Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 790, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145079

RESUMO

High-calorie diet-induced nutrient stress promotes thiol oxidative stress and the reprogramming of blood monocytes, giving rise to dysregulated, obesogenic, proatherogenic monocyte-derived macrophages. We report that in chow-fed, reproductively senescent female mice but not in age-matched male mice, deficiency in the thiol transferase glutaredoxin 1 (Grx1) promotes dysregulated macrophage phenotypes as well as rapid weight gain and atherogenesis. Grx1 deficiency derepresses distinct expression patterns of reactive oxygen species and reactive nitrogen species generators in male versus female macrophages, poising female but not male macrophages for increased peroxynitrate production. Hematopoietic Grx1 deficiency recapitulates this sexual dimorphism in high-calorie diet-fed LDLR-/- mice, whereas macrophage-restricted overexpression of Grx1 eliminates the sex differences unmasked by high-calorie diet-feeding and protects both males and females against atherogenesis. We conclude that loss of monocytic Grx1 activity disrupts the immunometabolic balance in mice and derepresses sexually dimorphic oxidative stress responses in macrophages. This mechanism may contribute to the sex differences reported in cardiovascular disease and obesity in humans.


Assuntos
Aterosclerose/metabolismo , Glutarredoxinas/deficiência , Glutarredoxinas/metabolismo , Monócitos/metabolismo , Obesidade/metabolismo , Substâncias Protetoras/metabolismo , Animais , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nutrientes , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
2.
Food Funct ; 12(16): 7415-7427, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34190288

RESUMO

This study aims to explore how a high-fat diet and glutaredoxin1 (Glrx1) deficiency affect the development of obesity in male and female mice. A high-fat diet induced great differences in calorie intake and body weight gain between male and female mice; furthermore, the Glrx1 deficiency made male mice more sensitive to a high-fat diet than females. Male mice had higher glucose intolerance, and Glrx1 deficiency aggravated gender differences in glucose intolerance. Glrx1 deficiency aggravated high-fat diet-induced hyperlipidemia. The mRNA levels of HMGCR, Srebf-1c, Srebf-2, CD36, FASN and SCD1 were consistently lower in females than in males. Glrx1 deficiency exacerbated high-fat diet induced liver injury and oxidative stress. Diet but not gender or genotype altered the composition of gut microbiota. These findings provide a new insight into the different susceptibilities to obesity caused by a high-fat diet between males and females.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Glutarredoxinas/deficiência , Obesidade/etiologia , Obesidade/genética , Animais , Peso Corporal/genética , Modelos Animais de Doenças , Ingestão de Energia , Feminino , Intolerância à Glucose/etiologia , Intolerância à Glucose/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais , Aumento de Peso/genética
3.
Life Sci ; 264: 118678, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127518

RESUMO

AIMS: The reversible protein S-glutathionylation (PSSG) modification of Fas augments apoptosis, which can be reversed by the cytosolic deglutathionylation enzyme glutaredoxin-1 (Grx1), but its roles in alcoholic liver injury remain unknown. Therefore, the objective of this study was to investigate the impact of genetic ablation of Grx1 on Fas S-glutathionylation (Fas-SSG) in regulating ethanol-induced injury. MATERIALS AND METHODS: We evaluated the Grx1 activity and oxidative damage, hepatic injury related indicators, Fas-SSG, we also assess the nuclear factor-κB (NF-κB) signaling, its downstream signal, and Akt signaling cascades, Furthermore, the number of Kupffer cells and related proinflammatory cytokines between WT and Grx1- groups after alcohol exposure. KEY FINDINGS: Ethanol-fed mice had increased Grx1 activity and oxidative damage in the liver. Grx1-deficient mice had more serious liver damage when exposed to ethanol compared to that of wild-type mice, accompanied by increased alanine aminotransferase and aspartate aminotransferase levels, Fas-SSG, cleaved caspase-3 and hepatocyte apoptosis. Grx1 ablation resulted in the suppression of ethanol-induced NF-κB signaling, its downstream signal, and Akt signaling cascades, which are required for protection against Fas-mediated apoptosis. Accordingly, blocking NK-κB prevented Fas-induced apoptosis in WT mice but not Grx1-/- mice. Furthermore, the number of Kupffer cells and related proinflammatory cytokines, including Akt, were lower in Grx1-/- livers than those of the controls. SIGNIFICANCE: Grx1 is essential for adaptation to alcohol exposure-induced oxidative injury by modulating Fas-SSG and Fas-induced apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Glutarredoxinas/deficiência , Glutationa/metabolismo , Receptor fas/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout
4.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165982, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002579

