Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817730

RESUMO

Ascorbate oxidase (AO) plays important roles in plant growth and development. Previously, we reported a cotton AO gene that acts as a positive factor in cell growth. Investigations on Gossypium hirsutum AO (GhAO) family genes and their multiple functions are limited. The present study identified eight GhAO family genes and performed bioinformatic analyses. Expression analyses of the tissue specificity and developmental feature of GhAOs displayed their diverse expression patterns. Interestingly, GhAO1A demonstrated the most rapid significant increase in expression after 1 h of light recovery from the dark. Additionally, the transgenic ao1-1/GhAO1A Arabidopsis lines overexpressing GhAO1A in the Arabidopsis ao1-1 late-flowering mutant displayed a recovery to the normal phenotype of wild-type plants. Moreover, compared to the ao1-1 mutant, the ao1-1/GhAO1A transgenic Arabidopsis presented delayed leaf senescence that was induced by the dark, indicating increased sensitivity to hydrogen peroxide (H2O2) under normal conditions that might be caused by a reduction in ascorbic acid (AsA) and ascorbic acid/dehydroascorbate (AsA/DHA) ratio. The results suggested that GhAOs are functionally diverse in plant development and play a critical role in light responsiveness. Our study serves as a foundation for understanding the AO gene family in cotton and elucidating the regulatory mechanism of GhAO1A in delaying dark-induced leaf senescence.


Assuntos
Ascorbato Oxidase/genética , Escuridão , Gossypium/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Ascorbato Oxidase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Gossypium/efeitos dos fármacos , Gossypium/efeitos da radiação , Peróxido de Hidrogênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos da radiação
2.
PLoS One ; 14(5): e0217243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107925

RESUMO

Different cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum) planting patterns are widely applied in the Yellow River Valley of China, and crop yield mainly depends on light interception. However, little information is available on how cotton canopy light capturing and yield distribution are affected by planting patterns. Hence, field experiments were conducted in 2016 and 2017 to study the response of cotton canopy light interception, square and boll distribution, the leaf area index (LAI) and biomass accumulation to three planting patterns: a cotton monoculture (CM, planted on 15 May) system, a cotton/wheat relay intercropping (CWI, planted on 15 May) system, in which three rows of wheat rows were intercropped with one row of cotton, and a system in which cotton was directly seeded after wheat (CWD, planted on 15 June). The following results were obtained: 1) greater light capture capacity was observed for cotton plants in the CM and CWI compared with the CWD, and the light interception of the CM was 22.4% and 51.4% greater than that of the CWI and CWD, respectively, at 30 days after sowing (DAS) in 2016; 2) more bolls occurred at the first sympodial position (SP) than at other SPs for plants in the CM; 3) based on the LAI and biomass accumulation, the cotton growth rate was the greatest in CWD, followed by CM and CWI; and 4) the CM produced significantly greater yields than did the other two treatments because it yielded more bolls and greater boll weight. Information on the characteristics of cotton growth and development in response to different planting patterns would be helpful for understanding the response of cotton yields to planting patterns and would facilitate the improvement of cotton productivity.


Assuntos
Produção Agrícola/métodos , Gossypium/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Biomassa , Metabolismo dos Carboidratos , China , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Gossypium/metabolismo , Gossypium/efeitos da radiação , Luz , Folhas de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/efeitos da radiação
3.
Plant Physiol Biochem ; 135: 51-60, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30500518

