Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 387
Filtrar
1.
Plant Physiol Biochem ; 210: 108617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608504

RESUMO

Considering the importance of Salvia nemorosa L. in the pharmaceutical and food industries, and also beneficial approaches of arbuscular mycorrhizal fungi (AMF) symbiosis and the use of bioelicitors such as chitosan to improve secondary metabolites, the aim of this study was to evaluate the performance of chitosan on the symbiosis of AMF and the effect of both on the biochemical and phytochemical performance of this plant and finally introduced the best treatment. Two factors were considered for the factorial experiment: AMF with four levels (non-inoculated plants, Funneliformis mosseae, Rhizophagus intraradices and the combination of both), and chitosan with six levels (0, 50, 100, 200, 400 mg L-1 and 1% acetic acid). Four months after treatments, the aerial part and root length, the levels of lipid peroxidation, H2O2, phenylalanine ammonia lyase (PAL) activity, total phenol and flavonoid contents and the main secondary metabolites (rosmarinic acid and quercetin) in the leaves and roots were determined. The flowering stage was observed in R. intraradices treatments and the highest percentage of colonization (78.87%) was observed in the treatment of F. mosseae × 400 mg L-1 chitosan. Furthermore, simultaneous application of chitosan and AMF were more effective than their separate application to induce phenolic compounds accumulation, PAL activity and reduce oxidative compounds. The cluster and principal component analysis based on the measured variables indicated that the treatments could be classified into three clusters. It seems that different treatments in different tissues have different effects. However, in an overview, it can be concluded that 400 mg L-1 chitosan and F. mosseae × R. intraradices showed better results in single and simultaneous applications. The results of this research can be considered in the optimization of this medicinal plant under normal conditions and experiments related to abiotic stresses in the future.


Assuntos
Quitosana , Peroxidação de Lipídeos , Micorrizas , Fenóis , Salvia , Quitosana/farmacologia , Micorrizas/fisiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fenóis/metabolismo , Salvia/metabolismo , Salvia/efeitos dos fármacos , Salvia/crescimento & desenvolvimento , Fenilalanina Amônia-Liase/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Glomeromycota/fisiologia , Glomeromycota/efeitos dos fármacos
2.
Mycorrhiza ; 34(1-2): 145-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441668

RESUMO

Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.


Assuntos
Glomeromycota , Micorrizas , Solanum lycopersicum , Tylenchoidea , Animais , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Glomeromycota/fisiologia , Plantas
3.
Int J Phytoremediation ; 26(7): 1117-1132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38099523

RESUMO

Little information is available on the influence of the compound use of intercropping (IN) and arbuscular mycorrhizal fungus (AMF) on Cd accumulation and the expression of Cd transporter genes in two intercropped plants. A pot experiment was conducted to study the influences of IN and AMF-Glomus versiforme on growth and Cd uptake of two intercropped plants-maize and Cd hyperaccumulator Sphagneticola calendulacea, and the expression of Cd transporter genes in maize in Cd-polluted soils. IN, AMF and combined treatments of IN and AMF (IN + AMF) obviously improved biomass, photosynthesis and total antioxidant capacities of two plants. Moreover, single and compound treatments of IN and AMF evidently reduced Cd contents in maize, and the greatest decreases appeared in the compound treatment. However, Cd contents of S. calendulacea in IN, AMF and IN + AMF groups were notably improved. Furthermore, the single and compound treatments of IN and AMF significantly downregulated the expression levels of Nramp1, HMA1, ABCC1 and ABCC10 in roots and leaves, and the largest decreases were observed in the combined treatment. Our work first revealed that the combined use of IN and AMF appeared to have a synergistic effect on decreasing Cd content by downregulating the expression of Cd transporter genes in maize.