RESUMO

Altered redox biology and oxidative stress have been implicated in the progression of heart failure. Glutaredoxin-2 (GRX2) is a glutathione-dependent oxidoreductase and catalyzes the reversible deglutathionylation of mitochondrial proteins. Sirtuin-3 (SIRT3) is a class III histone deacetylase and regulates lysine acetylation in mitochondria. Both GRX2 and SIRT3 are considered as key in the protection against oxidative damage in the myocardium. Knockout of either contributes to adverse heart pathologies including hypertrophy, hypertension, and cardiac dysfunction. Here, we created and characterized a GRX2 and SIRT3 double-knockout mouse model, hypothesizing that their deletions would have an additive effect on oxidative stress, and exacerbate mitochondrial function and myocardial structural remodeling. Wildtype, single-gene knockout (Sirt3-/-, Grx2-/-), and double-knockout mice (Grx2-/-/Sirt3-/-) were compared in heart weight, histology, mitochondrial respiration and H2O2 production. Overall, the hearts from Grx2-/-/Sirt3-/- mice displayed increased fibrosis and hypertrophy versus wildtype. In the Grx2-/- and the Sirt3-/- we observed changes in mitochondrial oxidative capacity, however this was associated with elevated H2O2 emission only in the Sirt3-/-. Similar changes were observed but not worsened in hearts from Grx2-/-/Sirt3-/- mice, suggesting that these changes were not additive. In human myocardium, using genetic and histopathological data from the human Genotype-Tissue Expression consortium, we confirmed that SIRT3 expression correlates inversely with heart pathology. Altogether, GRX2 and SIRT3 are important in the control of cardiac mitochondrial redox and oxidative processes, but their combined absence does not exacerbate effects, consistent with the overall conclusion that they function together in the complex redox and antioxidant systems in the heart.


Assuntos
Metabolismo Energético , Glutarredoxinas/deficiência , Insuficiência Cardíaca/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Sirtuína 3/deficiência , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Miocárdio/patologia
5.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948023

RESUMO

Cardiovascular diseases are the leading cause of death worldwide, and as rates continue to increase, discovering mechanisms and therapeutic targets become increasingly important. An underlying cause of most cardiovascular diseases is believed to be excess reactive oxygen or nitrogen species. Glutathione, the most abundant cellular antioxidant, plays an important role in the body's reaction to oxidative stress by forming reversible disulfide bridges with a variety of proteins, termed glutathionylation (GSylation). GSylation can alter the activity, function, and structure of proteins, making it a major regulator of cellular processes. Glutathione-protein mixed disulfide bonds are regulated by glutaredoxins (Glrxs), thioltransferase members of the thioredoxin family. Glrxs reduce GSylated proteins and make them available for another redox signaling cycle. Glrxs and GSylation play an important role in cardiovascular diseases, such as myocardial ischemia and reperfusion, cardiac hypertrophy, peripheral arterial disease, and atherosclerosis. This review primarily concerns the role of GSylation and Glrxs, particularly glutaredoxin-1 (Glrx), in cardiovascular diseases and the potential of Glrx as therapeutic agents.


Assuntos
Doenças Cardiovasculares/metabolismo , Glutarredoxinas/fisiologia , Glutationa/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Antioxidantes/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Dissulfetos/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Glutarredoxinas/deficiência , Glutarredoxinas/uso terapêutico , Homeostase , Humanos , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Free Radic Res ; 54(8-9): 585-605, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32892658

RESUMO

Oxidative stress is often initiated by excess reactive oxygen species (ROS) production, resulting in macromolecular damage, which is implicated in many disease states. Glutaredoxin 1 (Grx1) is an antioxidant enzyme that plays an important role in redox signaling and redox homeostasis. In the present study, we generated HeLaS3 cell lines deficient in Grx1 by the CRISPR/CAS9 system to clarify how Grx1 affects the physiological activities of HeLaS3 cells to respond to oxidative stress. First, the survival assay revealed that Grx1-deficient HeLaS3 cells were more sensitive to γ-ray irradiation, heat shock and H2O2 exposure than HeLaS3 wild-type cells. Next, the intracellular redox state was investigated using a fluorescent probe (2'-7'dichlorofluorescin diacetate), and the oxidized state of total proteins and a peroxidase Prx2 were measured by Western blot analysis. Exposure to γ-ray irradiation, heat shock and H2O2 significantly induced more accumulation of intracellular oxidants including ROS and higher levels of oxidized proteins in Grx1-deficient HeLaS3 cells. Furthermore, MitoSox Red staining demonstrated that Grx1 deficiency causes a higher level of oxidants production in mitochondria. Moreover, Grx1-deficient HeLaS3 cells had a higher cytochrome c level and higher apoptosis rate (Annexin-V/FITC and EthD-III staining assay) upon oxidative stress. These results suggested that Grx1 deficiency lead to mitochondrial redox homeostasis disruption and apoptotic cell death upon oxidative stress. In addition, the results of proliferation assay and MitoTracker staining assay (multinuclear cell formation rate) suggested that oxidative stress exposure inhibits cell proliferation maybe by affecting cytoplasmic division in Grx1-deficient HeLaS3 cells.