RESUMO

Chloroplast movement mediated by the plant-specific phototropin blue light photoreceptors is crucial for plants to cope with fluctuating light conditions. While chloroplasts accumulate at weak light-illuminated areas, chloroplast avoidance response mediated primarily by the phototropin2 (phot2) receptor is induced by strong light illumination. Although extensive studies have been performed on phot2-mediated chloroplast avoidance in the model plant Arabidopsis, little is known on the role of the corresponding PHOT2 orthologs in chloroplast movement in cotton. In this study, we found that chloroplast avoidance movement also occurs in the tetraploid G. hirsutum and two diploid species, G. arboreum and G. raimondii, albeit with distinct features. Further bioinformatics and genetic analysis identified the cotton PHOT2 ortholog, GhPHOT2-1, which retained a conserved role in plant chloroplast avoidance movement under strong blue light. Ghphot2-1was localized in the plasma membrane and formed aggregates after high blue light irradiation. Constitutive expression of GhPHOT2-1 restored chloroplast avoidance and accumulation response, as well as phototropism, and leaf flattening characteristics of the Arabidopsis phot2 or phot1 phot2 mutants. On the contrary, silencing of GhPHOT2-1 by virus-induced gene silencing (VIGS) disrupted high blue light-induced chloroplast avoidance movement and caused photo damage in cotton leaves. Taken together, these findings demonstrated that GhPHOT2-1 is a conserved PHOT2 ortholog in regulating chloroplast avoidance and the other aforementioned phot2-mediated responses, implicating its potential role for improving high light tolerance in cotton cultivars.


Assuntos
Cloroplastos/efeitos da radiação , Genes de Plantas/fisiologia , Gossypium/efeitos da radiação , Fototropinas/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Membrana Celular/fisiologia , Membrana Celular/efeitos da radiação , Cloroplastos/fisiologia , Genes de Plantas/genética , Gossypium/genética , Gossypium/fisiologia , Luz , Fototropinas/genética , Filogenia , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
4.
J Exp Bot ; 69(22): 5403-5417, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30202979

RESUMO

Genes of the CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) family influence meristem identity by controlling the balance between indeterminate and determinate growth, thereby profoundly impacting plant architecture. Artificial selection during cotton (Gossypium hirsutum) domestication converted photoperiodic trees to the day-neutral shrubs widely cultivated today. To understand the regulation of cotton architecture and exploit these principles to enhance crop productivity, we characterized the CETS gene family from tetraploid cotton. We demonstrate that genes of the TERMINAL FLOWER 1 (TFL1)-like clade show different roles in regulating growth patterns. Cotton has five TFL1-like genes: SELF-PRUNING (GhSP) is a single gene whereas there are two TFL1-like and BROTHER OF FT (BFT)-like genes, and these duplications are specific to the cotton lineage. All genes of the cotton TFL1-like clade delay flowering when ectopically expressed in transgenic Arabidopsis, with the strongest phenotypes failing to produce functional flowers. GhSP, GhTFL1-L2, and GhBFT-L2 rescue the early flowering Attfl1-14 mutant phenotype, and the encoded polypeptides interact with a cotton FD protein. Heterologous promoter::GUS fusions illustrate differences in the regulation of these genes, suggesting that genes of the GhTFL1-like clade may not act redundantly. Characterizations of the GhCETS family provide strategies for nuanced control of plant growth.


Assuntos
Genes de Plantas/genética , Gossypium/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Fatores Etários , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Gossypium/efeitos da radiação , Meristema/genética , Meristema/crescimento & desenvolvimento , Fotoperíodo , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
5.
BMC Genomics ; 19(1): 15, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301494

RESUMO

BACKGROUND: We previously reported the development of a set of Gossypium hirsutum-G. australe alien chromosome addition lines. Naturally, however, G. hirsutum-G. australe chromosome exchanges were very limited, impeding the stable transference of useful genes from G. australe (G2G2 genome) into the most cultivated cotton, G. hirsutum (AADD). RESULTS: In the present report, the pollen from a pentaploid (2n = AADDG2) of G. hirsutum-G. australe was irradiated with seven different doses ranging from 10 to 40 Grays and used to pollinate emasculated flowers of G. hirsutum over three consecutive years. Irradiation greatly increased the genetic recombination rates of the G. hirsutum and G. australe chromosomes and a total of 107 chromosome introgression individuals in 192 GISH-negative (with no GISH signal on chromosome) survived individuals, 11 chromosome translocation individuals (containing 12 chromosome translocation events) and 67 chromosome addition individuals were obtained in 70 GISH-positive (with GISH signal(s) on chromosome(s)) survived individuals, which are invaluable for mining desirable genes from G. australe. Multicolor genomic in situ hybridization results showed that there were three types of translocation, whole arm translocation, large alien segment translocation and small alien segment translocation, and that all translocations occurred between the G2-genome and the A-subgenome chromosomes in G. hirsutum. We also found that higher doses induced much higher rates of chromosome variation but also greatly lowered the seed viability and seedling survivability. CONCLUSIONS: Irradiation has been successfully employed to induce chromosome introgressions and chromosome translocations and promote chromosome exchanges between cultivated and wild species. In addition, by balancing the rates of chromosome introgression and translocation to those of seed set, seed germination, and seedling rates in the M1 generation, we conclude that the dosage of 20 Grays is the most suitable. The established methodology may guide the utilization of the tertiary gene pool of Gossypium species such as G. australe in cotton breeding in the future.


