Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
Metab Eng ; 84: 180-190, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38969164

RESUMO

Glutathione is a tripeptide of excellent value in the pharmaceutical, food, and cosmetic industries that is currently produced during yeast fermentation. In this case, glutathione accumulates intracellularly, which hinders high production. Here, we engineered Escherichia coli for the efficient production of glutathione. A total of 4.3 g/L glutathione was produced by overexpressing gshA and gshB, which encode cysteine glutamate ligase and glutathione synthetase, respectively, and most of the glutathione was excreted into the culture medium. Further improvements were achieved by inhibiting degradation (Δggt and ΔpepT); deleting gor (Δgor), which encodes glutathione oxide reductase; attenuating glutathione uptake (ΔyliABCD); and enhancing cysteine production (PompF-cysE). The engineered strain KG06 produced 19.6 g/L glutathione after 48 h of fed-batch fermentation with continuous addition of ammonium sulfate as the sulfur source. We also found that continuous feeding of glycine had a crucial role for effective glutathione production. The results of metabolic flux and metabolomic analyses suggested that the conversion of O-acetylserine to cysteine is the rate-limiting step in glutathione production by KG06. The use of sodium thiosulfate largely overcame this limitation, increasing the glutathione titer to 22.0 g/L, which is, to our knowledge, the highest titer reported to date in the literature. This study is the first report of glutathione fermentation without adding cysteine in E. coli. Our findings provide a great potential of E. coli fermentation process for the industrial production of glutathione.


Assuntos
Escherichia coli , Glutationa , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Glutationa/metabolismo , Glutationa/biossíntese , Glutationa/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Fermentação
2.
Cell Death Dis ; 14(12): 845, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114454

RESUMO

Glutathione synthetase (GSS) catalyzes the final step in the synthesis of glutathione (GSH), a well-established antioxidant. Research on the specific roles of the Gss gene during spermatogenesis remains limited due to the intricate structure of testis. In this study, we identified pachytene spermatocytes as the primary site of GSS expression and generated a mouse model with postnatal deletion of Gss using Stra8-Cre (S8) to investigate the role of GSS in germ cells. The impact of Gss knockout on reducing male fertility is age-dependent and caused by ferroptosis in the testis. The 2-month-old S8/Gss-/- male mice exhibited normal fertility, due to a compensatory increase in GPX4, which prevented the accumulation of ROS. With aging, there was a decline in GPX4 and an increase in ALOX15 levels observed in 8-month-old S8/Gss-/- mice, resulting in the accumulation of ROS, lipid peroxidation, and ultimately testicular ferroptosis. We found that testicular ferroptosis did not affect spermatogonia, but caused meiosis disruption and acrosome heterotopia. Then the resulting aberrant sperm showed lower concentration and abnormal morphology, leading to reduced fertility. Furthermore, these injuries could be functionally rescued by inhibiting ferroptosis through intraperitoneal injection of GSH or Fer-1. In summary, Gss in germ cells play a crucial role in the resistance to oxidative stress injury in aged mice. Our findings deepen the understanding of ferroptosis during spermatogenesis and suggest that inhibiting ferroptosis may be a potential strategy for the treatment of male infertility.


Assuntos
Ferroptose , Glutationa Sintase , Infertilidade Masculina , Testículo , Glutationa Sintase/deficiência , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Espermatócitos/metabolismo , Infertilidade Masculina/genética , Testículo/enzimologia , Testículo/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Ferroptose/genética , Técnicas de Inativação de Genes , Células Germinativas/citologia , Meiose/genética , Espermatogênese/genética , Acrossomo/patologia , Autofagia/genética , Masculino , Feminino , Animais , Camundongos , Fatores Etários
3.
Curr Protoc ; 3(10): e907, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818879