Assuntos
Biodegradação Ambiental , Cádmio , Micorrizas , Poluentes do Solo , Zea mays , Zea mays/metabolismo , Zea mays/microbiologia , Micorrizas/fisiologia , Cádmio/metabolismo , Poluentes do Solo/metabolismo , Glomeromycota/fisiologia , Asteraceae/metabolismo
4.
PeerJ ; 11: e16151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025720

RESUMO

Background: Around the world, bamboos are ecologically, economically, and culturally important plants, particularly in tropical regions of Asia, America, and Africa. The association of this plant group with arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota is still a poorly studied field, which limits understanding of the reported ecological and physiological benefits for the plant, fungus, soil, and ecosystems under this symbiosis relationship. Methods: Through a qualitative systematic review following the PRISMA framework for the collection, synthesis, and reporting of evidence, this paper presents a compilation of the research conducted on the biology and ecology of the symbiotic relationship between Glomeromycota and Bambusoideae from around the world. This review is based on academic databases enriched with documents retrieved using different online databases and the Google Scholar search engine. Results: The literature search yielded over 6,000 publications, from which 18 studies were included in the present review after a process of selection and validation. The information gathered from the publications included over 25 bamboo species and nine Glomeromycota genera from eight families, distributed across five countries on two continents. Conclusion: This review presents the current state of knowledge regarding the symbiosis between Glomeromycota and Bambusoideae, while reflecting on the challenges and scarcity of research on this promising association found across the world.


Assuntos
Glomeromycota , Micorrizas , Humanos , Simbiose , Glomeromycota/fisiologia , Ecossistema , Micorrizas/fisiologia , Plantas/microbiologia
7.
Physiol Plant ; 175(1): e13854, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36651309

RESUMO

Arbuscular mycorrhizal fungi may alleviate water stress in plants. Although several protection mechanisms have already been described, little information is available on how these fungi influence the hormonal response to water stress at an organ-specific level. In this study, we evaluated the physiological and hormonal responses to water stress in above and below-ground tissues of the legume grass Trifolium repens colonized by the arbuscular mycorrhizal fungus Rhizoglomus irregulare. Plants were subjected to progressive water stress and recovery. Different leaf and root physiological parameters, as well as phytohormone levels, were quantified. Water-stressed mycorrhizal plants showed an improved water status and no photoinhibition compared to uncolonized individuals, while some stress markers like α-tocopherol and malondialdehyde content, an indicator of the extent of lipid peroxidation, transiently increased in roots, but not in leaves. Water stress protection exerted by mycorrhiza appeared to be related to a differential root-to-shoot redox signaling, probably mediated by jasmonates, and mycorrhization enhanced the production of the cytokinin trans-zeatin in both roots and leaves. Overall, our results suggest that mycorrhization affects physiological, redox and hormonal responses to water stress at an organ-specific level, which may eventually modulate the final protection of the host from water stress.


Assuntos
Glomeromycota , Micorrizas , Micorrizas/fisiologia , Desidratação , Glomeromycota/fisiologia , Plantas , Folhas de Planta , Raízes de Plantas/microbiologia
8.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682640

RESUMO

Plant-microorganism interactions at the rhizosphere level have a major impact on plant growth and plant tolerance and/or resistance to biotic and abiotic stresses. Of particular importance for forestry and agricultural systems is the cooperative and mutualistic interaction between plant roots and arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycotina, since about 80% of terrestrial plant species can form AM symbiosis. The interaction is tightly regulated by both partners at the cellular, molecular and genetic levels, and it is highly dependent on environmental and biological variables. Recent studies have shown how fungal signals and their corresponding host plant receptor-mediated signalling regulate AM symbiosis. Host-generated symbiotic responses have been characterized and the molecular mechanisms enabling the regulation of fungal colonization and symbiosis functionality have been investigated. This review summarizes these and other recent relevant findings focusing on the molecular players and the signalling that regulate AM symbiosis. Future progress and knowledge about the underlying mechanisms for AM symbiosis regulation will be useful to facilitate agro-biotechnological procedures to improve AM colonization and/or efficiency.


