Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903561

RESUMO

Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with higher frequency of all types of cancers. So, the present work specifically focuses on the design and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug molecules were screened along with biological activity to identify the small molecular inhibitors using computer-aided drug design strategies. The designed molecules proposed in this work show better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG formation compare to the reported drugs in the in silico approach.


Assuntos
Isocitrato Desidrogenase , Neoplasias , Humanos , Isocitrato Desidrogenase/genética , Regulação Alostérica , Glutaratos/química , Mutação , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia
2.
Faraday Discuss ; 241(0): 178-193, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36169080

RESUMO

Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools.


Assuntos
Cristalização , Niacinamida , Temperatura , Termodinâmica , Niacinamida/química , Glutaratos/química
3.
Proc Natl Acad Sci U S A ; 119(35): e2209134119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994653

RESUMO

Many mass spectrometry methods using various ionization sources provide bulk composition of airborne particles, but little is known about the surface species that play a major role in determining their physicochemical properties that impact air quality, climate, and health. The present work shows that the composition of surface layers of atmospherically relevant submicron organic particles can be probed without the use of an external ionization source. Solid dicarboxylic acid particles are used as models, with glutaric acid being the most efficient at generating ions. Coating with small diacids or products from α-pinene ozonolysis demonstrates that ions are ejected from the surface, providing surface molecular characterization of organic particles on the fly. This unique approach provides a path forward for elucidating the role of the surface in determining chemical and physical properties of particles, including heterogeneous reactions, particle growth, water uptake, and interactions with biological systems.


Assuntos
Poluição do Ar , Atmosfera , Espectrometria de Massas , Compostos Orgânicos , Propriedades de Superfície , Aerossóis/análise , Poluição do Ar/análise , Atmosfera/química , Monoterpenos Bicíclicos/química , Clima , Exposição Ambiental , Glutaratos/química , Humanos , Íons/química , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Ozônio/química , Tamanho da Partícula , Água/química
4.
Chem Res Toxicol ; 35(2): 115-124, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35018778

RESUMO

2-Hydroxyglutarate (2-HG) is an unconventional oncometabolite of α-ketoglutarate. Isocitrate dehydrogenase mutation is generally acknowledged to be the main cause of 2-HG accumulation. In isocitrate dehydrogenase mutant tumors, 2-HG accumulation inhibits α-ketoglutarate/Fe(II)-dependent dioxygenases, resulting in epigenetic alterations. Recently, the increase of 2-HG has also been observed in the cases of mitochondrial dysfunction and hypoxia. In these cases, 2-HG not only inhibits α-ketoglutarate/Fe(II)-dependent dioxygenases to regulate epigenetics but also affects other cellular pathways, such as regulating hypoxia-inducible transcription factors and glycolysis. These provide a new perspective for the study of 2-HG.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Glutaratos/química , Humanos , Isocitrato Desidrogenase/metabolismo , Conformação Molecular , Mutação
5.
Nat Commun ; 12(1): 7108, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876568

RESUMO

D-2-Hydroxyglutarate (D-2-HG) is a metabolite involved in many physiological metabolic processes. When D-2-HG is aberrantly accumulated due to mutations in isocitrate dehydrogenase or D-2-HG dehydrogenase, it functions in a pro-oncogenic manner and is thus considered a therapeutic target and biomarker in many cancers. In this study, DhdR from Achromobacter denitrificans NBRC 15125 is identified as an allosteric transcriptional factor that negatively regulates D-2-HG dehydrogenase expression and responds to the presence of D-2-HG. Based on the allosteric effect of DhdR, a D-2-HG biosensor is developed by combining DhdR with amplified luminescent proximity homogeneous assay (AlphaScreen) technology. The biosensor is able to detect D-2-HG in serum, urine, and cell culture medium with high specificity and sensitivity. Additionally, this biosensor is used to identify the role of D-2-HG metabolism in lipopolysaccharide biosynthesis of Pseudomonas aeruginosa, demonstrating its broad usages.