RESUMO

Clickable glutathione is a glutathione-derived chemical probe designed to identify and analyze protein S-glutathionylation, a major cysteine oxidation in redox signaling. An engineered glutathione synthetase mutant (GS M4) is used to synthesize clickable glutathione in cells or in vitro, which affords utility via click chemistry to detect, identify, and quantify glutathionylation on individual or global proteins in biochemical and mass spectrometric analyses. The clickable glutathione approach is valuable for the unequivocal identification of glutathionylated cysteines, among many reversible cysteine oxoforms, via the direct enrichment and detection of glutathionylated proteins or peptides. Clickable glutathione, in combination with GS M4, has demonstrated utility in the mass-spectrometry-based discovery and profiling of new proteins and cysteines for glutathionylation in cell lines in response to physiologic and oxidative stress. The approach is versatile and applicable to validating the glutathionylation of proteins and cysteines in other biochemical analysis beside mass spectrometry. Here, we describe the applications of clickable glutathione and provide detailed protocols for the identification, profiling, and detection of glutathionylated proteins and cysteines. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of glutathionylated cysteine in individual proteins in vitro Basic Protocol 2: Proteomic identification and quantification of glutathionylation Basic Protocol 3: Biochemical validation of glutathionylation in cells.


Assuntos
Cisteína , Proteômica , Cisteína/metabolismo , Proteômica/métodos , Processamento de Proteína Pós-Traducional , Glutationa/química , Glutationa/metabolismo , Proteínas/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/química , Glutationa Sintase/metabolismo
5.
Am J Case Rep ; 24: e938396, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37050856

RESUMO

BACKGROUND Glutathione synthetase deficiency (GSD) is a rare autosomal recessive disorder caused by glutathione synthetase (GSS) gene variants that occur in 1 in 1 million individuals. The severe form of GSD is characterized by hemolytic anemia, metabolic acidosis with 5-oxoprolinuria, progressive neurological symptoms, and recurrent bacterial infections. This case report presents a male Japanese infant with severe hemolytic anemia and metabolic acidosis at birth caused by GSD, who developed progressive neurological symptoms on follow-up. CASE REPORT A Japanese male term infant developed severe hemolytic anemia and metabolic acidosis in the early neonatal period. We suspected GSD based on his symptoms and a high 5-oxoproline urine concentration. We began correcting his metabolic acidosis and administering vitamins C and E supplements. The patient required blood transfusion twice during the acute phase for hemolytic anemia. After age 1 month, he maintained good control of metabolic acidosis and hemolytic anemia. A definitive diagnosis of GSD was made based on high concentrations of 5-oxoproline in urine, low concentrations of glutathione and GSS activity in erythrocytes, and genetic testing. Several episodes of febrile convulsions were started at age 11 months, but none occurred after 2 years. At the last follow-up at age 25 months, metabolic acidosis and hemolytic anemia were well controlled, but he had mild neurodevelopmental delay. CONCLUSIONS This case report shows that GSD can present with severe hemolytic anemia and metabolic acidosis at birth, and manifest with subsequent neurological impairment despite early diagnosis and treatment. Therefore, a careful long-term follow-up that includes neurological evaluation is essential for patients with GSD.


Assuntos
Acidose , Anemia Hemolítica , Recém-Nascido , Lactente , Humanos , Masculino , Pré-Escolar , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Ácido Pirrolidonocarboxílico/urina , Seguimentos , Anemia Hemolítica/diagnóstico , Anemia Hemolítica/etiologia , Acidose/etiologia
6.
Appl Microbiol Biotechnol ; 107(9): 2997-3008, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995384