Assuntos
Glomeromycota , Micorrizas , Glomeromycota/fisiologia , Micorrizas/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Simbiose/genética
9.
Ecotoxicol Environ Saf ; 217: 112252, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33930772

RESUMO

Arbuscular mycorrhizal fungi (AMF) are ubiquitous mutualistic plant symbionts that promote plant growth and protect them from abiotic stresses. Studies on AMF-assisted phytoremediation have shown that AMF can increase plant tolerance to the presence of hydrocarbon contaminants by improving plant nutrition status and mitigating oxidative stress. This work aimed to evaluate the impact of single and mixed-species AMF inocula (Funneliformis caledonium, Diversispora varaderana, Claroideoglomus walkeri), obtained from a contaminated environment, on the growth, oxidative stress (DNA oxidation and lipid peroxidation), and activity of antioxidative enzymes (superoxide dismutase, catalase, peroxidase) in Lolium perenne growing on a substrate contaminated with 0/0-30/120 mg phenol/polynuclear aromatic hydrocarbons (PAHs) kg-1. The assessment of AMF tolerance to the presence of contaminants was based on mycorrhizal root colonization, spore production, the level of oxidative stress, and antioxidative activity in AMF spores. In contrast to the mixed-species AMF inoculum, single AMF species significantly enhanced the growth of host plants cultured on the contaminated substrate. The effect of inoculation on the level of oxidative stress and the activity of antioxidative enzymes in plant tissues differed between the AMF species. Changes in the level of oxidative stress and the activity of antioxidative enzymes in AMF spores in response to contamination also depended on AMF species. Although the concentration of phenol and PAHs had a negative effect on the production of AMF spores, low (5/20 mg phenol/PAHs kg-1) and medium (15/60 mg phenol/PAHs kg-1) substrate contamination stimulated the mycorrhizal colonization of roots. Among the studied AMF species, F. caledonium was the most tolerant to phenol and PAHs and showed the highest potential in plant growth promotion. The results presented in this study might contribute to the development of functionally customized AMF-assisted phytoremediation strategies with indigenous AMF, more effective than commercial AMF inocula, as a result of their selection by the presence of contaminants.


Assuntos
Hidrocarbonetos/toxicidade , Lolium/fisiologia , Micorrizas/fisiologia , Poluentes do Solo/toxicidade , Antioxidantes , Biodegradação Ambiental , Fungos , Glomeromycota/fisiologia , Lolium/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Hidrocarbonetos Policíclicos Aromáticos , Simbiose
10.
Ecotoxicol Environ Saf ; 215: 112170, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773154

RESUMO

Nanoscale zero-valent iron (nZVI) shows an excellent degradation effect on chlorinated contaminants in soil, but poses a threat to plants in combination with phytoremediation. Arbuscular mycorrhizal (AM) fungus can reduce the phyototoxicity of nZVI, but their combined impacts on polychlorinated biphenyls (PCBs) degradation and plant growth remain unclear. Here, a greenhouse pot experiment was conducted to investigate the influences of nZVI and/or Funneliformis caledonium on soil PCB degradation and ryegrass (Lolium perenne L.) antioxidative responses. The amendment of nZVI significantly reduced not only the total and homolog concentrations of PCBs in the soil, but also the ryegrass biomass as well as soil available P and root P concentrations. Moreover, nZVI significantly decreased leaf superoxide disutase (SOD) activity, while tended to decrease the protein content. In contrast, the additional inoculation of F. caledonium significantly increased leaf SOD activity and protein content, while tended to increase the catalase activity and tended to decrease the malondialdehyde content. The additional inoculation of F. caledonium also significantly increased soil alkaline phosphatase activity, and tended to increase root P concentration, but had no significantly effects on soil available P concentration, the biomass and P acquisition of ryegrass, which could be attributed to the fixation of soil available nutrients by nZVI. Additionally, F. caledonium facilitated PCB degradation in the nZVI-applied soil. Thus, AM fungus can alleviate the nZVI-induced phytotoxicity, showing great application potentials in accompany with nZVI for soil remediation.