Assuntos
Oxirredutases do Álcool/metabolismo , Técnicas Biossensoriais , Regulação da Expressão Gênica , Glutaratos/química , Glutaratos/metabolismo , Achromobacter denitrificans/enzimologia , Achromobacter denitrificans/genética , Achromobacter denitrificans/metabolismo , Oxirredutases do Álcool/genética , Bactérias/metabolismo , Células HEK293 , Humanos , Isocitrato Desidrogenase , Redes e Vias Metabólicas , Mutação , Neoplasias , Fatores de Transcrição
6.
J Struct Biol ; 213(2): 107744, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33984505

RESUMO

Kanosamine is an antibiotic and antifungal monosaccharide. The kanosamine biosynthetic pathway from glucose 6-phosphate in Bacillus cereus UW85 was recently reported, and the functions of each of the three enzymes in the pathway, KabA, KabB and KabC, were demonstrated. KabA, a member of a subclass of the VIß family of PLP-dependent aminotransferases, catalyzes the second step in the pathway, generating kanosamine 6-phosphate (K6P) using l-glutamate as the amino-donor. KabA catalysis was shown to be extremely efficient, with a second-order rate constant with respect to K6P transamination of over 107 M-1s-1. Here we report the high-resolution structure of KabA in both the PLP- and PMP-bound forms. In addition, co-crystallization with K6P allowed the structure of KabA in complex with the covalent PLP-K6P adduct to be solved. Co-crystallization or soaking with glutamate or 2-oxoglutarate did not result in crystals with either substrate/product. Reduction of the PLP-KabA complex with sodium cyanoborohydride gave an inactivated enzyme, and crystals of the reduced KabA were soaked with the l-glutamate analog glutarate to mimic the KabA-PLP-l-glutamate complex. Together these four structures give a complete picture of how the active site of KabA recognizes substrates for each half-reaction. The KabA structure is discussed in the context of homologous aminotransferases.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/química , Transaminases/química , Transaminases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Coenzimas/metabolismo , Cristalografia por Raios X , Glucosamina/biossíntese , Glutaratos/química , Glutaratos/metabolismo , Lisina/metabolismo , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/metabolismo , Transaminases/genética , Transaminases/isolamento & purificação
7.
Inorg Chem ; 60(7): 4800-4815, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33764783

RESUMO

The carbon starvation-induced protein D (CsiD) is a recently characterized iron(II)/α-ketoglutarate-dependent oxygenase that activates a glutarate molecule as substrate at the C2 position to exclusively produce (S)-2-hydroxyglutarate products. This selective hydroxylation reaction by CsiD is an important component of the lysine biodegradation pathway in Escherichia coli; however, little is known on the details and the origin of the selectivity of the reaction. So far, experimental studies failed to trap and characterize any short-lived catalytic cycle intermediates. As no computational studies have been reported on this enzyme either, we decided to investigate the chemical reaction mechanism of glutarate activation by an iron(IV)-oxo model of the CsiD enzyme. In this work, we present a density functional theory study on a large active site cluster model of CsiD and investigate the glutarate hydroxylation pathways by a high-valent iron(IV)-oxo species leading to (S)-2-hydroxyglutarate, (R)-2-hydroxyglutarate, and 3-hydroxyglutarate. In agreement with experimental observation, the favorable product channel leads to pro-S C2-H hydrogen atom abstraction to form (S)-2-hydroxyglutarate. The reaction is stepwise with a hydrogen atom abstraction by an iron(IV)-oxo species followed by OH rebound from a radical intermediate. The work presented in this paper shows that despite the fact that the C-H bond strengths at the C2 and C3 positions of glutarate are similar in the gas phase, substrate binding and positioning guide the reaction to an enantioselective reaction process by destabilizing the hydrogen atom abstraction pathways for the pro-R C2-H and C3-H positions. Our studies predict the chemical properties of the iron(IV)-oxo species and its rate constants with glutarate and deuterated-glutarate. Moreover, the work shows little protein motions during the catalytic process, while the substrate entrance into the substrate binding pocket appears to be guided by three active site arginine residues that position the substrate for pro-S C2-H hydrogen atom abstraction. Finally, the calculations show that irrespective of the position of the substrate and what C-H bond is closest to the metal center, the lowest energy pathway is for a selective pro-S C2-H hydrogen atom abstraction.