RESUMO

The γ-glutamyl tripeptide glutathione (γ-Glu-Cys-Gly) is a low molecular thiol that acts as antioxidant in response to oxidative stress in eukaryotes and prokaryotes. γ-Glutamyl dipeptides including γ-Glu-Cys, γ-Glu-Glu, and γ-Glu-Gly also have kokumi activity. Glutathione is synthesized by first ligating Glu with Cys by γ-glutamylcysteine ligase (Gcl/GshA), and then the resulting dipeptide γ-glutamylcysteine is ligated with Gly by glutathione synthetase (Gs/GshB). GshAB/GshF enzymes that contain both Gcl and Gs domains are capable of catalyzing both reactions. The current study aimed to characterize GshAB from Tetragenococcus halophilus after heterologous expression in Escherichia coli. The optimal conditions for GshAB from T. halophilus were pH 8.0 and 25 °C. The substrate specificity of the Gcl reaction of GshAB was also determined. GshAB has a high affinity to Cys. γ-Glu-Cys was the only dipeptide generated when Glu, Cys, Gly, and other amino acids were present in the reaction system. This specificity differentiates GshAB from T. halophilus from Gcl of heterofermentative lactobacilli and GshAB of Streptococcus agalactiae, which also use amino acids other than Cys as glutamyl-acceptor. Quantification of gshAB in cDNA libraries from T. halophilus revealed that gshAB was overexpressed in response to oxidative stress but not in response to acid, osmotic, or cold stress. In conclusion, GshAB in T. halophilus served as part of the oxidative stress response but this study did not provide any evidence for a contribution to the resistance to other stressors.Key points Glutathione synthesis in Tetragenococcus halophilus is carried out by the two-domain enzyme GshAB. GshAB is inhibited by glutathione and is highly specific for Cys as acceptor. T. halophilus synthesizes glutathione in response to oxidative stress.


Assuntos
Dipeptídeos , Glutationa Sintase , Glutationa Sintase/genética , Dipeptídeos/genética , Dipeptídeos/metabolismo , Glutationa , Aminoácidos
7.
Proteins ; 90(8): 1547-1560, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35277888

RESUMO

Glutathione (GSH) is synthesized in two ATP-dependent reactions by glutamate-cysteine ligase (Gcl) and glutathione synthetase (Gs). Myxococcus xanthus, a gram-negative bacterium belonging to δ-proteobacteria, possesses mxGcl and mxGs, which have high sequence identity with the enzymes from plants and bacteria, respectively. MxGcl2 was activated by Mn2+ , but not by Mg2+ , and stabilized in the presence of 5 mM Mn2+ or Mg2+ . Sequence comparison of mxGcl2 and Brassica juncea Gcl indicated that they have the same active site residues, except for Tyr330, which interacts with Cys and which in mxGcl2 is represented by Leu267. The substitution of Leu267 with Tyr resulted in the loss of mxGcl2 activity, but that with Met (found in cyanobacterial Gcls) increased the mxGcl2 affinity for Cys. GSH and its oxidized form GSSG equally inhibited the activity of mxGcl2; the inhibition was augmented by ATP at concentrations >3 mM. Buthionine sulfoximine inactivated mxGcl2 with Ki  = 2.1 µM, which was lower than those for Gcls from other organisms. The mxGcl2 activity was also suppressed by pyrophosphate and polyphosphates. MxGs was a dimer, and its activity was induced by Mg2+ but strongly inhibited by Mn2+ even in the presence of 10 mM Mg2+ . MxGs was inhibited by GSSG at Ki  = 3.6 mM. Approximately 1 mM GSH was generated with 3 units of mxGcl2 and 6 units of mxGs from 5 mM Glu, Cys, and Gly, and 10 mM ATP. Our results suggest that GSH production in M. xanthus mostly depends on mxGcl2 activity.


Assuntos
Glutamato-Cisteína Ligase , Myxococcus xanthus , Trifosfato de Adenosina , Glutamato-Cisteína Ligase/química , Glutamato-Cisteína Ligase/genética , Glutationa/química , Dissulfeto de Glutationa , Glutationa Sintase/química , Glutationa Sintase/genética
8.
Pharmacogenomics ; 23(1): 61-79, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866404

RESUMO

Clopidogrel is an antiplatelet drug commonly used to prevent coagulation. This review aimed to investigate the effect of polymorphisms of G6PD, GCLC, GCLM, GSS, GST, GSR, HK and GLRX genes on clopidogrel during phase II metabolism through exploring previous studies. The results revealed that low glutathione plasma levels caused by several alleles related to these genes could affect the bioactivation process of the clopidogrel prodrug, making it unable to inhibit platelet aggregation perfectly and thus leading to severe consequences in patients with a high risk of blood coagulation. However, the study recommends platelet reactivity tests to predict clopidogrel efficacy rather than studying gene mutations, as most of these mutations are rare and other nongenetic factors could affect the drug's efficacy.