Assuntos
Glutarredoxinas/deficiência , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Proliferação de Células , Células HeLa , Humanos , Transdução de Sinais , Transfecção
7.
Biomed Pharmacother ; 118: 108940, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31382130

RESUMO

Type 2 diabetes (T2D) appears to be a significant risk factor for brain injury. Glutaredoxin 2 (GRX2) belongs to the oxidoreductase family and plays an essential role in regulating various cellular processes. However, the pathogenic role of GRX2 in high fat diet (HFD)-induced brain injury is poorly understood. In the study, the loss-of-function approach was used to explore the effects of GRX2 on brain injury in HFD-challenged mice. The results indicated that HFD treatment resulted in significant increases in the change of body weight, insulin resistance and serum lipid deposition, which were markedly exaggerated by the loss of GRX2. Moreover, HFD-caused cognitive dysfunction was further promoted in GRX2 knockout mice. Histological analysis suggested that HFD administration led to the hippocampus damage, which was potentiated by GRX2 deficiency. In addition, GRX deletion enhanced HFD-induced inflammatory response in hippocampus of mice. Furthermore, GRX2 knockout markedly enhanced HFD-triggered insulin resistance in hippocampus of mice through down-regulating the protein levels of p-insulin receptor substrate 1 (IRS1) (Y632) and p-AKT (S473). The phosphorylation of glycogen synthase kinase-3ß (GSK-3ß) suppressed by HFD administration was further reduced by GRX2 ablation. Moreover, HFD-induced oxidative stress and mitochondrial dysfunction were significantly aggravated in hippocampus of GRX2-knockout mice, which were largely dependent on the modulation of GSK-3ß signaling. These results above demonstrated that GRX2 was responsible for HFD-induced brain injury by enhancing insulin resistance, inflammation, oxidative stress and mitochondrial impairment via the meditation of GSK-3ß.


Assuntos
Lesões Encefálicas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glutarredoxinas/deficiência , Glicogênio Sintase Quinase 3 beta/metabolismo , Resistência à Insulina , Mitocôndrias/metabolismo , Animais , Astrócitos/metabolismo , Comportamento Animal/fisiologia , Lesões Encefálicas/etiologia , Células Cultivadas , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Teste de Tolerância a Glucose , Glicogênio Sintase Quinase 3 beta/genética , Inflamação , Potencial da Membrana Mitocondrial/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo
8.
Antioxid Redox Signal ; 31(17): 1272-1288, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31317766

RESUMO

Aims: The aim of this study was to determine whether deleting the gene encoding glutaredoxin-2 (GRX2) could protect mice from diet-induced weight gain. Results: Subjecting wild-type littermates to a high fat diet (HFD) induced a significant increase in overall body mass, white adipose tissue hypertrophy, lipid droplet accumulation in hepatocytes, and higher circulating insulin and triglyceride levels. In contrast, GRX2 heterozygotes (GRX2+/-) fed an HFD had a body mass, white adipose tissue weight, and hepatic and circulating lipid and insulin levels similar to littermates fed a control diet. Examination of the bioenergetics of muscle mitochondria revealed that this protective effect was associated with an increase in respiration and proton leaks. Muscle mitochondria from GRX2+/- mice had a ∼2- to 3-fold increase in state 3 (phosphorylating) respiration when pyruvate/malate or succinate served as substrates and a ∼4-fold increase when palmitoyl-carnitine was being oxidized. Proton leaks were ∼2- to 3-fold higher in GRX2+/- muscle mitochondria. Treatment of mitochondria with either guanosine diphosphate, genipin, or octanoyl-carnitine revealed that the higher rate of O2 consumption under state 4 conditions was associated with increased leaks through uncoupling protein-3 and adenine nucleotide translocase. GRX2+/- mitochondria also had better protection from oxidative distress. Innovation: For the first time, we demonstrate that deleting the Grx2 gene can protect from diet-induced weight gain and the development of obesity-related disorders. Conclusions: Deleting the Grx2 gene protects mice from diet-induced weight gain. This effect was related to an increase in muscle fuel combustion, mitochondrial respiration, proton leaks, and reactive oxygen species handling. Antioxid. Redox Signal. 31, 1272-1288.