Assuntos
Lolium/fisiologia , Bifenilos Policlorados/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Biomassa , Fungos , Glomeromycota/fisiologia , Ferro/metabolismo , Lolium/metabolismo , Lolium/microbiologia , Micorrizas/fisiologia , Bifenilos Policlorados/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
11.
Ecotoxicol Environ Saf ; 207: 111599, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254424

RESUMO

Given the essential role of arbuscular mycorrhizal fungi (AMF) in soil systems and agriculture, their use as biological indicators has risen in all fields of microbiology research. However, AMF sensitivity to chemical pesticides is poorly understood in field conditions, and not explored in ecotoxicology protocols. Hence, the goal of this study was to evaluate the effects of different concentrations of glyphosate (Roundup®) and diuron+paraquat (Gramocil®) on the germination of spores of Gigaspora albida and Rhizophagus clarus in a tropical artificial soil. This study was conducted in 2019 at the Soil Ecology and Ecotoxicology Laboratory of the Universidade do Estado de Santa Catarina. The nominal concentrations of glyphosate were 0, 10, 50, 100, 250, 500, 750 and 1000 mg a.i. kg-1. For diuron+paraquat, the concentrations tested were 0, 10 + 20, 50 + 100, 100 + 200, 250 + 500, 500 + 1000, 750 + 1500 and 1000 + 2000 mg a.i. kg-1. Glyphosate did not alter germination of G. albida, but germination inhibition of R. clarus spores was of 30.8% at 1000 mg kg-1. Diuron+paraquat inhibited by 8.0% germination of G. albida, but only at the highest concentration tested. On the other hand, effects on R. clarus were detected at 50 + 100 mg kg-1 concentration and above, and inhibition was as high as 57.7% at the highest concentration evaluated. These results suggest distinct response mechanisms of Rhizophagus and Gigaspora when exposed to herbicides, with the former being more sensitive than the later.


Assuntos
Fungos/fisiologia , Herbicidas/toxicidade , Poluentes do Solo/toxicidade , Esporos Fúngicos/efeitos dos fármacos , Agricultura , Diurona , Ecotoxicologia , Glomeromycota/fisiologia , Glicina/análogos & derivados , Micorrizas/fisiologia , Paraquat , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo , Glifosato
12.
J Plant Physiol ; 256: 153297, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197827

RESUMO

This study aimed to examine how interactions at both plant genotype and arbuscular mycorrhizal fungus species levels affected the expression of root traits and the subsequent effect on plant nutrition and growth. We used two wheat cultivars with contrasting phosphorus (P) acquisition efficiencies (Tukan and Crac) and two arbuscular mycorrhizal (AM) fungi (Rhizophagus intraradices and Claroideoglomus claroideum). Plant growth, as well as morphological and architectural root traits, were highly dependent on the myco-symbiotic partner in the case of the less P-acquisition efficient cultivar Tukan, with mycorrhizal responses ranging from -45 to 54 % with respect to non-mycorrhizal plants. Meanwhile, these responses were between only -7 and 5 % in the P-acquisition efficient cultivar Crac. The AM fungal species produced contrasting mechanisms in the improvement of plant nutrition and root trait responses. Colonization by R. intraradices increased Ca accumulation, regardless of the cultivar, but reduced root growth on Tukan plants. On the other hand, C. claroideum increased P content in both cultivars, with a concomitant increase in root growth and diffusion-based nutrient acquisition by Tukan. Moreover, plants in symbiosis with R. intraradices showed greater organic acid concentration in their rhizosphere compared to C. claroideum-colonized plants, especially Tukan (24 and 35 % more citrate and oxalate, respectively). Our results suggest that the responses in plant-AM fungal interactions related to nutrient dynamics are highly influenced at the fungus level and also by intra-specific variations in root traits at the genotype level, while growth responses related to improved nutrition depend on plant intrinsic acquisition efficiency.


Assuntos
Glomeromycota/fisiologia , Micorrizas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Simbiose/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Triticum/microbiologia , Adaptação Fisiológica , Variação Genética , Genótipo
13.
Sci Rep ; 10(1): 20287, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219310

RESUMO

In a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae. The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae, regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae, with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands.