Assuntos
Clopidogrel/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único , Proteínas de Transporte/genética , Clopidogrel/metabolismo , Resistência a Medicamentos , Glucosefosfato Desidrogenase/genética , Glutamato-Cisteína Ligase/genética , Glutationa Sintase/genética , Glutationa Transferase/genética , Hexoquinase/genética , Humanos
9.
Folia Med (Plovdiv) ; 64(5): 762-769, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36876528

RESUMO

INTRODUCTION: Elevated plasma levels of uric acid (UA) are considered an independent risk factor for hypertension, diabetes, cardiovascular disease, endothelial and vascular damage, obesity, and metabolic syndrome. Even physiological concentrations of soluble UA have been proved to induce gene expression of macrophage-secreted inflammatory cytokines and stimulate production of reactive oxygen species in mature adipocytes. UA is also described as a powerful endogenous plasma antioxidant, which reveals a paradox of duality for this parameter.


Assuntos
Glutamato-Cisteína Ligase , Ácido Úrico , Animais , Camundongos , Glutationa Redutase , Glutationa Sintase , Linhagem Celular , Macrófagos , Glutationa
10.
Lab Med ; 53(3): e59-e61, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34791353

RESUMO

Glutathione synthetase (GSS) deficiency is a rare disorder, occurring with a frequency of less than 1 in 100,000 individuals worldwide. The clinical presentation may vary from mild to severe, and manifestations include hemolytic anemia, hyperbilirubinemia, metabolic acidosis, neurological problems, and sepsis. Herein, we present a case of a newborn boy with the most severe phenotype of GSS deficiency, diagnosed based on clinical features and increased urinary 5-oxoproline levels determined via gas chromatography mass spectrometry (GCMS) testing.


Assuntos
Acidose , Erros Inatos do Metabolismo dos Aminoácidos , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glutationa Sintase/deficiência , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Humanos
11.
Arch Microbiol ; 203(10): 6183-6196, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34580743

RESUMO

The well-known probiotic GRAS Saccharomyces boulardii (CNCM I-745) was used for the first time to produce glutathione (GSH). The culture conditions affecting GSH biosynthesis were screened using a Plackett-Burman design (PBD). Analyzing the regression coefficients for 12 tested variables, yeast extract, glucose, peptone, cysteine, temperature and agitation rate had a positive significant effect on GSH production with a maximum yeild 192 mg/L. The impact of kinetics of adding cysteine was investigated in 19 experiments during the growth time course (0-36 h), and the maximum yield of glutathione (235 mg/L) was obtained by addition of cysteine after 8 h post-inoculation. The most significant variables were further explored at five levels using central composite rotatable design (CCRD), giving a maximum production of GSH (552 mg/L). Using baffled flasks, the yield of GSH was increased to 730 mg/L, i.e., 1.32-fold increment. The two rate-limiting genes of GSH biosynthesis "γ-glutamyl cysteine synthetase (GSH1) and GSH-synthetase (GSH2)" were amplified and sequenced to validate the GSH biosynthetic potency of S. boulardii. The sequences of genes showed 99% similarity with GSH1 and GSH2 genes of S. cerevisiae. Glutathione peroxidase was purified and characterized from S. boulardii with molecular mass and subunit structure of 80 kDa and 35 kDa as revealed from native and SDS-PAGE, ensuring its homodimeric identity. The activity of GPx was reduced by 2.5-fold upon demetallization confirming its metalloproteinic identity. The GPx was strongly inhibited by hydroxylamine and DTNB, ensuring the implication of surface lysine and cysteine residues on the enzyme active site domains.