Assuntos
Respiração Celular , Dieta Hiperlipídica/efeitos adversos , Glutarredoxinas/deficiência , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Prótons , Aumento de Peso/efeitos dos fármacos , Animais , Feminino , Deleção de Genes , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Aumento de Peso/genética
9.
J Agric Food Chem ; 67(32): 8794-8809, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31345023

RESUMO

Oxidative stress may play a critical role in the progression of liver disorders. Increasing interest has been given to the associations among diet, oxidative stress, gut-liver axis, and nonalcoholic fatty liver disease. Here, we investigated the effects of processed meat proteins on biomarkers of lipid homeostasis, hepatic metabolism, antioxidant functions, and gut microbiota composition in glutaredoxin1 deficient (Glrx1-/-) mice. The wild-type (WT) and Glrx1-/- mice were fed a soy protein diet (SPD), a dry-cured pork protein diet (DPD), a braised pork protein diet (BPD), and a cooked pork protein diet (CPD) at a dose of 20% of protein for 3 months. Serum and hepatic total cholesterol, serum endotoxin, hepatic liver droplet %, and antioxidant capacity were significantly increased in the CPD fed WT mice. In addition, CPD fed Glrx1-/- mice significantly increased total cholesterol, triacylglycerol, and pro-inflammatory cytokines which are accompanied by higher steatosis scores, intrahepatic lipid accumulation, and altered gene expression associated with lipid metabolism. Furthermore, hepatic gene expression of Nrf2/keap1 signaling pathway and its downstream signaling targets were determined using RT-qPCR. Glrx1 deficiency increased Nrf2 activity and expression of its target genes (GPx, catalase, SOD1, G6pd, and Bbc3), which was exacerbated by intake of CPD. Metagenomic analyses revealed that Glrx1-/- mice fed meat protein diets had higher abundances of Mucispirillum, Oscillibacter, and Mollicutes but lower abundances of Bacteroidales S24-7 group_norank, Blautia, and Anaerotruncus than their wild-type counterparts. In summary, Glrx1 deficiency induced an increase in serum biomarkers for lipid homeostasis, gut microbiota imbalance, and upregulation of Nrf2/Keap1 and antioxidant defense genes, which was aggravated by cooked meat protein diet.


Assuntos
Glutarredoxinas/genética , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipogênese , Fígado/metabolismo , Produtos da Carne/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Colesterol/sangue , Citocinas/metabolismo , Feminino , Microbioma Gastrointestinal , Glutarredoxinas/deficiência , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Carne Vermelha , Transdução de Sinais , Triglicerídeos/sangue
10.
PLoS One ; 14(1): e0210827, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682073

RESUMO

Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKß and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction in vivo in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.


Assuntos
Glutarredoxinas/metabolismo , Interleucina-33/biossíntese , Interleucina-33/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Alérgenos/administração & dosagem , Animais , Asma/etiologia , Asma/imunologia , Asma/metabolismo , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glutarredoxinas/deficiência , Glutarredoxinas/genética , Glutationa/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo
11.
Cell Rep ; 25(5): 1268-1280.e4, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380417

RESUMO

Mutations in human GRXCR2, which encodes a protein of undetermined function, cause hearing loss by unknown mechanisms. We found that mouse GRXCR2 localizes to the base of the stereocilia, which are actin-based mechanosensing organelles in cochlear hair cells that convert sound-induced vibrations into electrical signals. The stereocilia base also contains taperin, another protein of unknown function required for human hearing. We show that taperin and GRXCR2 form a complex and that taperin is diffused throughout the stereocilia length in Grxcr2-deficient hair cells. Stereocilia lacking GRXCR2 are longer than normal and disorganized due to the mislocalization of taperin, which could modulate the actin cytoskeleton in stereocilia. Remarkably, reducing taperin expression levels could rescue the morphological defects of stereocilia and restore the hearing of Grxcr2-deficient mice. Thus, our findings suggest that GRXCR2 is critical for the morphogenesis of stereocilia and auditory perception by restricting taperin to the stereocilia base.