Assuntos
Teoria da Densidade Funcional , Dioxigenases/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutaratos/metabolismo , Dioxigenases/química , Proteínas de Escherichia coli/química , Glutaratos/química , Hidroxilação , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
8.
Mol Divers ; 25(1): 45-53, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31873869

RESUMO

Soluble epoxide hydrolase (sEH) enzyme plays an important role in the metabolism of endogenous chemical mediators, epoxyeicosatrienoic acids, which are involved in the regulation of blood pressure and inflammation. According to the pharmacophoric model suggested for sEH inhibitors, some new amide-based derivatives of 3-phenylglutaric acid were designed, synthesized and biologically evaluated. Docking study illustrated that the amide group as a primary pharmacophore had a suitable distance from the three amino acids of Tyr383, Tyr466 and Asp335 for effective hydrogen binding. Most of the compounds showed moderate to high sEH inhibitory activities in in vitro test in comparison with 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid, as a potent urea-based sEH inhibitor. Compound 6o with phenethyl in R position exhibited the highest activity with IC50 value of 0.5 nM. In this study, some new amide-based derivatives of 3-phenylglutaric acid were designed, synthesized and biologically evaluated. Most of the synthesized compounds provided nanomolar range inhibition against sEH enzyme. The best observed IC50 value was 0.5 nM. Incorporating a carboxylic moiety into these structures by forming carboxylate salts would increase the solubility and improving physicochemical properties.


Assuntos
Amidas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Glutaratos/química , Glutaratos/farmacologia , Humanos , Ácidos Láuricos/química , Modelos Moleculares , Solubilidade/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Mol Imaging Biol ; 23(3): 310-322, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33206335

RESUMO

Glucarate, a physiologic end-product of the D-glucuronic acid pathway in mammals, is a six-carbon dicarboxylic acid with a wide range of uses. Glucarate-based molecular imaging probes including [99mTc]glucarate and [18F]glucarate have been developed and demonstrated to have infarct/necrosis-avid and/or tumor-seeking properties, showing potential applications in early detection of myocardial infarction, evaluation of tissue viability, monitoring of therapeutic effectiveness, and noninvasive imaging of certain tumors including drug-resistant ones. The mechanism by which [99mTc]glucarate localizes in acute necrotic tissues has been demonstrated to be largely attributable to its binding to the positively charged histones, which become accessible after the disruption of the cell and nuclear membranes as a result of irreversible damage, while the tumor-seeking mechanism of [99mTc]glucarate has been found to be closely related to glucose transporter 5 expression. Moreover, the recently developed [18F]glucarate provides a new alternative probe for positron emission tomography imaging and may have potential advantages over [99mTc]glucarate. In this review, we present the untiring pursuit for glucarate-based molecular imaging probes as infarct/necrosis-avid agent and/or tumor-seeking agent. Moreover, the limitations and the prospects for future research of glucarate-based molecular probes are also discussed.


Assuntos
Glutaratos/química , Sondas Moleculares/química , Animais , Circulação Cerebrovascular , Cães , Radioisótopos de Flúor , Humanos , Oncologia , Camundongos , Camundongos Nus , Infarto do Miocárdio/metabolismo , Necrose , Transplante de Neoplasias , Neoplasias/patologia , Compostos de Organotecnécio , Prognóstico , Cintilografia , Compostos Radiofarmacêuticos , Tecnécio , Tomografia Computadorizada de Emissão de Fóton Único
10.
Int J Biol Macromol ; 166: 851-860, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161076

