Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.337
Filtrar
1.
PLoS One ; 19(5): e0298827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722949

RESUMO

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Assuntos
Adipócitos , Glutationa Peroxidase , Sistema de Sinalização das MAP Quinases , Animais , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Adipócitos/metabolismo , Adipócitos/citologia , Suínos , Diferenciação Celular/genética , Proliferação de Células , Adipogenia/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
2.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722391

RESUMO

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Assuntos
Antioxidantes , Chlorella vulgaris , Clorpirifos , Ciclídeos , Doenças dos Peixes , Streptococcus agalactiae , Animais , Streptococcus agalactiae/efeitos dos fármacos , Ciclídeos/metabolismo , Ciclídeos/microbiologia , Ciclídeos/genética , Clorpirifos/toxicidade , Antioxidantes/metabolismo , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/veterinária , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Catalase/metabolismo , Catalase/genética , Poluentes Químicos da Água/toxicidade , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Estresse Oxidativo/efeitos dos fármacos , Aquicultura/métodos
3.
Biomed Khim ; 70(2): 83-88, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711407

RESUMO

The toxic effect of ethanol on the cerebral cortex and protective effects of omega-3 fatty acids against this neurotoxicity were investigated. Twenty eight male Wistar-albino rats were divided into 4 groups. Rats of the ethanol and ethanol withdrawal groups were treated with ethanol (6 g/kg/day) for 15 days. Animals of the ethanol+omega-3 group received omega-3 fatty acids (400 mg/kg daily) and ethanol. In rats of the ethanol group SOD activity was lower than in animals of the control group. In rats treated with omega-3 fatty acids along with ethanol SOD, activity increased. GSH-Px activity and MDA levels in animals of all groups were similar. In ethanol treated rats NO levels significantly decreased as compared to the animals of the control group (6.45±0.24 nmol/g vs 11.05±0.53 nmol/g, p.


Assuntos
Córtex Cerebral , Etanol , Ácidos Graxos Ômega-3 , Óxido Nítrico , Ratos Wistar , Superóxido Dismutase , Animais , Masculino , Ratos , Ácidos Graxos Ômega-3/farmacologia , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Óxido Nítrico/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Antioxidantes/farmacologia , Malondialdeído/metabolismo
4.
Biomed Khim ; 70(2): 73-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38711406

RESUMO

Thiram is a dithiocarbamate derivative, which is used as a fungicide for seed dressing and spraying during the vegetation period of plants, and also as an active vulcanization accelerator in the production of rubber-based rubber products. In this study the content of reactive oxygen species (ROS) and the state of the glutathione system have been investigated in the oral fluid and gum tissues of adult male Wistar rats treated with thiram for 28 days during its administration with food at a dose of 1/50 LD50. Thiram induced formation of ROS in the oral cavity; this was accompanied by an imbalance in the ratio of reduced and oxidized forms of glutathione due to a decrease in glutathione and an increase in its oxidized form as compared to the control. Thiram administration caused an increase in the activity of glutathione-dependent enzymes (glutathione peroxidase, glutathione transferase, and glutathione reductase). However, the time-course of enzyme activation in the gum tissues and oral fluid varied in dependence on the time of exposure to thiram. In the oral fluid of thiram-treated rats changes in the antioxidant glutathione system appeared earlier. The standard diet did not allow the glutathione pool to be fully restored to physiological levels after cessation of thiram intake. The use of exogenous antioxidants resviratrol and an Echinacea purpurea extract led to the restoration of redox homeostasis in the oral cavity.