Assuntos
Echinops (Planta)/microbiologia , Glomeromycota/fisiologia , Espécies Introduzidas , Inula/microbiologia , Micorrizas/fisiologia , Echinops (Planta)/fisiologia , Europa (Continente) , Pradaria , Inula/fisiologia , Microbiologia do Solo
14.
Ecotoxicol Environ Saf ; 203: 110988, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678761

RESUMO

The screening and identification of hyperaccumulators is the key to the phytoremediation of soils contaminated by heavy metal (HM). Arbuscular mycorrhizal fungus (AMF) can improve plant growth and tolerance to HM; therefore, AMF-assisted phytoextraction has been regarded as a potential technique for the remediation of HM-polluted soils. A greenhouse pot experiment was conducted to determine whether Sphagneticola calendulacea is a Cd-hyperaccumulator and to investigate the effect of the AMF-Funneliformis mosseae (FM) on plant growth and on the accumulation, subcellular distribution and chemical form of Cd in S. calendulacea grown in soils supplemented with different Cd levels. At 25, 50 and 100 mg Cd kg-1 level, S. calendulacea showed high Cd tolerance, the translocation factor and the bioconcentration factor exceeded 1, and accumulation of more than 100 mg Cd kg-1 was observed in the aboveground parts of the plant, meeting the requirements for a Cd-hyperaccumulator. Moreover, FM colonization significantly increased both biomasses and Cd concentration in S. calendulacea. After FM inoculation, the Cd concentrations and proportions increased in the cell walls, but exhibited no significant change in the organelles of the shoots. Meanwhile, FM symbiosis contributed to the conversion of Cd from highly toxic chemical forms (extracted by 80% ethanol and deionized water) to less toxic chemical forms (extracted by 1 M NaCl, 2% acetic acid, 0.6 M HCl) of Cd in the shoots. Overall, S. calendulacea is a typical Cd-hyperaccumulator, and FM symbiosis relieved the phytotoxicity of Cd and promoted plant growth and Cd accumulation, and thus greatly increasing the efficiency of phytoextraction for Cd-polluted soil. Our study provides a theoretical basis and application guidance for the remediation of Cd-contaminated soil by the symbiont of S. calendulacea with FM.


Assuntos
Asteraceae/metabolismo , Bioacumulação , Cádmio/metabolismo , Glomeromycota/fisiologia , Micorrizas/fisiologia , Poluentes do Solo/metabolismo , Asteraceae/crescimento & desenvolvimento , Asteraceae/microbiologia , Biodegradação Ambiental
15.
Microbiol Res ; 240: 126556, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683279

RESUMO

The synergistic interaction between arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) can enhance growth and phosphorous uptake in plants. Since PSBs are well known hyphal colonizers we sought to understand this physical interaction and exploit it in order to design strategies for the application of a combined microbial inoculum. Phosphate-solubilizing bacteria strongly attached to the hyphae of Rhizoglomus irregulare were isolated using a two compartment system (root and hyphal compartments), which were separated by a nylon mesh through which AMF hyphae could pass but not plant roots. Allium ampeloprasum (Leek) was used as the host plant inoculated with R. irregulare. A total of 128 bacteria were isolated, of which 12 showed stable phosphate solubilizing activity. Finally, three bacteria belonging to the genus Pseudomonas showed the potential for inorganic and organic phosphate mobilization along with other plant growth promoting traits. These PSBs were further evaluated for their functional characteristics and their interaction with AMF. The impact of single or co-inoculations of the selected bacteria and AMF on Solanum lycopersicum was tested and we found that plants inoculated with the combination of fungus and bacteria had significantly higher plant biomass compared to single inoculations, indicating synergistic activities of the bacterial-fungal consortium.


Assuntos
Bactérias/metabolismo , Biomassa , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/fisiologia , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Fosfatos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Bactérias/genética , Glomeromycota/genética , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/microbiologia , Micorrizas/metabolismo , Organofosfatos/metabolismo , Ácidos Fosforosos , Fósforo/metabolismo , Desenvolvimento Vegetal , RNA Ribossômico 16S , Microbiologia do Solo
16.
Proc Natl Acad Sci U S A ; 117(28): 16649-16659, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32586957