Assuntos
Glutarredoxinas/metabolismo , Audição , Proteínas/metabolismo , Estereocílios/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Células COS , Chlorocebus aethiops , Surdez/metabolismo , Surdez/patologia , Surdez/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico , Glutarredoxinas/deficiência , Células HEK293 , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestrutura , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica , Estereocílios/ultraestrutura
12.
Biosci Biotechnol Biochem ; 82(3): 442-448, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29447077

RESUMO

Neoechinulin A is an indole alkaloid with several biological activities. We previously reported that this compound protects neuronal PC12 cells from cytotoxicity induced by the peroxynitrite generator 3-morpholinosydnonimine (SIN-1), but the target proteins and precise mechanism of action of neoechinulin A were unclear. Here, we employed a phage display screen to identify proteins that bind directly with neoechinulin A. Our findings identified two proteins, chromogranin B and glutaredoxin 3, as candidate target binding partners for the alkaloid. QCM analyses revealed that neoechinulin A displays high affinity for both chromogranin B and glutaredoxin 3. RNA interference-mediated depletion of chromogranin B decreased the sensitivity of PC12 cells against SIN-1. Our results suggested chromogranin B is a plausible target of neoechinulin A.


Assuntos
Cromogranina B/metabolismo , Glutarredoxinas/metabolismo , Alcaloides Indólicos/metabolismo , Fármacos Neuroprotetores/metabolismo , Biblioteca de Peptídeos , Piperazinas/metabolismo , Animais , Cromogranina B/deficiência , Cromogranina B/genética , Inativação Gênica , Glutarredoxinas/deficiência , Glutarredoxinas/genética , Alcaloides Indólicos/farmacologia , Fármacos Neuroprotetores/farmacologia , Células PC12 , Piperazinas/farmacologia , Ligação Proteica , Ratos
13.
Hum Mol Genet ; 24(5): 1322-35, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25355420

RESUMO

Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic neurons. Although the etiology of PD remains incompletely understood, oxidative stress has been implicated as an important contributor in the development of PD. Oxidative stress can lead to oxidation and functional perturbation of proteins critical to neuronal survival. Glutaredoxin 1 (Grx1) is an evolutionally conserved antioxidant enzyme that repairs protein oxidation by reversing the oxidative modification of cysteine known as S-glutathionylation. We aimed to explore the regulatory role of Grx1 in PD. We first examined the levels of Grx1 in postmortem midbrain samples from PD patients, and observed that Grx1 content is decreased in PD, specifically within the dopaminergic neurons. We subsequently investigated the potential role of Grx1 deficiency in PD pathogenesis by examining the consequences of loss of the Caenorhabditis elegans Grx1 homolog in well-established worm models of familial PD caused by overexpression of pathogenic human LRRK2 mutants G2019S or R1441C. We found that loss of the Grx1 homolog led to significant exacerbation of the neurodegenerative phenotype in C. elegans overexpressing the human LRRK2 mutants. Re-expression in the dopaminergic neurons of the active, but not a catalytically inactive form of the Grx1 homolog rescued the exacerbated phenotype. Loss of the Grx1 homolog also exacerbated the neurodegenerative phenotype in other C. elegans models, including overexpression of human α-synuclein and overexpression of tyrosine hydroxylase (a model of sporadic PD). Therefore, our results reveal a novel neuroprotective role of glutaredoxin against dopaminergic neurodegeneration in models of familial and sporadic PD.


Assuntos
Caenorhabditis elegans/genética , Glutarredoxinas/genética , Proteínas de Helminto/metabolismo , Doença de Parkinson/genética , Animais , Sobrevivência Celular , Cisteína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Evolução Molecular , Regulação da Expressão Gênica , Glutarredoxinas/deficiência , Glutarredoxinas/metabolismo , Proteínas de Helminto/genética , Homeostase , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mesencéfalo/metabolismo , Estresse Oxidativo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Ann Hematol ; 92(1): 1-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22983749

RESUMO

Sideroblastic anemia is characterized by anemia with the emergence of ring sideroblasts in the bone marrow. There are two forms of sideroblastic anemia, i.e., congenital sideroblastic anemia (CSA) and acquired sideroblastic anemia. In order to clarify the pathophysiology of sideroblastic anemia, a nationwide survey consisting of clinical and molecular genetic analysis was performed in Japan. As of January 31, 2012, data of 137 cases of sideroblastic anemia, including 72 cases of myelodysplastic syndrome (MDS)-refractory cytopenia with multilineage dysplasia (RCMD), 47 cases of MDS-refractory anemia with ring sideroblasts (RARS), and 18 cases of CSA, have been collected. Hemoglobin and MCV level in CSA are significantly lower than those of MDS, whereas serum iron level in CSA is significantly higher than those of MDS. Of 14 CSA for which DNA was available for genetic analysis, 10 cases were diagnosed as X-linked sideroblastic anemia due to ALAS2 gene mutation. The mutation of SF3B1 gene, which was frequently mutated in MDS-RS, was not detected in CSA patients. Together with the difference of clinical data, it is suggested that genetic background, which is responsible for the development of CSA, is different from that of MDS-RS.