RESUMO

We report a facile approach for the preparation of protein conjugated glutaric acid functionalized Fe3O4 magnetic nanoparticles (Pro-Glu-MNPs), having improved colloidal stability and heating efficacy. The Pro-Glu-MNPs were prepared by covalent conjugation of BSA protein onto the surface of glutaric acid functionalized Fe3O4 magnetic nanoparticles (Glu-MNPs) obtained through thermal decomposition. XRD and TEM analyses confirmed the formation of crystalline Fe3O4 nanoparticles of average size ~5 nm, whereas the conjugation of BSA protein to them was evident from XPS, FTIR, TGA, DLS and zeta-potential measurements. These Pro-Glu-MNPs showed good colloidal stability in different media (water, phosphate buffer saline, cell culture medium) and exhibited room temperature superparamagnetism with good magnetic field responsivity towards the external magnet. The induction heating studies revealed that the heating efficacy of these Pro-Glu-MNPs was strongly reliant on the particle concentration and their stabilizing media. In addition, they showed enhanced heating efficacy over Glu-MNPs as surface passivation by protein offers colloidal stability to them as well as prevents their aggregation under AC magnetic field. Further, Pro-Glu-MNPs are biocompatible towards normal cells and showed substantial cellular internalization in cancerous cells, suggesting their potential application in hyperthermia therapy.


Assuntos
Hipertermia Induzida/métodos , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanoconjugados/química , Soroalbumina Bovina/química , Glutaratos/química , Células HeLa , Humanos , Células MCF-7 , Estabilidade Proteica
11.
Biochem Biophys Res Commun ; 534: 261-265, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33280817

RESUMO

3-methylglutaconic (3MGC) aciduria is associated with a growing number of discrete inborn errors of metabolism. Herein, an antibody-based approach to detection/quantitation of 3MGC acid has been pursued. When trans-3MGC acid conjugated keyhole limpet hemocyanin (KLH) was inoculated into rabbits a strong immune response was elicited. Western blot analysis provided evidence that immune serum, but not pre-immune serum, recognized 3MGC-conjugated bovine serum albumin (BSA). In competition ELISAs using isolated immune IgG, the limit of detection for free trans-3MGC acid was compared to that for cis-3MGC acid and four structurally related short-chain dicarboxylic acids. Surprisingly, cis-3MGC acid yielded a much lower limit of detection (∼0.1 mg/ml) than trans-3MGC acid (∼1.0 mg/ml) while all other dicarboxylic acids tested were poor competitors. The data suggest trans-3MGC- isomerized during, or after, conjugation to KLH such that the immunogen was actually comprised of KLH harboring a mixture of cis- and trans-3MGC haptens. To investigate this unexpected isomerization reaction, trans-3MGC CoA was prepared and incubated at 37 °C in the presence of BSA. Evidence was obtained that non-enzymatic isomerization of trans-3MGC CoA to cis-3MGC CoA precedes intramolecular catalysis to form cis-3MGC anhydride plus CoASH. Anhydride-dependent acylation of BSA generated 3MGCylated BSA, as detected by anti-3MGC immunoblot. The results presented provide an explanation for the unanticipated detection of 3MGCylated proteins in a murine model of primary 3MGC aciduria. Furthermore, non-enzymatic hydrolysis of cis-3MGC anhydride represents a potential source of cis-3MGC acid found in urine of subjects with 3MGC aciduria.


Assuntos
Glutaratos/química , Glutaratos/imunologia , Acilação , Animais , Coenzima A/metabolismo , Ácidos Dicarboxílicos/análise , Ácidos Dicarboxílicos/imunologia , Glutaratos/análise , Haptenos/imunologia , Hemocianinas/imunologia , Hemocianinas/metabolismo , Temperatura Alta , Soros Imunes/imunologia , Imunoglobulina G/imunologia , Isomerismo , Coelhos , Soroalbumina Bovina/imunologia
12.
Biochemistry ; 59(51): 4833-4844, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33301690