Assuntos
Glutationa , Saccharomyces boulardii , Glutationa Peroxidase/genética , Glutationa Sintase , Saccharomyces cerevisiae/genética
12.
Appl Environ Microbiol ; 87(20): e0151821, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347521

RESUMO

Acidithiobacillus ferrooxidans is a well-studied iron- and sulfur-oxidizing acidophilic chemolithoautotroph that is exploited for its ability to participate in the bioleaching of metal sulfides. Here, we overexpressed the endogenous glutamate-cysteine ligase and glutathione synthetase genes in separate strains and found that glutathione synthetase overexpression increased intracellular glutathione levels. We explored the impact of pH on the halotolerance of iron oxidation in wild-type and engineered cultures. The increase in glutathione allowed the modified cells to grow under salt concentrations and pH conditions that are fully inhibitory to wild-type cells. Furthermore, we found that improved iron oxidation ability in the presence of chloride also resulted in higher levels of intracellular reactive oxygen species (ROS) in the strain. These results indicate that glutathione overexpression can be used to increase halotolerance in A. ferrooxidans and would likely be a useful strategy on other acidophilic bacteria. IMPORTANCE The use of acidophilic bacteria in the hydrometallurgical processing of sulfide ores can enable many benefits, including the potential reduction of environmental impacts. The cells involved in bioleaching tend to have limited halotolerance, and increased halotolerance could enable several benefits, including a reduction in the need for the use of freshwater resources. We show that the genetic modification of A. ferrooxidans for the overproduction of glutathione is a promising strategy to enable cells to resist the oxidative stress that can occur during growth in the presence of salt.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Glutationa Sintase/genética , Ferro/metabolismo , Tolerância ao Sal/genética , Acidithiobacillus/efeitos dos fármacos , Escherichia coli/genética , Glutationa/biossíntese , Concentração de Íons de Hidrogênio , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia
13.
PLoS Genet ; 17(6): e1009636, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181654

RESUMO

Our previous studies showed that MAN3-mediated mannose plays an important role in plant responses to cadmium (Cd) stress. However, the underlying mechanisms and signaling pathways involved are poorly understood. In this study, we showed that an Arabidopsis MYB4-MAN3-Mannose-MNB1 signaling cascade is involved in the regulation of plant Cd tolerance. Loss-of-function of MNB1 (mannose-binding-lectin 1) led to decreased Cd accumulation and tolerance, whereas overexpression of MNB1 significantly enhanced Cd accumulation and tolerance. Consistently, expression of the genes involved in the GSH-dependent phytochelatin (PC) synthesis pathway (such as GSH1, GSH2, PCS1, and PCS2) was significantly reduced in the mnb1 mutants but markedly increased in the MNB1-OE lines in the absence or presence of Cd stress, which was positively correlated with Cd-activated PC synthesis. Moreover, we found that mannose is able to bind to the GNA-related domain of MNB1, and that mannose binding to the GNA-related domain of MNB1 is required for MAN3-mediated Cd tolerance in Arabidopsis. Further analysis showed that MYB4 directly binds to the promoter of MAN3 to positively regulate the transcript of MAN3 and thus Cd tolerance via the GSH-dependent PC synthesis pathway. Consistent with these findings, overexpression of MAN3 rescued the Cd-sensitive phenotype of the myb4 mutant but not the mnb1 mutant, whereas overexpression of MNB1 rescued the Cd-sensitive phenotype of the myb4 mutant. Taken together, our results provide compelling evidence that a MYB4-MAN3-Mannose-MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis through the GSH-dependent PC synthesis pathway.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Lectinas de Ligação a Manose/genética , Manose/metabolismo , Proteínas Repressoras/genética , beta-Manosidase/genética , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Lectinas de Ligação a Manose/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Transdução de Sinais , Poluentes do Solo/toxicidade , beta-Manosidase/metabolismo
14.
Toxins (Basel) ; 13(4)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917490

