/genética , Genoma , Mamíferos/genética
9.
PLoS Negl Trop Dis ; 16(9): e0010791, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129968

RESUMO

Trypanosoma vivax is a unicellular hemoparasite, and a principal cause of animal African trypanosomiasis (AAT), a vector-borne and potentially fatal livestock disease across sub-Saharan Africa. Previously, we identified diverse T. vivax-specific genes that were predicted to encode cell surface proteins. Here, we examine the immune responses of naturally and experimentally infected hosts to these unique parasite antigens, to identify immunogens that could become vaccine candidates. Immunoprofiling of host serum shows that one particular family (Fam34) elicits a consistent IgG antibody response. This gene family, which we now call Vivaxin, encodes at least 124 transmembrane glycoproteins that display quite distinct expression profiles and patterns of genetic variation. We focused on one gene (viv-ß8) that encodes one particularly immunogenic vivaxin protein and which is highly expressed during infections but displays minimal polymorphism across the parasite population. Vaccination of mice with VIVß8 adjuvanted with Quil-A elicits a strong, balanced immune response and delays parasite proliferation in some animals but, ultimately, it does not prevent disease. Although VIVß8 is localized across the cell body and flagellar membrane, live immunostaining indicates that VIVß8 is largely inaccessible to antibody in vivo. However, our phylogenetic analysis shows that vivaxin includes other antigens shown recently to induce immunity against T. vivax. Thus, the introduction of vivaxin represents an important advance in our understanding of the T. vivax cell surface. Besides being a source of proven and promising vaccine antigens, the gene family is clearly an important component of the parasite glycocalyx, with potential to influence host-parasite interactions.


Assuntos
Trypanosoma vivax , Vacinas , Animais , Formação de Anticorpos , Antígenos de Protozoários/genética , Imunoglobulina G/genética , Camundongos , Filogenia , Trypanosoma vivax/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
10.
Elife ; 112022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169304

RESUMO

Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here, we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.


Assuntos
Trypanosoma brucei brucei , Cromatina/metabolismo , Heterocromatina/metabolismo , Histona Metiltransferases/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
12.
Mol Cell ; 82(11): 1979-1980, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35659324

RESUMO

Viegas et al. (2022) discover that in Trypanosoma brucei the poly(A) tails of the variant surface glycoprotein (VSG) transcripts are methylated, a mechanism that stabilizes these transcripts and ensures protection against the immune response in mammals.


Assuntos
Trypanosoma brucei brucei , Glicoproteínas Variantes de Superfície de Trypanosoma , Animais , Mamíferos , Glicoproteínas de Membrana , Poli A/genética , RNA Mensageiro/genética , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
13.
mSphere ; 7(4): e0012222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35727016

RESUMO

African trypanosomes evade the immune system of the mammalian host by the antigenic variation of the predominant glycosylphosphatidylinositol (GPI)-anchored surface protein, variant surface glycoprotein (VSG). VSG is a very stable protein that is turned over from the cell surface with a long half-life (~26 h), allowing newly synthesized VSG to populate the surface. We have recently demonstrated that VSG turnover under normal growth is mediated by a combination of GPI hydrolysis and direct shedding with intact GPI anchors. VSG synthesis is tightly regulated in dividing trypanosomes, and when subjected to RNA interference (RNAi) silencing, cells display rapid cell cycle arrest in order to conserve VSG density on the cell surface (K. Sheader, S. Vaughan, J. Minchin, K. Hughes, et al., Proc Natl Acad Sci U S A 102:8716-8721, 2005, https://doi.org/10.1073/pnas.0501886102). Arrested cells also display an altered morphology of secretory organelles-engorgement of the trans-Golgi cisternae-that may reflect a disruption of post-Golgi secretory transport. We now ask whether trypanosomes under VSG silencing also reduce the rate of VSG turnover to further conserve coat density. Our data indicate that trypanosomes do not regulate VSG turnover according to VSG protein abundance, nor was there any effect on the post-Golgi transport of soluble or GPI-anchored secretory cargo. However, the surface morphology of silenced cells was altered from a typically rugose topology to a smoother profile, consistent with reduced overall membrane trafficking to the cell surface. IMPORTANCE African trypanosomes evade the host immune system by altering the expression of variant surface glycoproteins (VSGs) in a process called antigenic variation. VSG is essential, and when its synthesis is ablated by RNAi silencing, cells enter precytokinesis growth arrest as a means to maintain constant cell surface VSG levels. We have investigated whether arrested cells also alter the rate of natural VSG turnover as a means to conserve the surface coat. This work provides insights into the natural biology of the glycocalyx of this important human and veterinary parasite.