Assuntos
Antioxidantes , Fungicidas Industriais , Glutationa , Ratos Wistar , Espécies Reativas de Oxigênio , Tiram , Animais , Masculino , Ratos , Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/toxicidade , Tiram/toxicidade , Antioxidantes/farmacologia , Boca/metabolismo , Boca/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glutationa Peroxidase/metabolismo
5.
Nutrients ; 16(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732573

RESUMO

The role of selenium in the developmental process of esophageal cancer (EC) requires further investigation. To explore the relationship between selenium-related factors and EC through bioinformatic analysis, a case-control study was conducted to verify the results. Utilizing the GEPIA and TCGA databases, we delineated the differential expression of glutathione peroxidase 3 (GPx3) in EC and normal tissues, identified differentially expressed genes (DEGs), and a performed visualization analysis. Additionally, 100 pairs of dietary and plasma samples from esophageal precancerous lesions (EPLs) of esophageal squamous cancer (ESCC) cases and healthy controls from Huai'an district, Jiangsu, were screened. The levels of dietary selenium, plasma selenium, and related enzymes were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) or ELISA kits. The results showed lower GPx3 expression in tumor tissues compared to normal tissues. Further analysis revealed that DEGs were mainly involved in the fat digestion and absorption pathway, and the core protein fatty acid binding protein 1 (FABP1) was significantly upregulated and negatively correlated with GPx3 expression. Our case-control study found that selenium itself was not associated with EPLs risk. However, both the decreased concentration of GPx3 and the increase in FABP1 were positively correlated with the EPLs risk (p for trend = 0.035 and 0.046, respectively). The different expressions of GPx3 and FABP1 reflect the potential of selenium for preventing ESCC at the EPLs stage. GPx3 may affect myocardial infarction through FABP1, which remains to be further studied.


Assuntos
Biologia Computacional , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas de Ligação a Ácido Graxo , Glutationa Peroxidase , Selênio , Humanos , Selênio/sangue , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/sangue , Estudos de Casos e Controles , Neoplasias Esofágicas/prevenção & controle , Neoplasias Esofágicas/genética , Biologia Computacional/métodos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Carcinoma de Células Escamosas do Esôfago/prevenção & controle , Carcinoma de Células Escamosas do Esôfago/genética , Feminino , Masculino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica , Idoso
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650159

RESUMO

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Assuntos
Anti-Inflamatórios , Antioxidantes , Asma , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Glutationa Peroxidase , Glutationa , Interleucina-4 , Pulmão , Malondialdeído , Extratos Vegetais , Ratos Wistar , Syzygium , Animais , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Syzygium/química , Masculino , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar/química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Interleucina-4/metabolismo , Interleucina-4/sangue , Malondialdeído/metabolismo , Ovalbumina , Catalase/metabolismo , Ratos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Água/química
7.
Eur J Med Chem ; 271: 116404, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38631262

RESUMO

Hearing loss (HL) is a health burden that seriously affects the quality of life of cancer patients receiving platinum-based chemotherapy, and few FDA-approved treatment specifically targets this condition. The main mechanisms that contribute to cisplatin-induced hearing loss are oxidative stress and subsequent cell death, including ferroptosis revealed by us as a new mechanism recently. In this study, we employed the frontier molecular orbital (FMO) theory approach as a convenient prediction method for the glutathione peroxidase (GPx)-like activity of isoselenazolones and discovered new isoselenazolones with great GPx-like activity. Notably, compound 19 exhibited significant protective effects against cisplatin-induced hair cell (HC) damage in vitro and in vivo and effectively reverses cisplatin-induced hearing loss through oral administration. Further investigations revealed that this compound effectively alleviated hair cell oxidative stress, apoptosis and ferroptosis. This research highlights the potential of GPx mimics as a therapeutic strategy against cisplatin-induced hearing loss. The application of quantum chemistry (QC) calculations in the study of GPx mimics sheds light on the development of new, innovative treatments for hearing loss.