RESUMO

Beauvericin (BEA) and deoxynivalenol are toxins produced by Fusarium species that can contaminate food and feed. The aim of this study was to assess the effects of these mycotoxins on the maturation of oocytes from gilts and sows. Furthermore, the antioxidant profiles in the oocytes' environment were assessed. Cumulus-oocyte-complexes (COCs) from gilts and sows were exposed to beauvericin (BEA) or deoxynivalenol (DON) and matured in vitro. As an extra control, these COCs were also exposed to reactive oxygen species (ROS). The maturation was mostly impaired when oocytes from gilts were exposed to 0.02 µmol/L DON. Oocytes from sows were able to mature even in the presence of 5 µmol/L BEA. However, the maturation rate of gilt oocytes was already impaired by 0.5 µmol/L BEA. It was observed that superoxide dismutase (SOD) and glutathione (GSH) levels in the follicular fluid (FF) of gilt oocytes was higher than that from sows. However, the expression of SOD1 and glutathione synthetase (GSS) was higher in the oocytes from sows than in those from gilts. Although DON and BEA impair cell development by diverse mechanisms, this redox imbalance may partially explain the vulnerability of gilt oocytes to these mycotoxins.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Depsipeptídeos/toxicidade , Peróxido de Hidrogênio/metabolismo , Oócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tricotecenos/toxicidade , Ração Animal/microbiologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Células do Cúmulo/metabolismo , Feminino , Microbiologia de Alimentos , Fusarium/metabolismo , Glutationa/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Sus scrofa
15.
Int J Med Sci ; 18(8): 1899-1909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746607

RESUMO

The morbidity and mortality rates associated with non-small-cell lung carcinoma (NSCLC) are increasing every year, placing new demands on existing therapies and drugs. Ammonium ferric citrate (AFC) is often used as a food additive for iron supplementation; however, to our knowledge, no studies have investigated whether AFC can induce ferroptosis in NSCLC. In this study, we demonstrated that specific concentrations of AFC effectively inhibit the proliferation and invasion of lung cancer cell lines in vitro using a cell proliferation inhibition test, a transwell assay, and flow cytometry analysis of cell cycle and apoptosis. In addition, AFC significantly induced oxidative stress injury in lung cancer cell lines. A quantitative polymerase chain reaction assay showed that AFC markedly reduced the expression levels of cell growth factors, negative regulators of ferroptosis, and autophagy regulators. Lastly, a protein-protein interaction analysis revealed that glutathione peroxidase 4 (GPX4) exerted its biological role through the regulation of the GSS/GSR complex and downstream GGT family proteins. When the expression of GPX4 changes, its biological activities, such as the glutathione metabolic process, cellular biosynthetic process, cellular response to chemical stimulus, and antioxidant activity, change accordingly, thereby affecting the survival quality and physiological and biochemical activities of cells. Overall, this study verifies that AFC has the biological activity of activating oxidative stress injury in NSCLC cell lines, leading to a decrease in their autophagy and inducing ferroptosis. We also confirmed that the GPX4-GSS/GSR-GGT axis is a crucial target of AFC-induced ferroptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Compostos Férricos/farmacologia , Ferroptose/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Amônio Quaternário/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/uso terapêutico , Glutationa Redutase/metabolismo , Glutationa Sintase/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Compostos de Amônio Quaternário/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , gama-Glutamiltransferase/metabolismo
16.
J Agric Food Chem ; 69(13): 3887-3894, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764060

RESUMO

In the enzymatic cascade catalysis, it is a big challenge to construct a stable and reusable catalyst with targeted enzymes. The artificial multienzyme reactor has attracted great attention due to its potential for facilitating the performance of enzyme catalysis. In this study, we set up a reliable system that could assemble polyphosphate kinase (PPK) with bifunctional glutathione synthetase (GshF) via SpyCatcher/SpyTag to form multienzyme systems (MESs). Furthermore, MESs could assemble into nanoaggregates by altering the ionic strength, and the larger nanoaggregates could be applied in robust and reusable synthesis of glutathione (GSH). To enhance MES levels in vivo, gene duplication and different coexpression modes were performed. Finally, the optimized production of GSH and oxidized glutathione (GSSG) reached 102.6 and 6.7 mM within 2 h. Compared with the first round, the total yield only decreased by 9.4% after five continuous rounds of biocatalysis.