Assuntos
Trypanosoma brucei brucei , Animais , Variação Antigênica , Glicosilfosfatidilinositóis , Humanos , Mamíferos , Glicoproteínas de Membrana/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
14.
Nature ; 604(7905): 362-370, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355019

RESUMO

RNA modifications are important regulators of gene expression1. In Trypanosoma brucei, transcription is polycistronic and thus most regulation happens post-transcriptionally2. N6-methyladenosine (m6A) has been detected in this parasite, but its function remains unknown3. Here we found that m6A is enriched in 342 transcripts using RNA immunoprecipitation, with an enrichment in transcripts encoding variant surface glycoproteins (VSGs). Approximately 50% of the m6A is located in the poly(A) tail of the actively expressed VSG transcripts. m6A residues are removed from the VSG poly(A) tail before deadenylation and mRNA degradation. Computational analysis revealed an association between m6A in the poly(A) tail and a 16-mer motif in the 3' untranslated region of VSG genes. Using genetic tools, we show that the 16-mer motif acts as a cis-acting motif that is required for inclusion of m6A in the poly(A) tail. Removal of this motif from the 3' untranslated region of VSG genes results in poly(A) tails lacking m6A, rapid deadenylation and mRNA degradation. To our knowledge, this is the first identification of an RNA modification in the poly(A) tail of any eukaryote, uncovering a post-transcriptional mechanism of gene regulation.


Assuntos
Processamento Pós-Transcricional do RNA , Trypanosoma brucei brucei , Glicoproteínas Variantes de Superfície de Trypanosoma , Regiões 3' não Traduzidas/genética , Adenosina/análogos & derivados , Regulação da Expressão Gênica , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
15.
Nucleic Acids Res ; 50(4): 2036-2050, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35061898

RESUMO

Trypanosoma brucei causes human African trypanosomiasis and sequentially expresses distinct VSGs, its major surface antigen, to achieve host immune evasion. VSGs are monoallelically expressed from subtelomeric loci, and telomere proteins regulate VSG monoallelic expression and VSG switching. T. brucei telomerase is essential for telomere maintenance, but no regulators of telomerase have been identified. T. brucei appears to lack OB fold-containing telomere-specific ssDNA binding factors that are critical for coordinating telomere G- and C-strand syntheses in higher eukaryotes. We identify POLIE as a telomere protein essential for telomere integrity. POLIE-depleted cells have more frequent VSG gene conversion-mediated VSG switching and an increased amount of telomeric circles (T-circles), indicating that POLIE suppresses DNA recombination at the telomere/subtelomere. POLIE-depletion elongates telomere 3' overhangs dramatically, indicating that POLIE is essential for coordinating DNA syntheses of the two telomere strands. POLIE depletion increases the level of telomerase-dependent telomere G-strand extension, identifying POLIE as the first T. brucei telomere protein that suppresses telomerase. Furthermore, depletion of POLIE results in an elevated telomeric C-circle level, suggesting that the telomere C-strand experiences replication stress and that POLIE may promote telomere C-strand synthesis. Therefore, T. brucei uses a novel mechanism to coordinate the telomere G- and C-strand DNA syntheses.


Assuntos
Telomerase , Telômero , Trypanosoma/metabolismo , DNA/metabolismo , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
16.
Nat Commun ; 13(1): 101, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013170

RESUMO

A Variant Surface Glycoprotein (VSG) coat protects bloodstream form Trypanosoma brucei. Prodigious amounts of VSG mRNA (~7-10% total) are generated from a single RNA polymerase I (Pol I) transcribed VSG expression site (ES), necessitating extremely high levels of localised splicing. We show that splicing is required for processive ES transcription, and describe novel ES-associated T. brucei nuclear bodies. In bloodstream form trypanosomes, the expression site body (ESB), spliced leader array body (SLAB), NUFIP body and Cajal bodies all frequently associate with the active ES. This assembly of nuclear bodies appears to facilitate the extraordinarily high levels of transcription and splicing at the active ES. In procyclic form trypanosomes, the NUFIP body and SLAB do not appear to interact with the Pol I transcribed procyclin locus. The congregation of a restricted number of nuclear bodies at a single active ES, provides an attractive mechanism for how monoallelic ES transcription is mediated.