RESUMO

d-2-Hydroxyglutarate dehydrogenase from Pseudomonas aeruginosa PAO1 (PaD2HGDH) catalyzes the oxidation of d-2-hydroxyglutarate to 2-ketoglutarate, which is a necessary step in the serine biosynthetic pathway. The dependence of P. aeruginosa on PaD2HGDH makes the enzyme a potential therapeutic target against P. aeruginosa. In this study, recombinant His-tagged PaD2HGDH was expressed and purified to high levels from gene PA0317, which was previously annotated as an FAD-binding PCMH-type domain-containing protein. The enzyme cofactor was identified as FAD with fluorescence emission after phosphodiesterase treatment and with mass spectrometry analysis. PaD2HGDH had a kcat value of 11 s-1 and a Km value of 60 µM with d-2-hydroxyglutarate at pH 7.4 and 25 °C. The enzyme was also active with d-malate but did not react with molecular oxygen. Steady-state kinetics with d-malate and phenazine methosulfate as an electron acceptor established a mechanism that was consistent with ping-pong bi-bi steady-state kinetics at pH 7.4. A comparison of the kcat/Km values with d-2-hydroxyglutarate and d-malate suggested that the C5 carboxylate of d-2-hydroxyglutarate is important for the substrate specificity of the enzyme. Other homologues of the enzyme have been previously grouped in the VAO/PMCH family of flavoproteins. PaD2HGDH shares fully conserved residues with other α-hydroxy acid oxidizing enzymes, and these conserved residues are found in the active site of the PaD2HDGH homology model. An Enzyme Function Initiative-Enzyme Similarity Tool Sequence Similarity Network analysis suggests a functional difference between PaD2HGDH and human D2HGDH, and no relationship with VAO. A phylogenetic tree analysis of PaD2HGDH, VAO, and human D2HGDH establishes genetic diversity among these enzymes.


Assuntos
Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Pseudomonas aeruginosa/enzimologia , Oxirredutases do Álcool/isolamento & purificação , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Biologia Computacional , Flavina-Adenina Dinucleotídeo/química , Glutaratos/química , Cinética , Filogenia , Alinhamento de Sequência
13.
Sci Rep ; 10(1): 21068, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273603

RESUMO

Recently, a 18F-labeled derivative of the widely used 68Ga-PSMA-11 was developed for PET imaging of prostate cancer. Although 18F-PSMA-11 has already been evaluated in a Phase I and Phase II clinical trial, preclinical evaluation of this radiotracer is important for further understanding its dynamic behavior. Saturation binding experiments were conducted by incubation of LNCaP cells with 18F-PSMA-11 or 68Ga-PSMA-11 for 1 h, followed by determination of the specific and aspecific binding. Mice bearing LNCaP or PC-3 xenografts each received ± 3.7 MBq 18F-PSMA-11 and 68Ga-PSMA-11 followed by dynamic acquisition of 2.5 h as well as ± 15 MBq 18F-FDG followed by static acquisition at 1 h post injection (p.i.). Uptake was evaluated by comparison of uptake parameters (SUVmean, SUVmax, TBRmean and TBRmax). Mice underwent ex vivo biodistribution where 18F-PSMA-11 activity was measures in excretory organs (kidneys, bladder and liver) as well as bone fragments (femur, humerus, sternum and skull) to evaluate bone uptake. The dissociation constant (Kd) of 18F-PSMA-11 and 68Ga-PSMA-11 was 2.95 ± 0.87 nM and 0.49 ± 0.20 nM, respectively. Uptake parameters were significantly higher in LNCaP compared to PC-3 xenografts for both 18F-PSMA-11 and 68Ga-PSMA-11, while no difference was found for 18F-FDG uptake (except for SUVmax). Tumor uptake of 18F-PSMA-11 showed a similar trend over time as 68Ga-PSMA-11, although all uptake parameter curves of the latter were considerably lower. When comparing early (60 min p.i.) to delayed (150 min p.i.) imaging for both radiotracers individually, TBRmean and TBRmax were significantly higher at the later timepoint, as well as the SUVmax of 68Ga-PSMA-11. The highest %ID/g was determined in the kidneys (94.0 ± 13.6%ID/g 1 h p.i.) and the bladder (6.48 ± 2.18%ID/g 1 h p.i.). No significant increase in bone uptake was seen between 1 and 2 h p.i. Both radiotracers showed high affinity for the PSMA receptor. Over time, all uptake parameters were higher for 18F-PSMA-11 compared to 68Ga-PSMA-11. Delayed imaging with the latter may improve tumor visualization, while no additional benefits could be found for late 18F-PSMA-11 imaging. Ex vivo biodistribution demonstrated fast renal clearance of 18F-PSMA-11 as well as no significant increase in bone uptake.