RESUMO

Low availability of nitrogen (N) is often a major limiting factor to crop yield in most nutrient-poor soils. Arbuscular mycorrhizal (AM) fungi are beneficial symbionts of most land plants that enhance plant nutrient uptake, particularly of phosphate. A growing number of reports point to the substantially increased N accumulation in many mycorrhizal plants; however, the contribution of AM symbiosis to plant N nutrition and the mechanisms underlying the AM-mediated N acquisition are still in the early stages of being understood. Here, we report that inoculation with AM fungus Rhizophagus irregularis remarkably promoted rice (Oryza sativa) growth and N acquisition, and about 42% of the overall N acquired by rice roots could be delivered via the symbiotic route under N-NO3- supply condition. Mycorrhizal colonization strongly induced expression of the putative nitrate transporter gene OsNPF4.5 in rice roots, and its orthologs ZmNPF4.5 in Zea mays and SbNPF4.5 in Sorghum bicolor OsNPF4.5 is exclusively expressed in the cells containing arbuscules and displayed a low-affinity NO3- transport activity when expressed in Xenopus laevis oocytes. Moreover, knockout of OsNPF4.5 resulted in a 45% decrease in symbiotic N uptake and a significant reduction in arbuscule incidence when NO3- was supplied as an N source. Based on our results, we propose that the NPF4.5 plays a key role in mycorrhizal NO3- acquisition, a symbiotic N uptake route that might be highly conserved in gramineous species.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Glomeromycota/fisiologia , Micorrizas/fisiologia , Nitrogênio/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Regulação da Expressão Gênica de Plantas , Transportadores de Nitrato , Nitratos/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Sorghum/genética , Sorghum/metabolismo , Sorghum/microbiologia , Zea mays/genética , Zea mays/metabolismo , Zea mays/microbiologia
17.
Chemosphere ; 256: 127046, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32438129

RESUMO

Although it was well known that arbuscular mycorrhizal fungus (AMF) inoculation significantly increased atrazine dissipation in the soil, the effect of AMF on bacterial community, especially potential atrazine-degrading bacteria mediating atrazine dissipation has been overlooked. In the present study, there were four different treatments: Funnelliformis mosseae inoculation with or without atrazine; and non-AMF inoculation with or without atrazine. F. mosseae significantly increased atrazine dissipation rate from 28.7% to 53.3%. Then 16S rRNA gene sequencing results indicated that bacteria community differed significantly by F. mosseae inoculation and atrazine addition. The Shannon index decreased significantly with AMF and atrazine at phylum and family level, and significant inhibition of atrazine on evenness was also observed. LEFSe analysis revealed that Terrimonas and Arthrobacter were significantly associated with F. mosseae, as well as unidentified_Nitrospiraceae associated with atrazine addition. There are several bacterial taxa associated with both F. mosseae inoculation and atrazine addition. Totally, twelve atrazine-degrading bacterial genera (>0.10%) were identified. When atrazine was added, the abundance of Arthrobacter, Burkholderia, Mycobacterium and Streptomyces increased in F. mosseae inoculation treatment, but Nocardioides, Pseudomonas, Bradyrhizobium, Rhizobium, Rhodobacter, Methylobacterium, Bosea and Shinella decreased. In the presence of atrazine, activities of dehydrogenase, urease, acid and alkaline phosphatase in F. mosseae inoculation treatment were significantly higher than those in non-inoculation. However, there was no significant relationship between bacterial community and any soil enzyme activity in four treatments. Our findings reveal the potential relationship between soil bacterial community and AMF inoculation during atrazine dissipation.


Assuntos
Atrazina/toxicidade , Herbicidas/toxicidade , Micorrizas/fisiologia , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Glomeromycota/fisiologia , Raízes de Plantas/efeitos dos fármacos , RNA Ribossômico 16S , Solo
18.
BMC Plant Biol ; 20(1): 154, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272878