Assuntos
Cromossomos de Plantas , Gossypium/genética , Translocação Genética , Aberrações Cromossômicas , Cromossomos de Plantas/efeitos da radiação , Germinação/efeitos da radiação , Gossypium/efeitos da radiação
6.
Sci Rep ; 6: 33539, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628897

RESUMO

This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.


Assuntos
Gossypium/fisiologia , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Água/metabolismo , Isótopos de Carbono/metabolismo , Fertilizantes , Gossypium/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas
7.
PLoS One ; 11(5): e0156335, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227675

RESUMO

Identifying the characteristics of light interception and utilization is of great significance for improving the potential photosynthetic activity of plants. The present research investigates the differences in absorbing and converting photosynthetically active radiation (PAR) among various cotton cultivars. Field experiments were conducted in 2012, 2013 and 2014 in Anyang, Henan, China. Ten cultivars with different maturity and plant architectures were planted at a density of 60,000 plants ha-1 in randomized blocks, with three replicates. The spatial distribution of light in canopy was measured and quantified with a geo-statistical method, according to which the cumulative amount of intercepted radiation was calculated by Simpson 3/8 rules. Finally, light interception was analyzed in association with the biomass accumulation of different cultivars. The key results were: (1) late-maturing varieties with an incompact plant architecture captured more solar radiation throughout the whole growth period than middle varieties with columnar architecture and even more than early varieties with compact architecture, and they produced more biomass; (2) the highest PAR interception ratio and the maximum biomass accumulation rate occurred during the blossoming and boll-forming stage, when leaf area index (LAI) reached its peak; (3) the distribution within the canopy presented a significant spatial heterogeneity, and at late growing stage, the PAR was mainly intercepted by upper canopies in incompact-type plant communities, but was more homogeneous in columnar-type plants; however, the majority of radiation was transmitted through the canopy in compact-type colonies; (4) there was not a consistent variation relationship between the cumulative intercepted PAR (iPAR) and biomass among these cultivars over the three years of the study. Based on these results, we attempted to clarify the distinction in light spatial distribution within different canopies and the patterns of PAR interception in diverse cotton cultivars with different hereditary characters, thereby providing a significant basis for researchers to select cultivars with appropriate growth period and optimal plant architecture for improvement of light interception and utilization.


Assuntos
Biomassa , Gossypium/crescimento & desenvolvimento , Luz , Folhas de Planta/crescimento & desenvolvimento , Gossypium/metabolismo , Gossypium/efeitos da radiação , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
8.
PLoS One ; 10(7): e0133416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222792

RESUMO

Cotton knitted fabrics were manufactured with different yarn types (conventional ring spun yarn and torque-free ring spun yarn) with different fibre types (combed cotton and combed Supima cotton) and yarn fineness (Ne30 and Ne40). These fabrics were then dyed with three types of dye (reactive, direct and sulphur dye) with three dye concentrations (0.1%, 1.0% and 5.0% on-weight of fabric (owf)) in three colours (red, yellow and blue). This study examined the impact of constructional parameters and dyeing on ultraviolet (UV) protection properties of cotton knitted fabric. In-vitro test with spectrophotometer was used for evaluating the UV protection property of dyed cotton knitted fabrics. Among the six parameters investigated, fineness of yarn and dye concentration were the most significant factors affecting UPF while the color effect is the least significant. Experimental results revealed that the UPF value of dyed fabrics made from combed cotton is generally higher than the combed Supima cotton since combed cotton is composed of shorter fibres which facilitate the blocking or absorption of UV radiation. Second, fabrics made with twist yarn (i.e. ring spun yarn) have higher UPF value than the corresponding ESTex one (i.e. torque-free yarn) in general since fabrics made with ring spun yarn tend to shrink during wet processing and so it is more compact. Third, the UPF value of fabrics made with 30Ne yarn was higher than the 40Ne one since it is thicker and has lower fabric porosity. Fourth, fabrics dyed with lower concentration of dye gave the lowest UPF. Fifth, the sulphur dyed samples performed worse than the reactive and direct dyed samples in terms of UV protection property. Sixth, there is no significant difference in UPF for red, yellow and blue coloured fabrics. Seventh, this study also demonstrated that lightness of fabric is negatively related to UV protection property.