Assuntos
Cisplatino , Glutationa Peroxidase , Perda Auditiva , Cisplatino/farmacologia , Glutationa Peroxidase/metabolismo , Animais , Perda Auditiva/tratamento farmacológico , Perda Auditiva/induzido quimicamente , Humanos , Teoria Quântica , Estrutura Molecular , Camundongos , Relação Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Descoberta de Drogas , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos
8.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 53-60, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678627

RESUMO

Cobalt protoporphyrin (CoPP) is a synthetic heme analog that has been observed to reduce food intake and promote sustained weight loss. While the precise mechanisms responsible for these effects remain elusive, earlier research has hinted at the potential involvement of nitric oxide synthase in the hypothalamus. This study aimed to delve into CoPP's impact on the activities of crucial antioxidant enzymes: superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) across seven distinct brain regions (hippocampus, hypothalamus, prefrontal cortex, motor cortex, striatum, midbrain, and cerebellum), as well as in the liver and kidneys. Female Wistar rats weighing 180 to 200 grams received a single subcutaneous dose of 25 µmol/kg CoPP. After six days, brain tissue was extracted to assess the activities of antioxidant enzymes and quantify malondialdehyde levels. Our findings confirm that CoPP administration triggers the characteristic effects of decreased food intake and reduced body weight. Moreover, it led to an increase in SOD activity in the hypothalamus, a pivotal brain region associated with food intake regulation. Notably, CoPP-treated rats exhibited elevated enzymatic activity of catalase, GR, and GST in the motor cortex without concurrent signs of heightened oxidative stress. These results underscore a strong connection between the antioxidant system and food intake regulation. They also emphasize the need for further investigation into the roles of antioxidant enzymes in modulating food intake and the ensuing weight loss, using CoPP as a valuable research tool.


Assuntos
Antioxidantes , Hipotálamo , Córtex Motor , Protoporfirinas , Ratos Wistar , Superóxido Dismutase , Animais , Feminino , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/enzimologia , Antioxidantes/metabolismo , Protoporfirinas/farmacologia , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Córtex Motor/enzimologia , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Ratos , Estresse Oxidativo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Glutationa Transferase/metabolismo , Peso Corporal/efeitos dos fármacos , Glutationa Redutase/metabolismo , Malondialdeído/metabolismo
9.
J Biochem Mol Toxicol ; 38(4): e23708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597299

RESUMO

Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.


Assuntos
Acetatos , Antioxidantes , Halomonas , Fármacos Neuroprotetores , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Peixe-Zebra/metabolismo , Fármacos Neuroprotetores/farmacologia , Ácido Okadáico/metabolismo , Ácido Okadáico/farmacologia , Simulação de Acoplamento Molecular , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Dicetopiperazinas/metabolismo , Dicetopiperazinas/farmacologia , Glutationa Transferase/metabolismo
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 493-498, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660857

RESUMO

OBJECTIVE: To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma (MM). METHODS: The activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay, and then the differences in the activity of antioxidant enzymes between the two groups were compared. Furthermore, the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium, serum creatinine (Scr), hemoglobin (Hb), alkaline phosphatase (ALP) as well as bone lesions were analyzed. RESULTS: The antioxidant enzyme activity was lower in MM patients compared with the control group (P < 0.05). When the concentrations of serum calcium and ALP were higher than the normal levels, Hb was lower than 85 g/L, and there were multiple bone lesions, the activity of CAT, SOD and GPX was significantly declined (P < 0.05); When the concentration of Scr≥177 µmol/L, the activity of GPX was significantly declined (P < 0.05). Regression analyses showed that CAT, SOD and GPX were negatively correlated with serum calcium (r =-0.538, r =-0.456, r =-0.431), Scr (r =-0.342, r =-0.384, r =-0.463), and ALP (r =-0.551, r =-0.572, r =-0.482). CONCLUSION: The activity of antioxidant enzymes, including CAT, SOD and GPX, were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms (such as serum calcium, Scr, and ALP), which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.