Assuntos
Anemia Sideroblástica/congênito , 5-Aminolevulinato Sintetase/deficiência , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idade de Início , Idoso , Anemia Sideroblástica/sangue , Anemia Sideroblástica/classificação , Anemia Sideroblástica/epidemiologia , Anemia Sideroblástica/genética , Criança , Pré-Escolar , Aberrações Cromossômicas , Feminino , Frequência do Gene , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Doenças Genéticas Ligadas ao Cromossomo X/genética , Glutarredoxinas/deficiência , Glutarredoxinas/genética , Inquéritos Epidemiológicos , Humanos , Hidroliases/deficiência , Hidroliases/genética , Lactente , Recém-Nascido , Japão/epidemiologia , Masculino , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas de Transporte da Membrana Mitocondrial/deficiência , Proteínas de Transporte da Membrana Mitocondrial/genética , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/epidemiologia , Síndromes Mielodisplásicas/genética , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Fatores de Processamento de RNA , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteína Nuclear Pequena U2/deficiência , Ribonucleoproteína Nuclear Pequena U2/genética , Resultado do Tratamento , Vitamina B 6/uso terapêutico , Adulto Jovem
15.
Am J Physiol Lung Cell Mol Physiol ; 303(6): L528-38, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22752969

RESUMO

Protein-S-glutathionylation (PSSG) is an oxidative modification of reactive cysteines that has emerged as an important player in pathophysiological processes. Under physiological conditions, the thiol transferase, glutaredoxin-1 (Glrx1) catalyses deglutathionylation. Although we previously demonstrated that Glrx1 expression is increased in mice with allergic inflammation, the impact of Glrx1/PSSG in the development of allergic airways disease remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 in the pathogenesis of allergic inflammation and airway hyperresponsiveness (AHR) in mice. Glrx1(-/-) or WT mice were subjected to the antigen, ovalbumin (OVA), and parameters of allergic airways disease were evaluated 48 h after three challenges, and 48 h or 7 days after six challenges with aerosolized antigen. Although no clear increases in PSSG were observed in WT mice in response to OVA, marked increases were detected in lung tissue of mice lacking Glrx1 48 h following six antigen challenges. Inflammation and expression of proinflammatory mediators were decreased in Glrx1(-/-) mice, dependent on the time of analysis. WT and Glrx1(-/-) mice demonstrated comparable increases in AHR 48 h after three or six challenges with OVA. However, 7 days postcessation of six challenges, parameters of AHR in Glrx1(-/-) mice were resolved to control levels, accompanied by marked decreases in mucus metaplasia and expression of Muc5AC and GOB5. These results demonstrate that the Glrx1/S-glutathionylation redox status in mice is a critical regulator of AHR, suggesting that avenues to increase S-glutathionylation of specific target proteins may be beneficial to attenuate AHR.


Assuntos
Hiper-Reatividade Brônquica/imunologia , Glutarredoxinas/genética , Pulmão/patologia , Muco , Animais , Glutarredoxinas/deficiência , Glutationa/metabolismo , Pneumopatias/patologia , Metaplasia/patologia , Camundongos , Ovalbumina/imunologia , Pneumonia/etiologia , Proteínas/metabolismo
16.
PLoS One ; 7(6): e38984, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723915

RESUMO

Glutaredoxins (Grx) are redox enzymes that remove glutathione bound to protein thiols, know as S-glutathionylation (PSSG). PSSG is a reservoir of GSH and can affect the function of proteins. It inhibits the NF-κB pathway and LPS aspiration in Grx1 KO mice with decreased inflammatory cytokine levels. In this study we investigated whether absence of Grx1 similarly repressed cigarette smoke-induced inflammation in an exposure model in mice. Cigarette smoke exposure for four weeks decreased lung PSSG levels, but increased PSSG in lavaged cells and lavage fluid (BALF). Grx1 KO mice had increased levels of PSSG in lung tissue, BALF and BAL cells in response to smoke compared to wt mice. Importantly, levels of multiple inflammatory mediators in the BALF were decreased in Grx1 KO animals following cigarette smoke exposure compared to wt mice, as were levels of neutrophils, dendritic cells and lymphocytes. On the other hand, macrophage numbers were higher in Grx1 KO mice in response to smoke. Although cigarette smoke in vivo caused inverse effects in inflammatory and resident cells with respect to PSSG, primary macrophages and epithelial cells cultured from Grx1 KO mice both produced less KC compared to cells isolated from WT mice after smoke extract exposure. In this manuscript, we provide evidence that Grx1 has an important role in regulating cigarette smoke-induced lung inflammation which seems to diverge from its effects on total PSSG. Secondly, these data expose the differential effect of cigarette smoke on PSSG in inflammatory versus resident lung cells.