Assuntos
Corantes , Gossypium/química , Teste de Materiais , Roupa de Proteção , Queimadura Solar/prevenção & controle , Raios Ultravioleta/efeitos adversos , Gossypium/efeitos da radiação , Humanos , Técnicas In Vitro , Têxteis
9.
Radiat Prot Dosimetry ; 164(3): 325-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25205834

RESUMO

Clothing provides intrinsic ultraviolet (UV) protection that can be improved by colouration. However, the daily wearing condition can undermine the UV protection of coloured clothing wherein garments are stretched by body movement and/or wetted by perspiration of wearers. Knitwear is an indispensable clothing in summer, but its UV protection against wearing conditions lacks extensive study especially in a fabric structural approach. This article aimed at narrowing the research gap by focusing on the UV protection against stretch and wetness provided by various knitted fabric constructions incorporating the knit, tuck and miss stitches. The results show that the black knitted fabrics exhibit a significant reduction in the UV protection factor by 53% on average at a 10% stretch level. Knitted fabrics with miss stitches retained good UV protection even when the fabrics were stretched by 20% of its original dimensions.


Assuntos
Gossypium/química , Roupa de Proteção , Proteção Radiológica/métodos , Têxteis/análise , Raios Ultravioleta , Cor , Gossypium/efeitos da radiação , Humanos , Técnicas In Vitro , Monitoramento de Radiação , Estações do Ano , Têxteis/efeitos da radiação
10.
PLoS One ; 9(11): e113409, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409026

RESUMO

The partitioning of light is very difficult to assess, especially in discontinuous or irregular canopies. The aim of the present study was to analyze the spatial distribution of photosynthetically active radiation (PAR) in a heterogeneous cotton canopy based on a geo-statistical sampling method. Field experiments were conducted in 2011 and 2012 in Anyang, Henan, China. Field plots were arranged in a randomized block design with the main plot factor representing the plant density. There were 3 replications and 6 densities used in every replicate. The six plant density treatments were 15,000, 33,000, 51,000, 69,000, 87,000 and 105,000 plants ha(-1). The following results were observed: 1) transmission within the canopy decreased with increasing density and significantly decreased from the top to the bottom of the canopy, but the greatest decreases were observed in the middle layers of the canopy on the vertical axis and closing to the rows along the horizontal axis; 2) the transmitted PAR (TPAR) of 6 different cotton populations decreased slowly and then increased slightly as the leaves matured, the TPAR values were approximately 52.6-84.9% (2011) and 42.7-78.8% (2012) during the early cotton developmental stage, and were 33.9-60.0% (2011) and 34.5-61.8% (2012) during the flowering stage; 3) the Leaf area index (LAI) was highly significant exponentially correlated (R(2) = 0.90 in 2011, R(2) = 0.91 in 2012) with the intercepted PAR (IPAR) within the canopy; 4) and a highly significant linear correlation (R(2) = 0.92 in 2011, R(2) = 0.96 in 2012) was observed between the accumulated IPAR and the biomass. Our findings will aid researchers to improve radiation-use efficiency by optimizing the ideotype for cotton canopy architecture based on light spatial distribution characteristics.