Assuntos
Ácido Edético/análogos & derivados , Glutaratos/química , Oligopeptídeos/química , Ácidos Fosfínicos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Ácido Edético/química , Fluordesoxiglucose F18/química , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Distribuição Tecidual
14.
Genes (Basel) ; 11(9)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878321

RESUMO

Post Translational Modification (PTM) is defined as the alteration of protein sequence upon interaction with different macromolecules after the translation process. Glutarylation is considered one of the most important PTMs, which is associated with a wide range of cellular functioning, including metabolism, translation, and specified separate subcellular localizations. During the past few years, a wide range of computational approaches has been proposed to predict Glutarylation sites. However, despite all the efforts that have been made so far, the prediction performance of the Glutarylation sites has remained limited. One of the main challenges to tackle this problem is to extract features with significant discriminatory information. To address this issue, we propose a new machine learning method called BiPepGlut using the concept of a bi-peptide-based evolutionary method for feature extraction. To build this model, we also use the Extra-Trees (ET) classifier for the classification purpose, which, to the best of our knowledge, has never been used for this task. Our results demonstrate BiPepGlut is able to significantly outperform previously proposed models to tackle this problem. BiPepGlut achieves 92.0%, 84.8%, 95.6%, 0.82, and 0.88 in accuracy, sensitivity, specificity, Matthew's Correlation Coefficient, and F1-score, respectively. BiPepGlut is implemented as a publicly available online predictor.


Assuntos
Evolução Molecular , Glutaratos/química , Lisina/química , Mycobacterium tuberculosis/metabolismo , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Animais , Biologia Computacional , Glutaratos/metabolismo , Lisina/metabolismo , Aprendizado de Máquina , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fragmentos de Peptídeos/metabolismo , Proteínas/metabolismo , Máquina de Vetores de Suporte
15.
PLoS One ; 15(9): e0236081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32960890

RESUMO

Type 2 diabetes mellitus (T2DM), one of the most common metabolic diseases, is characterized by insulin resistance and inadequate insulin secretion of ß cells. Glycogen phosphorylase (GP) is the key enzyme in glycogen breakdown, and contributes to hepatic glucose production during fasting or during insulin resistance. Pharmacological GP inhibitors are potential glucose lowering agents, which may be used in T2DM therapy. A natural product isolated from the cultured broth of the fungal strain No. 138354, called 2,3-bis(4-hydroxycinnamoyloxy)glutaric acid (FR258900), was discovered a decade ago. In vivo studies showed that FR258900 significantly reduced blood glucose levels in diabetic mice. We previously showed that GP inhibitors can potently enhance the function of ß cells. The purpose of this study was to assess whether an analogue of FR258900 can influence ß cell function. BF142 (Meso-Dimethyl 2,3-bis[(E)-3-(4-acetoxyphenyl)prop-2-enamido]butanedioate) treatment activated the glucose-stimulated insulin secretion pathway, as indicated by enhanced glycolysis, increased mitochondrial oxidation, significantly increased ATP production, and elevated calcium influx in MIN6 cells. Furthermore, BF142 induced mTORC1-specific phosphorylation of S6K, increased levels of PDX1 and insulin protein, and increased insulin secretion. Our data suggest that BF142 can influence ß cell function and can support the insulin producing ability of ß cells.