Assuntos
Glutarredoxinas/deficiência , Pneumonia/etiologia , Fumar/efeitos adversos , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Quimiocinas CXC/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Glutarredoxinas/genética , Glutationa/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Pneumonia/genética , Pneumonia/imunologia
17.
Free Radic Biol Med ; 51(11): 2108-17, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21983434

RESUMO

Glutaredoxin belongs to the oxidoreductase family, with cytosolic glutaredoxin 1 (Grx1) and mitochondrial glutaredoxin 2 (Grx2) isoforms. Of the two isozymes, the function of Grx2 is not well understood. This paper describes the effects of Grx2 deletion on cellular function using primary lens epithelial cell cultures isolated from Grx2 gene knockout (KO) and wild-type (WT) mice. We found that both cell types showed similar growth patterns and morphology and comparable mitochondrial glutathione pool and complex I activity. Cells with deleted Grx2 did not show affected Grx1 or thioredoxin expression but exhibited high sensitivity to oxidative stress. Under treatment with H(2)O(2), the KO cells showed less viability, higher membrane leakage, enhanced ATP loss and complex I inactivation, and weakened ability to detoxify H(2)O(2) in comparison with the WT cells. The KO cells had higher glutathionylation in the mitochondrial proteins, particularly the 75-kDa subunit of complex I. Recombinant Grx2 deglutathionylated complex I and restored most of its activity. We conclude that Grx2 has a function that protects cells against H(2)O(2)-induced injury via its peroxidase and dethiolase activities; particularly, Grx2 prevents complex I inactivation and preserves mitochondrial function.


Assuntos
Células Epiteliais/metabolismo , Glutarredoxinas/metabolismo , Cristalino/citologia , Estresse Oxidativo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glutarredoxinas/deficiência , Peróxido de Hidrogênio/farmacologia , Cristalino/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos
18.
Am J Respir Cell Mol Biol ; 44(4): 491-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20539014

RESUMO

Protein S-glutathionylation (PSSG), a reversible posttranslational modification of reactive cysteines, recently emerged as a regulatory mechanism that affects diverse cell-signaling cascades. The extent of cellular PSSG is controlled by the oxidoreductase glutaredoxin-1 (Grx1), a cytosolic enzyme that specifically de-glutathionylates proteins. Here, we sought to evaluate the impact of the genetic ablation of Grx1 on PSSG and on LPS-induced lung inflammation. In response to LPS, Grx1 activity increased in lung tissue and bronchoalveolar lavage (BAL) fluid in WT (WT) mice compared with PBS control mice. Glrx1(-/-) mice consistently showed slight but statistically insignificant decreases in total numbers of inflammatory cells recovered by BAL. However, LPS-induced concentrations of IL-1ß, TNF-α, IL-6, and Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF) in BAL were significantly decreased in Glrx1(-/-) mice compared with WT mice. An in situ assessment of PSSG reactivity and a biochemical evaluation of PSSG content demonstrated increases in the lung tissue of Glrx1(-/-) animals in response to LPS, compared with WT mice or PBS control mice. We also demonstrated that PSSG reactivity was prominent in alveolar macrophages (AMs). Comparative BAL analyses from WT and Glrx1(-/-) mice revealed fewer and smaller AMs in Glrx1(-/-) mice, which showed a significantly decreased expression of NF-κB family members, impaired nuclear translocation of RelA, and lower levels of NF-κB-dependent cytokines after exposure to LPS, compared with WT cells. Taken together, these results indicate that Grx1 regulates the production of inflammatory mediators through control of S-glutathionylation-sensitive signaling pathways such as NF-κB, and that Grx1 expression is critical to the activation of AMs.