Assuntos
Glutationa Sintase , Glutationa , Biocatálise , Glutationa/metabolismo , Dissulfeto de Glutationa , Glutationa Sintase/metabolismo , Concentração Osmolar
17.
Toxins (Basel) ; 13(2)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540648

RESUMO

The purpose of the study was to evaluate the short-term effects of aflatoxin B1 (AFB1 100 µg/kg feed) and sterigmatocystin (STC 1000 µg/kg feed) exposure individually and in combination (100 µg AFB1 + 1000 µg STC/kg feed) on the parameters of lipid peroxidation and glutathione redox system both in biochemical and gene expression levels in one-year-old common carp. Lipid peroxidation parameters were slightly affected, as significant differences were observed only in conjugated diene and triene concentrations. Reduced glutathione content decreased more markedly by STC than AFB1 or AFB1+STC, but glutathione peroxidase activity did not change. Expression of gpx4a, gpx4b, gss, and gsr genes was down-regulated due to STC compared to AFB1 or AFB1+STC, while an induction was found as effect of AFB1+STC in the case of gpx4a, but down-regulation for gpx4b as compared to AFB1. Expression of the glutathione biosynthesis regulatory gene, gss, was higher, but glutathione recycling enzyme encoding gene, gsr, was lower as an effect of AFB1+STC compared to AFB1. These results are supported by the changes in the expression of transcription factors encoding genes, nrf2, and keap1. The results revealed that individual effects of AFB1 and STC on different parameters are synergistic or antagonistic in multi-toxin treatment.


Assuntos
Aflatoxina B1/toxicidade , Carpas/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Esterigmatocistina/toxicidade , Animais , Carpas/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
18.
J Cell Physiol ; 236(4): 2696-2705, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32918744

RESUMO

Arterial medial calcification (AMC), the deposition of hydroxyapatite in the medial layer of the arteries, is a known risk factor for cardiovascular events. Oxidative stress is a known inducer of AMC and endogenous antioxidants, such as glutathione (GSH), may prevent calcification. GSH synthesis, however, can be limited by cysteine levels. Therefore, we assessed the effects of the cysteine prodrug 2-oxothiazolidine-4-carboxylic acid (OTC), on vascular smooth muscle cell (VSMC) calcification to ascertain its therapeutic potential. Human aortic VSMCs were cultured in basal or mineralising medium (1 mM calcium chloride/sodium phosphate) and treated with OTC (1-5 mM) for 7 days. Cell-based assays and western blot analysis were performed to assess cell differentiation and function. OTC inhibited calcification ≤90%, which was associated with increased ectonucleotide pyrophosphatase/phosphodiesterase activity, and reduced apoptosis. In calcifying cells, OTC downregulated protein expression of osteoblast markers (Runt-related transcription factor 2 and osteopontin), while maintaining expression of VSMC markers (smooth muscle protein 22α and α-smooth muscle actin). GSH levels were significantly reduced by 90% in VSMCs cultured in calcifying conditions, which was associated with declines in expression of gamma-glutamylcysteine synthetase and GSH synthetase. Treatment of calcifying cells with OTC blocked the reduction in expression of both enzymes and prevented the decline in GSH. This study shows OTC to be a potent and effective inhibitor of in vitro VSMC calcification. It appears to maintain GSH synthesis which may, in turn, prevent apoptosis and VSMCs gaining osteoblast-like characteristics. These findings may be of clinical relevance and raise the possibility that treatment with OTC could benefit patients susceptible to AMC.