Assuntos
Cinamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Glutaratos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ácido Succínico/farmacologia , Animais , Linhagem Celular Tumoral , Cinamatos/química , Inibidores Enzimáticos/química , Glucose/metabolismo , Glutaratos/química , Glicogênio Fosforilase/metabolismo , Glicólise/efeitos dos fármacos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Metilação , Camundongos , Ácido Succínico/química
16.
Eur Biophys J ; 49(7): 549-559, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32880665

RESUMO

Chiral discrimination in biological systems, such as L-amino acids in proteins and d-sugars in nucleic acids, has been proposed to depend on various mechanisms, and chiral discrimination by mutated enzymes mediating cancer cell signaling is important in current research. We have explored how mutated isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate which in turn is converted to d-2-hydroxyglutatrate (d-2HG) as a preferred product instead of l-2-hydroxyglutatrate (l-2HG) according to quantum chemical calculations. Using transition state structure modeling, we delineate the preferred product formation of d-2HG over l-2HG in an IDH active site model. The mechanisms for the formation of d-2HG over l-2HG are assessed by identifying transition state structures and activation energy barriers in gas and solution phases. The calculated reaction energy profile for the formation of d-2HG and l-2HG metabolites shows a 29 times higher value for l-2HG as compared to d-2HG. Results for second-order Møller-Plesset perturbation theory (MP2) do not alter the observed trend based on Density Functional Theory (DFT). The observed trends in reaction energy profile explain why the formation of D-2HG is preferred over l-2HG and reveal why mutation leads to the formation of d-2HG instead of l-2HG. For a better understanding of the observed difference in the activation barrier for the formation of the two alternative products, we performed natural bond orbital analysis, non-covalent interactions analysis and energy decomposition analysis. Our findings based on computational calculations clearly indicate a role for chiral discrimination in mutated enzymatic pathways in cancer biology.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/enzimologia , Domínio Catalítico , Glioma/enzimologia , Glutaratos/química , Humanos , Isocitrato Desidrogenase/química , Ácidos Cetoglutáricos/química , Conformação Molecular , Mutação , Neoplasias/genética , Estereoisomerismo , Termodinâmica
17.
Pharm Res ; 37(8): 153, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32705421

RESUMO

PURPOSE: To efficiently develop a tablet formulation of carbamazepine using a soluble cocrystal with excess coformer to maintain phase stability during dissolution. METHODS: The carbamazepine - glutaric acid cocrystal (CBZ-GLA, 1:1) and excess glutaric acid (GLA) were mixed with suitable tablet excipients, which were selected to address powder flowability and tabletability deficiencies specifically. Tablet friability and dissolution profiles were evaluated to guide formulation optimization. Dry granules were prepared by milling simulated ribbons. RESULTS: A binary blend of CBZ-GLA and GLA had poor flowability and marginal tabletability. Therefore, silica coated Avicel PH-102 (sMCC) was applied as a binder to improve the flow property and tabletability. A formulation consisting of sMCC, CBZ-GLA, and GLA exhibited good manufacturability but did not show improved dissolution because of rapid precipitation of CBZ dihydrate when CBZ-GLA came in contact with water. Dry granulation of CBZ-GLA and GLA dramatically improved dissolution profile due to the intimate contact between CBZ-GLA and GLA. Such cocrystal - coformer granules also led to much improved tablet manufacturability and dissolution. CONCLUSION: The successful tablet development of CBZ-GLA, using < 3 g of the cocrystal in <3 weeks, demonstrates an efficient workflow for tablet formulation development based on material-sparing and predictive powder characterization techniques. This workflow is useful for early tablet development using enabling solid form, such as cocrystal, when only a small amount of material is available.


Assuntos
Carbamazepina/química , Carbamazepina/farmacologia , Glutaratos/química , Glutaratos/farmacologia , Comprimidos/química , Celulose/química , Cristalização , Composição de Medicamentos , Excipientes/química , Transição de Fase , Pós , Dióxido de Silício/química , Solubilidade
18.
Int J Pharm ; 588: 119683, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712251