Assuntos
Gossypium/crescimento & desenvolvimento , Luz , Algoritmos , Biomassa , Gossypium/metabolismo , Gossypium/efeitos da radiação , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
11.
J Plant Physiol ; 171(17): 1576-85, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25151126

RESUMO

Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/fisiologia , Fotossíntese/fisiologia , Estresse Fisiológico , Água/fisiologia , Respiração Celular/fisiologia , Clorofila/metabolismo , Escuridão , Regulação para Baixo , Secas , Transporte de Elétrons , Fluorescência , Gossypium/efeitos da radiação , Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/fisiologia , Estações do Ano
12.
Int J Radiat Biol ; 90(12): 1229-39, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24831496

RESUMO

PURPOSE: The purpose of the investigation was to induce somaclonal variations by gamma rays (GR), ethylmethane sulphonate (EMS) and sodium azide (SA) during in vitro organogenesis of cotton. MATERIALS AND METHODS: The shoot tip explants were irradiated with 5-50 Gray (Gy) GR (Cobalt 60), 0.5-5.0 mM EMS and SA separately, and inoculated on Murashige and Skoog (MS) medium fortified with plant growth regulator (PGR) for organogenesis. The plantlets with well-developed root systems were acclimatized and transferred into the experimental field to screen the somaclonal variations during growth and development. RESULTS: The number of somaclonal variations was observed in growth of irradiated/treated shoot tips, multiplication, plantlet regeneration and growth in vitro and ex vitro. The lower doses/concentrations of mutagenic treatments showed significant enhancement in selected agronomical characters and they showed decreased trends with increasing doses/concentrations of mutagenic agents. CONCLUSIONS: The results of the present study revealed the influence of lower doses/concentrations of mutagenic treatments on in vitro and ex vitro growth of cotton plantlets and their significant improvement in agronomical characters which needs further imperative stability analysis. The present observations showed the platform to use lower doses/concentrations of mutagenic agents to induce variability for enhanced agronomical characters, resistant and tolerant cotton varieties.


Assuntos
Metanossulfonato de Etila/toxicidade , Variação Genética/efeitos dos fármacos , Variação Genética/efeitos da radiação , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Mutagênicos/toxicidade , Azida Sódica/toxicidade , Gossypium/efeitos dos fármacos , Gossypium/efeitos da radiação , Organogênese/efeitos dos fármacos , Organogênese/genética , Organogênese/efeitos da radiação , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação
13.
J Plant Physiol ; 171(6): 411-20, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24594393

RESUMO

In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old). Young leaves also had significant differences in fatty acid saturation with the warmer, young leaves having a higher proportion of palmitic acid (16:0) and lower linoleic acid (18:3) in total lipid extracts and higher 16:0 and lower palmitoleic acid (16:1) in the chloroplast membrane phosphoglycerides, digalactosyldiacylglycerol (in the greenhouse) and phosphatidylglycerol when compared with cooler, more mature leaves. Later in the growing season, leaf temperature, stomatal conductance and ΦPSII temperature curves for young and more mature leaves were similar and the proportion of 16:0 fatty acids decreased and 16:1 increased in phosphatidylglycerol. We conclude that changes in temperature as cotton leaves expand leads to alterations in the fatty acid composition of thylakoid and other membranes and, consequently, influence photosynthesis/temperature responses.


Assuntos
Aclimatação/fisiologia , Ácidos Graxos/metabolismo , Gossypium/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Clorofila/metabolismo , Cloroplastos/metabolismo , Ritmo Circadiano , Ácidos Graxos/isolamento & purificação , Fluorescência , Gossypium/efeitos da radiação , Luz , Ácido Linoleico/isolamento & purificação , Ácido Linoleico/metabolismo , Ácido Palmítico/isolamento & purificação , Ácido Palmítico/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal , Chuva , Estações do Ano , Temperatura
14.
PLoS One ; 8(10): e77891, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205014