Assuntos
Antioxidantes , Mieloma Múltiplo , Humanos , Fosfatase Alcalina/sangue , Fosfatase Alcalina/metabolismo , Antioxidantes/metabolismo , Medula Óssea , Braquiúros , Cálcio/sangue , Cálcio/metabolismo , Catalase/sangue , Catalase/metabolismo , Creatinina/sangue , Glutationa Peroxidase/sangue , Glutationa Peroxidase/metabolismo , Mieloma Múltiplo/sangue , Mieloma Múltiplo/complicações , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo
11.
Cancer Genomics Proteomics ; 21(3): 305-315, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670589

RESUMO

BACKGROUND/AIM: Glutathione peroxidases (GPXs) are crucial antioxidant enzymes, counteracting reactive oxygen species (ROS). GPX overexpression promotes proliferation and invasion in cancer cells. Glutathione peroxidase-1 (GPX1), the most abundant isoform, contributes to invasion, migration, cisplatin resistance, and proliferation in various cancers. Nuclear factor-kappa B (NF-[Formula: see text]B) participates in cell proliferation, apoptosis, and tumor progression. The inhibition of NF-[Formula: see text]B expression reduces the malignancy of esophageal squamous cell carcinoma. This study aimed to explore the GPX1 and NF-[Formula: see text]B signaling pathways and their correlation with gastric cancer cell proliferation and invasion. MATERIALS AND METHODS: Cell culture, complementary DNA microarray analysis, western blotting, reverse transcription-polymerase chain reaction, zymography, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, GPX1 knock-down with short hairpin RNA (shRNA), standard two-chamber invasion assay, chromatin immunoprecipitation assay. RESULTS: Hepatocyte growth factor (HGF) up-regulated GPX1 expression in gastric cancer cells. The NF-[Formula: see text]B inhibitor, pyrrolidine dithiocarbamate down-regulated HGF-induced GPX1 protein levels. Furthermore, NF-[Formula: see text]B and urokinase-type plasminogen activators were down-regulated in GPX1-shRNA-treated cells. Treatment with an Akt pathway inhibitor (LY294002) led to the down-regulation of GPX1 and NF-[Formula: see text]B gastric cancer cells. GPX1 knockdown resulted in decreased HGF-mediated in vitro cell proliferation and invasion. The study identified the putative binding site of the GPX1 promoter containing the NF-[Formula: see text]B binding site, confirmed through chromatin immunoprecipitation. CONCLUSION: HGF induced GPX1 expression through the NF-[Formula: see text]B and Akt pathways, suggesting a central role in gastric cell proliferation and invasion. Hence, GPX1 emerges as a potential therapeutic target for gastric cancer.


Assuntos
Proliferação de Células , Glutationa Peroxidase GPX1 , Glutationa Peroxidase , NF-kappa B , Invasividade Neoplásica , Transdução de Sinais , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , NF-kappa B/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular
12.
Physiol Behav ; 280: 114548, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615729

RESUMO

Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.


Assuntos
Encéfalo , Óleo de Milho , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal , Óleo de Soja , Animais , Feminino , Óleo de Milho/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Peso Corporal/efeitos dos fármacos , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Atividade Motora/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ansiedade/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Veículos Farmacêuticos
13.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38632902

RESUMO

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Assuntos
Dissulfetos , Estresse Oxidativo , PPAR gama , Tirosina/análogos & derivados , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Animais , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Neurônios/efeitos dos fármacos , Histona Desacetilases/metabolismo , Histona Desacetilases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Poríferos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Glutationa/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo
14.
Neurobiol Dis ; 195: 106489, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552721