RESUMO

In the present study, a pterostilbene-peptide amphiphile (PS-GA-RGD) that can spontaneously self-assemble into prodrug nanomedicine, was rationally designed and developed as a novel ophthalmic formulation for the potential management of dry eye. The formed PS-GA-RGD nanomedicine was characterized by dynamic latter scattering (DLS) and transmission electron microscopy (TEM). After esterase treatment, active pterostilbene (PS) sustainably released from the PS-GA-RGD nanomedicine within 48 h, as indicated by an in vitro release study. In comparison with native PS, the formed PS-GA-RGD nanomedicine caused minimal cytotoxicity towards RAW 264.7 and HCEC cells in the 0-20 µM range and did not delay wound healing of HCEC monolayer within 6 h. Furthermore, PS-GA-RGD nanomedicine effectively reduced the intracellular reactive oxygen species (ROS) level in H2O2 challenged RAW264.7 macrophages and remarkably suppressed the secretion of inflammatory cytokines (e.g., NO, TNF-α, and IL-6) in lipopolysaccharide (LPS) activated RAW264.7 macrophages. Ocular tolerance to the proposed PS-GA-RGD nanomedicine was good after a single instillation in in vivo ocular irritation tests. Overall, the proposed PS-GA-RGD nanomedicine had potent anti-oxidant capacity and anti-inflammatory efficacy, which may be a promising ophthalmic formulation for the management of dry eye.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Síndromes do Olho Seco/tratamento farmacológico , Nanopartículas , Oligopeptídeos/administração & dosagem , Pró-Fármacos/administração & dosagem , Estilbenos/administração & dosagem , Administração Oftálmica , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/toxicidade , Antioxidantes/química , Antioxidantes/toxicidade , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Epitélio Corneano/patologia , Esterases/metabolismo , Glutaratos/química , Humanos , Cinética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Oligopeptídeos/química , Oligopeptídeos/toxicidade , Soluções Oftálmicas , Pró-Fármacos/química , Pró-Fármacos/toxicidade , Células RAW 264.7 , Coelhos , Estilbenos/química , Estilbenos/toxicidade , Cicatrização/efeitos dos fármacos
19.
Biochem J ; 477(16): 2999-3018, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32729927

RESUMO

Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Mutação , Catálise , Domínio Catalítico , Glutaratos/química , Humanos , Concentração de Íons de Hidrogênio , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitratos/química , Cinética , Conformação Proteica , Especificidade por Substrato
20.
ACS Appl Mater Interfaces ; 12(18): 20234-20242, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285658

RESUMO

Metal-organic frameworks (MOFs) can be applied in biology and medicine as drug delivery systems by carrying drugs on their surfaces or releasing bioactive ligands. To investigate the therapeutic potential of hydrogels that contain MOFs, three MOFs containing glutarate and 1,2-bis(4-pyridyl)ethylene ligands were synthesized by the previously reported hydrothermal or solvothermal reactions: Cu-MOF 1, Co-MOF 2, and Zn-MOF 3. Bioactive MOF-embedded hydrogels (hydrogel@Cu-MOF 1, hydrogel@Co-MOF 2, and hydrogel@Zn-MOF 3) were prepared by UV light-mediated thiol-ene photopolymerization using diacrylated polyethylene glycol (PEG), 4-arm-thiolated PEG, and MOFs. The activities of the MOF-embedded hydrogels were tested against the Gram-negative bacterium Escherichia coli and the Gram-positive bacterium Staphylococcus aureus. These MOF-embedded hydrogels were observed to be very stable, based on the release test of MII ions, and both hydrogel@Cu-MOF 1 and hydrogel@Co-MOF 2 showed excellent antibacterial activity. Although, in human dermal fibroblasts, hydrogel@Cu-MOF 1 showed no cytotoxic effects, it exhibited 99.9% antibacterial effects at the minimum bactericidal concentration. Physical properties such as the surface area and dimension of MOFs with different central metals appeared to be more important than the chemical properties of the ligands in determining the effects on bacteria. These MOF-embedded hydrogels may be useful in antibacterial applications such as cosmetics, treatment of skin diseases, and drug delivery owing to their low cytotoxicity and high bactericidal activity.


Assuntos
Antibacterianos/farmacologia , Hidrogéis/farmacologia , Estruturas Metalorgânicas/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Escherichia coli/efeitos dos fármacos , Glutaratos/química , Glutaratos/farmacologia , Glutaratos/toxicidade , Humanos , Hidrogéis/química , Hidrogéis/toxicidade , Ligantes , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/toxicidade , Testes de Sensibilidade Microbiana , Piridinas/química , Piridinas/farmacologia , Piridinas/toxicidade , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...