RESUMO

BACKGROUND: Phosphate is an essential plant macronutrient required to achieve maximum crop yield. Roots are able to uptake soil phosphate from the immediate root area, thus creating a nutrient depletion zone. Many plants are able to exploit phosphate from beyond this root nutrient depletion zone through symbiotic association with Arbuscular Mycorrhizal Fungi (AMF). Here we characterise the relationship between root architecture, AMF association and low phosphate tolerance in strawberries. The contrasting root architecture in the parental strawberry cultivars 'Redgauntlet' and 'Hapil' was studied through a mapping population of 168 progeny. Low phosphate tolerance and AMF association was quantified for each genotype to allow assessment of the phenotypic and genotypic relationships between traits. RESULTS: A "phosphate scavenging" root phenotype where individuals exhibit a high proportion of surface lateral roots was associated with a reduction in root system size across genotypes. A genetic correlation between "root system size" traits was observed with a network of pleiotropic QTL found to represent five "root system size" traits. By contrast, average root diameter and the distribution of roots appeared to be under two discrete methods of genetic control. A total of 18 QTL were associated with plant traits, 4 of which were associated with solidity that explained 46% of the observed variation. Investigations into the relationship between AMF association and root architecture found that a higher root density was associated with greater AMF colonisation across genotypes. However, no phenotypic correlation or genotypic association was found between low phosphate tolerance and the propensity for AMF association, nor root architectural traits when plants are grown under optimal nutrient conditions. CONCLUSIONS: Understanding the genetic relationships underpinning phosphate capture can inform the breeding of strawberry varieties with better nutrient use efficiency. Solid root systems were associated with greater AMF colonisation. However, low P-tolerance was not phenotypically or genotypically associated with root architecture traits in strawberry plants. Furthermore, a trade-off was observed between root system size and root architecture type, highlighting the energetic costs associated with a "phosphate scavenging" root architecture.


Assuntos
Fragaria/genética , Genótipo , Glomeromycota/fisiologia , Micorrizas/fisiologia , Fosfatos/metabolismo , Fragaria/anatomia & histologia , Fragaria/metabolismo , Fragaria/microbiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poliploidia
19.
J Appl Microbiol ; 128(2): 513-517, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31587491

RESUMO

AIM: To select the best combination of arbuscular mycorrhizal fungi and efficient vermicompost dose in maximizing the production of leaf metabolites in Punica granatum seedlings. METHODS AND RESULTS: The experimental design was in a 3 × 3 factorial arrangement: three inoculation treatments (inoculated with Gigaspora albida, inoculated with Acaulospora longula and control not inoculated) × 3 doses of vermicompost (0, 5 and 7·5%). After 120 days of inoculation, biomolecules, plant growth parameters and mycorrhizal colonization were evaluated. The combination of 7·5% of vermicompost and A. longula was favourable to the accumulation of leaf phenols, with an increase of 116·11% in relation to the non-inoculated control. The total tannins was optimized/enhanced when G. albida and 7·5% of fertilizer were used, registering an increase of 276·71%. CONCLUSIONS: The application of 7·5% of vermicompost associated with A. longula and G. albida is a low cost alternative to increase the levels of bioactive compounds in pomegranate leaves. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first published report of optimization of bioactive compound production in P. granatum by the combined use of mycorrhiza and vermicompost doses.


Assuntos
Produção Agrícola/métodos , Fertilizantes/análise , Glomeromycota/fisiologia , Micorrizas/fisiologia , Agricultura Orgânica/métodos , Folhas de Planta/química , Punica granatum/crescimento & desenvolvimento , Produção Agrícola/economia , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Agricultura Orgânica/economia , Fenóis/análise , Fenóis/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Punica granatum/química , Punica granatum/metabolismo , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Taninos/análise , Taninos/metabolismo
20.
New Phytol ; 225(1): 448-460, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596956

RESUMO

Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.


Assuntos
Quitina/metabolismo , Lisina/metabolismo , Micorrizas/fisiologia , Imunidade Vegetal , Simbiose , Motivos de Aminoácidos , Sequência de Aminoácidos , Quitina/análogos & derivados , Quitinases/metabolismo , Quitosana , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inativação Gênica , Genes Fúngicos , Glomeromycota/genética , Glomeromycota/fisiologia , Interações Hospedeiro-Patógeno , Micélio/metabolismo , Micorrizas/genética , Oligossacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...