Assuntos
Deleção de Genes , Glutarredoxinas/deficiência , Ativação de Macrófagos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Pneumonia/metabolismo , Pneumonia/prevenção & controle , Animais , Líquido da Lavagem Broncoalveolar , Contagem de Células , Núcleo Celular/metabolismo , Forma Celular , Citocinas/metabolismo , Dissulfetos/metabolismo , Glutarredoxinas/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Lipopolissacarídeos/administração & dosagem , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Penicilamina/metabolismo , Pneumonia/patologia , Transporte Proteico , Fator de Transcrição RelA/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 299(2): L192-203, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20472709

RESUMO

Glutaredoxin 1 (Glrx1) is a small dithiol protein that regulates the cellular redox state and redox-dependent signaling pathways via modulation of protein glutathionylation. IkappaB kinase (IKK), an essential enzyme for NF-kappaB activation, can be subjected to S-glutathionylation leading to alteration of its activity. However, the role of Glrx1 in cigarette smoke (CS)-induced lung inflammation and chromatin modifications are not known. We hypothesized that Glrx1 regulates the CS-induced lung inflammation and chromatin modifications via differential regulation of IKKs by S-glutathionylation in mouse lung. Glrx1 knockout (KO) and wild-type (WT) mice were exposed to CS for 3 days and determined the role of Glrx1 in regulation of proinflammatory response in the lung. Neutrophil influx in bronchoalveolar lavage fluid and proinflammatory cytokine release in lung were increased in Glrx1 KO mice compared with WT mice exposed to CS, which was associated with augmented nuclear translocation of RelA/p65 and its phospho-acetylation. Interestingly, phosphorylated and total levels of IKKalpha, but not total and phosphorylated IKKbeta levels, were increased in lungs of Glrx1 KO mice compared with WT mice exposed to CS. Ablation of Glrx1 leads to increased CS-induced IKKbeta glutathionylation rendering it inactive, whereas IKKalpha was activated resulting in increased phospho-acetylation of histone H3 in mouse lung. Thus, targeted disruption of Glrx1 regulates the lung proinflammatory response via histone acetylation specifically by activation of IKKalpha in response to CS exposure. Overall, our study suggests that S-glutathionylation and phosphorylation of IKKalpha plays an important role in histone acetylation on proinflammatory gene promoters and NF-kappaB-mediated abnormal and sustained lung inflammation in pathogenesis of chronic inflammatory lung diseases.


Assuntos
Glutarredoxinas/farmacologia , Histonas/metabolismo , NF-kappa B/metabolismo , Fumar/efeitos adversos , Acetilação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Glutarredoxinas/biossíntese , Glutarredoxinas/deficiência , Glutationa/metabolismo , Quinase I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Pneumonia/etiologia , Pneumonia/patologia , Pneumonia/prevenção & controle
20.
J Clin Invest ; 120(5): 1749-61, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20364084

RESUMO

Glutaredoxin 5 (GLRX5) deficiency has previously been identified as a cause of anemia in a zebrafish model and of sideroblastic anemia in a human patient. Here we report that GLRX5 is essential for iron-sulfur cluster biosynthesis and the maintenance of normal mitochondrial and cytosolic iron homeostasis in human cells. GLRX5, a mitochondrial protein that is highly expressed in erythroid cells, can homodimerize and assemble [2Fe-2S] in vitro. In GLRX5-deficient cells, [Fe-S] cluster biosynthesis was impaired, the iron-responsive element-binding (IRE-binding) activity of iron regulatory protein 1 (IRP1) was activated, and increased IRP2 levels, indicative of relative cytosolic iron depletion, were observed together with mitochondrial iron overload. Rescue of patient fibroblasts with the WT GLRX5 gene by transfection or viral transduction reversed a slow growth phenotype, reversed the mitochondrial iron overload, and increased aconitase activity. Decreased aminolevulinate delta, synthase 2 (ALAS2) levels attributable to IRP-mediated translational repression were observed in erythroid cells in which GLRX5 expression had been downregulated using siRNA along with marked reduction in ferrochelatase levels and increased ferroportin expression. Erythroblasts express both IRP-repressible ALAS2 and non-IRP-repressible ferroportin 1b. The unique combination of IRP targets likely accounts for the tissue-specific phenotype of human GLRX5 deficiency.


Assuntos
Anemia Sideroblástica/metabolismo , Citosol/metabolismo , Eritroblastos/metabolismo , Glutarredoxinas/deficiência , Glutarredoxinas/fisiologia , Heme/metabolismo , Ferro/metabolismo , 5-Aminolevulinato Sintetase/metabolismo , Sequência de Aminoácidos , Células HeLa , Humanos , Proteínas Ferro-Enxofre/metabolismo , Dados de Sequência Molecular , Fenótipo , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...