RESUMO

Obesity and neurometabolic diseases have been linked to neurodegenerative diseases. Our hypothesis is that the endogenous estrogenic component of human astrocytes plays a critical role in cell response during lipotoxic damage, given that obesity can disrupt hormonal homeostasis and cause brain inflammation. Our findings showed that high concentrations of palmitic acid (PA) significantly reduced cell viability more in male astrocytes, indicating sex-specific vulnerabilities. PA induced a greater increase in cytosolic reactive oxygen species (ROS) production in males, while female astrocytes exhibited higher superoxide ion levels in mitochondria. In addition, female astrocytes treated with PA showed increased expression of antioxidant proteins, including catalase, Gpx-1 and Nrf2 suggesting a stronger cellular defence mechanism. Interestingly, there was a difference in the expression of estrogenic components, such as estrogen, androgens, and progesterone receptors, as well as aromatase and 5α-reductase enzymes, between males and females. PA induced their expression mainly in females, indicating a potential protective mechanism mediated by endogenous hormones. In summary, our findings highlight the impact of sex on the response of human astrocytes to lipotoxicity. Male astrocytes appear to be more susceptible to cellular damage when exposed to high concentrations of fatty acids.


Assuntos
Astrócitos , Glutationa Peroxidase GPX1 , Ácido Palmítico , Espécies Reativas de Oxigênio , Caracteres Sexuais , Humanos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Ácido Palmítico/farmacologia , Ácido Palmítico/toxicidade , Feminino , Masculino , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Fator 2 Relacionado a NF-E2/metabolismo , Glutationa Peroxidase/metabolismo , Catalase/metabolismo , Aromatase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
15.
Biomed Pharmacother ; 174: 116467, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531120

RESUMO

In this study, Senescence Accelerated Mice (SAMP8) were supplemented with exogenous DHA milk, endogenous DHA milk, normal milk, or 0.9 % saline solution. Enzyme-linked immunosorbent assay (ELISA), gas chromatography (GC), ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI MS/MS), and Morris water maze were used to characterize the effects of diet on oxidative stress and cognition in SAMP8 mice. Supplementation endogenous DHA milk or exogenous DHA milk can enhance the antioxidant capacity of mice organs. Endogenous DHA milk increased the superoxide dismutase (SOD) activity of mice brain and serum than normal milk and 0.9 % saline solution (P ≤ 0.05), as well as increased SOD activity of mice liver and glutathione peroxidase (GSH-Px) activity of mice brain than normal milk (P ≤ 0.05). Exogenous DHA milk increased SOD activity of mice brain than normal milk and 0.9 % saline solution, as well as increased SOD activity of mice serum than 0.9 % saline solution (P ≤ 0.05). Several polar lipid relative content, such as 18:0/18:2 PS, 17:0 Ceramide, and 20:4 LPC in mice brain was affected by dietary supplementation with DHA-containing milk. Lipid oxidation metabolites in mice brain were not affected by DHA-containing milk. Endogenous DHA milk increased the number of platform location crossing times of mice in the Morris water maze test, compared with Exogenous DHA milk, normal milk, and 0.9 % saline solution (P ≤ 0.05).


Assuntos
Antioxidantes , Cognição , Ácidos Docosa-Hexaenoicos , Leite , Estresse Oxidativo , Superóxido Dismutase , Animais , Estresse Oxidativo/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Cognição/efeitos dos fármacos , Leite/química , Camundongos , Superóxido Dismutase/metabolismo , Masculino , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Suplementos Nutricionais , Aprendizagem em Labirinto/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos
16.
Brain Res ; 1833: 148852, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494099

RESUMO

INTRODUCTION: The purpose of this study was to examine N-acetyl aspartate (NAA)/creatine (Cr) and glutamate, glutamine, and gamma-aminobutyric acid complex (Glx)/Cr levels in patients with obsessive compulsive disorder (OCD) and healthy controls' orbitofrontal cortex (OFC) and caudate nucleus (CN) by proton magnetic resonance spectroscopy (1H-MRS) method and to investigate their relationship with oxidative stress markers glutathione peroxidase (GPx) and superoxide dismutase (SOD). METHODS: This study included patients with OCD (n = 25) and healthy controls (n = 25) ranging in age from 18 to 65. We used the ELISA method to evaluate serum SOD and GPx levels. Levels of NAA/Cr and Glx/Cr in the orbitofrontal cortex and caudate nucleus were measured using the 1H-MRS method. RESULTS: Our study did not detect statistically significant differences in the orbitofrontal cortex Glx/Cr and NAA/Cr levels between the OCD patients and the control group. OCD patients exhibited a decrease in NAA/Cr levels, consistent with impaired neuronal integration, and an increase in Glx/Cr levels, consistent with hyperactivation, in the caudate nucleus compared to the control group. We observed a negative correlation between NAA/Cr levels in the caudate nucleus and the levels of SOD and GPx. CONCLUSIONS: Our study is the first to assess CN and OFC together in OCD patients using 3 T MR, investigating the relationship between neurometabolite concentrations and oxidative stress parameters. The negative correlation we observed between NAA/Cr levels and SOD and GPx in the caudate nucleus suggests that increased oxidative stress in this brain region in OCD patients may contribute to impaired neuronal integration and functionality.