Assuntos
Corpos Nucleares/genética , Splicing de RNA , RNA Mensageiro/genética , Transcrição Gênica , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Células Cultivadas , Regulação da Expressão Gênica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Corpos Nucleares/metabolismo , Organismos Geneticamente Modificados , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Mensageiro/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
17.
Trends Parasitol ; 38(1): 23-36, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34376326

RESUMO

An intriguing and remarkable feature of African trypanosomes is their antigenic variation system, mediated by the variant surface glycoprotein (VSG) family and fundamental to both immune evasion and disease epidemiology within host populations. Recent studies have revealed that the VSG repertoire has a complex evolutionary history. Sequence diversity, genomic organization, and expression patterns are species-specific, which may explain other variations in parasite virulence and disease pathology. Evidence also shows that we may be underestimating the extent to what VSGs are repurposed beyond their roles as variant antigens, establishing a need to examine VSG functionality more deeply. Here, we review sequence variation within the VSG gene family, and highlight the many opportunities to explore their likely diverse contributions to parasite survival.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Variação Antigênica/genética , Glicoproteínas de Membrana/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
18.
PLoS Pathog ; 17(11): e1010038, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767618

RESUMO

Antigenic variation is an immune evasion strategy used by Trypanosoma brucei that results in the periodic exchange of the surface protein coat. This process is facilitated by the movement of variant surface glycoprotein genes in or out of a specialized locus known as bloodstream form expression site by homologous recombination, facilitated by blocks of repetitive sequence known as the 70-bp repeats, that provide homology for gene conversion events. DNA double strand breaks are potent drivers of antigenic variation, however where these breaks must fall to elicit a switch is not well understood. To understand how the position of a break influences antigenic variation we established a series of cell lines to study the effect of an I-SceI meganuclease break in the active expression site. We found that a DNA break within repetitive regions is not productive for VSG switching, and show that the break position leads to a distinct gene expression profile and DNA repair response which dictates how antigenic variation proceeds in African trypanosomes.


Assuntos
Variação Antigênica , Quebras de DNA de Cadeia Dupla , DNA de Protozoário/genética , Proteínas de Protozoários/genética , Trypanosoma/imunologia , Tripanossomíase/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Animais , Reparo do DNA , Conversão Gênica , Proteínas de Protozoários/imunologia , Sequências Repetitivas de Ácido Nucleico , Trypanosoma/genética , Tripanossomíase/genética , Tripanossomíase/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia
19.
PLoS Pathog ; 17(9): e1009904, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543350

RESUMO

The long and complex Trypanosoma brucei development in the tsetse fly vector culminates when parasites gain mammalian infectivity in the salivary glands. A key step in this process is the establishment of monoallelic variant surface glycoprotein (VSG) expression and the formation of the VSG coat. The establishment of VSG monoallelic expression is complex and poorly understood, due to the multiple parasite stages present in the salivary glands. Therefore, we sought to further our understanding of this phenomenon by performing single-cell RNA-sequencing (scRNA-seq) on these trypanosome populations. We were able to capture the developmental program of trypanosomes in the salivary glands, identifying populations of epimastigote, gamete, pre-metacyclic and metacyclic cells. Our results show that parasite metabolism is dramatically remodeled during development in the salivary glands, with a shift in transcript abundance from tricarboxylic acid metabolism to glycolytic metabolism. Analysis of VSG gene expression in pre-metacyclic and metacyclic cells revealed a dynamic VSG gene activation program. Strikingly, we found that pre-metacyclic cells contain transcripts from multiple VSG genes, which resolves to singular VSG gene expression in mature metacyclic cells. Single molecule RNA fluorescence in situ hybridisation (smRNA-FISH) of VSG gene expression following in vitro metacyclogenesis confirmed this finding. Our data demonstrate that multiple VSG genes are transcribed before a single gene is chosen. We propose a transcriptional race model governs the initiation of monoallelic expression.


Assuntos
Regulação da Expressão Gênica/genética , Trypanosoma brucei brucei/genética , Moscas Tsé-Tsé/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Animais , Insetos Vetores/parasitologia , RNA-Seq , Glândulas Salivares/parasitologia
20.
Traffic ; 22(8): 274-283, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101314

RESUMO

African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.


Assuntos
Trypanosoma brucei brucei , Glicoproteínas Variantes de Superfície de Trypanosoma , Membrana Celular , Glicosilfosfatidilinositóis , Glicoproteínas de Membrana , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...