Assuntos
Glutationa/biossíntese , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Pró-Fármacos/farmacologia , Ácido Pirrolidonocarboxílico/farmacologia , Tiazolidinas/farmacologia , Calcificação Vascular/prevenção & controle , Fosfatase Alcalina/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
19.
Food Chem Toxicol ; 147: 111862, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33217524

RESUMO

INTRODUCTION: Cuprizone is a neurotoxicant causing neurodegeneration through enzymes inhibition and oxidative stress. D-Ribose-L-Cysteine (DRLC) is a powerful antioxidant with neuroprotective properties. This study explored the antioxidant response of DRLC against cuprizone-induced behavioral alterations, biochemical imbalance and hippocampal neuronal damage in adult wistar rats. MATERIALS AND METHODS: Thirty two (32) adult male wistar rats (150-200g) were divided into four groups (n = 8). Group A received normal saline only as placebo; Group B received 0.5% cuprizone diet only; Group C received a combination of 0.5% cuprizone diet and 100 mg/kg bw of DRLC and Group D received 100 mg/kg bw of DRLC only. The administration was done through oral gavage once daily for 45 days. After the last treatment, neurobehavioral tests (Morris Water Maze and Y maze) was conducted; animals sacrificed and brain harvested for histological analysis and biochemical estimations of levels of antioxidants, oxidative stress markers, neurotransmitters and enzyme activitties. RESULTS: The results showed significant memory decline, hippocampal alterations, decrease levels of antioxidant markers, enzyme and neurotransmitters activities with concomitant increase in norepinephrine and oxidative stress markers in cuprizone induced rats relative to normal but was attenuated with DRLC administration. CONCLUSION: Cuprizone causes cognitive impairment and neurodegeneration through oxidative stress; however, administration of DRLC ameliorated neuropathological alteration induced by cuprizone.


Assuntos
Doença de Alzheimer/induzido quimicamente , Cuprizona/toxicidade , Cisteína/análogos & derivados , Suplementos Nutricionais , Hipocampo/efeitos dos fármacos , Tiazolidinas/uso terapêutico , Animais , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Catalase/metabolismo , Cisteína/uso terapêutico , Dieta , Contaminação de Alimentos , Glutationa Sintase/metabolismo , Masculino , Malondialdeído/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
20.
ACS Synth Biol ; 9(12): 3298-3310, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33232156

RESUMO

Protein-based nanocompartments found in nature have inspired the development of functional nanomaterials for a range of applications including delivery of catalytic activities with therapeutic effects. As glutathione (GSH) plays a vital role in metabolic adaptation and many diseases are associated with its deficiency, supplementation of GSH biosynthetic activity might be a potential therapeutic when delivered directly to the disease site. Here, we report the successful design and production of active nanoreactors capable of catalyzing the partial or complete pathway for GSH biosynthesis, which was realized by encapsulating essential enzymes of the pathway inside the virus-like particle (VLP) derived from the bacteriophage P22. These nanoreactors are the first examples of nanocages specifically designed for the biosynthesis of oligomeric biomolecules. A dense packing of enzymes is achieved within the cavities of the nanoreactors, which allows us to study enzyme behavior, in a crowded and confined environment, including enzymatic kinetics and protein stability. In addition, the biomedical utility of the nanoreactors in protection against oxidative stress was confirmed using an in vitro cell culture model. Given that P22 VLP capsid was suggested as a potential liver-tropic nanocarrier in vivo, it will be promising to test the efficacy of these GSH nanoreactors as a novel treatment for GSH-deficient hepatic diseases.


Assuntos
Bacteriófago P22/metabolismo , Glutationa/biossíntese , Vírion/metabolismo , Biocatálise , Capsídeo/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/genética , Glutationa Sintase/metabolismo , Células HEK293 , Humanos , Cinética , Nanoestruturas/química , Pasteurella/genética , Estabilidade Proteica , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...