Assuntos
Ácido Aspártico , Ácido Aspártico/análogos & derivados , Creatina , Transtorno Obsessivo-Compulsivo , Estresse Oxidativo , Espectroscopia de Prótons por Ressonância Magnética , Superóxido Dismutase , Humanos , Transtorno Obsessivo-Compulsivo/metabolismo , Estresse Oxidativo/fisiologia , Adulto , Masculino , Feminino , Espectroscopia de Prótons por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem , Ácido Aspártico/metabolismo , Adolescente , Superóxido Dismutase/metabolismo , Creatina/metabolismo , Glutationa Peroxidase/metabolismo , Núcleo Caudado/metabolismo , Núcleo Caudado/diagnóstico por imagem , Biomarcadores/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Idoso , Ácido gama-Aminobutírico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem
17.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523449

RESUMO

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Assuntos
Antioxidantes , Auricularia , Basidiomycota , Antioxidantes/metabolismo , Umidade , Frutas/metabolismo , Catalase/metabolismo , Ácido Ascórbico , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Basidiomycota/metabolismo , Peroxidação de Lipídeos
18.
Sci Rep ; 14(1): 6688, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509121

RESUMO

The aim of this study was to determine the levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) in patients with refractory epilepsy. Serum superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels were determined using the spectrophotometer method. Refractory epilepsy patients' serum superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels were statistically significant compared to the healthy control group (p < 0.05). In conclusion, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels may play an important role in the etiopathogenesis of refractory epilepsy. This study was the first to investigate some parameters in refractory epilepsy disease.


Assuntos
Antioxidantes , Epilepsia Resistente a Medicamentos , Humanos , Antioxidantes/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Malondialdeído , Glutationa Peroxidase/metabolismo
19.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
20.
Environ Toxicol Pharmacol ; 107: 104430, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552755

RESUMO

The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to increase due in part to the obesity epidemic and to environmental exposures to metabolism disrupting chemicals. A single gavage exposure of male mice to Aroclor 1260 (Ar1260), an environmentally relevant mixture of non-dioxin-like polychlorinated biphenyls (PCBs), resulted in steatohepatitis and altered RNA modifications in selenocysteine tRNA 34 weeks post-exposure. Unbiased approaches identified the liver proteome, selenoproteins, and levels of 25 metals. Ar1260 altered the abundance of 128 proteins. Enrichment analysis of the liver Ar1260 proteome included glutathione metabolism and translation of selenoproteins. Hepatic glutathione peroxidase 4 (GPX4) and Selenoprotein O (SELENOO) were increased and Selenoprotein F (SELENOF), Selenoprotein S (SELENOS), Selenium binding protein 2 (SELENBP2) were decreased with Ar1260 exposure. Increased copper, selenium (Se), and zinc and reduced iron levels were detected. These data demonstrate that Ar1260 exposure alters the (seleno)proteome, Se, and metals in MASLD-associated pathways.


Assuntos
Arocloros , Fígado Gorduroso , Selênio , Masculino , Camundongos , Animais , Proteoma/metabolismo , Glutationa Peroxidase/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...