RESUMO

The red leaf coloration of Empire Red Leaf Cotton (ERLC) (Gossypium hirsutum L.), resulted from anthocyanin accumulation in light, is a well known dominant agricultural trait. However, the underpin molecular mechanism remains elusive. To explore this, we compared the molecular biological basis of anthocyanin accumulation in both ERLC and the green leaf cotton variety CCRI 24 (Gossypium hirsutum L.). Introduction of R2R3-MYB transcription factor Rosea1, the master regulator anthocyanin biosynthesis in Antirrhinum majus, into CCRI 24 induced anthocyanin accumulation, indicating structural genes for anthocyanin biosynthesis are not defected and the leaf coloration might be caused by variation of regulatory genes expression. Expression analysis found that a transcription factor RLC1 (Red Leaf Cotton 1) which encodes the ortholog of PAP1/Rosea1 was highly expressed in leaves of ERLC but barely expressed in CCRI 24 in light. Ectopic expression of RLC1 from ERLC and CCRI 24 in hairy roots of Antirrhinum majus and CCRI 24 significantly enhanced anthocyanin accumulation. Comparison of RLC1 promoter sequences between ERLC and CCRI 24 revealed two 228-bp tandem repeats presented in ERLC with only one repeat in CCRI 24. Transient assays in cotton leave tissue evidenced that the tandem repeats in ERLC is responsible for light-induced RLC1 expression and therefore anthocyanin accumulation. Taken together, our results in this article strongly support an important step toward understanding the role of R2R3-MYB transcription factors in the regulatory menchanisms of anthocyanin accumulation in red leaf cotton under light.


Assuntos
Cor , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Gossypium/genética , Luz , Folhas de Planta/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Antocianinas/metabolismo , Proteínas de Arabidopsis , Gossypium/crescimento & desenvolvimento , Gossypium/efeitos da radiação , Dados de Sequência Molecular , Proteínas Associadas a Pancreatite , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
15.
Photosynth Res ; 117(1-3): 517-28, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23589088

RESUMO

Using radioactively labelled amino acids to investigate repair of photoinactivated photosystem II (PS II) gives only a relative rate of repair, while using chlorophyll fluorescence parameters yields a repair rate coefficient for an undefined, variable location within the leaf tissue. Here, we report on a whole-tissue determination of the rate coefficient of photoinactivation k i , and that of repair k r in cotton leaf discs. The method assays functional PS II via a P700 kinetics area associated with PS I, as induced by a single-turnover, saturating flash superimposed on continuous background far-red light. The P700 kinetics area, directly proportional to the oxygen yield per single-turnover, saturating flash, was used to obtain both k i and k r . The value of k i , directly proportional to irradiance, was slightly higher when CO2 diffusion into the abaxial surface (richer in stomata) was blocked by contact with water. The value of k r , sizable in darkness, changed in the light depending on which surface was blocked by contact with water. When the abaxial surface was blocked, k r first peaked at moderate irradiance and then decreased at high irradiance. When the adaxial surface was blocked, k r first increased at low irradiance, then plateaued, before increasing markedly at high irradiance. At the highest irradiance, k r differed by an order of magnitude between the two orientations, attributable to different extents of oxidative stress affecting repair (Nishiyama et al., EMBO J 20: 5587-5594, 2001). The method is a whole-tissue, convenient determination of the rate coefficient of photoinactivation k i and that of repair k r .


Assuntos
Gossypium/metabolismo , Gossypium/efeitos da radiação , Luz , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Ar , Carbono/metabolismo , Escuridão , Transporte de Elétrons/efeitos da radiação , Cinética , Lincomicina/farmacologia , Oxirredução/efeitos dos fármacos , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo
16.
J Plant Physiol ; 170(9): 801-13, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23384758

RESUMO

Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01mM) and two levels of CO2 concentration (ambient 400 and elevated 800µmolmol(-1)) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.


Assuntos
Dióxido de Carbono/farmacologia , Gossypium/efeitos dos fármacos , Fósforo/farmacologia , Fotossíntese/efeitos dos fármacos , Aclimatação , Biomassa , Carbono/metabolismo , Clorofila/metabolismo , Difusão , Fluorescência , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Gossypium/efeitos da radiação , Luz , Células do Mesofilo , Nitrogênio/metabolismo , Fósforo/metabolismo , Fotossíntese/fisiologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal , Temperatura
17.
Ying Yong Sheng Tai Xue Bao ; 23(5): 1286-94, 2012 May.
Artigo em Chinês | MEDLINE | ID: mdl-22919839

RESUMO

Taking the super-high yielding cotton fields (lint yield > or = 4000 kg x hm(-2)) in Xinjiang as the objects, this paper studied the canopy light distribution, photosynthetic rate, and dry matter accumulation at different growth stages, as well as the relationships between the characteristics of canopy light environment and the photosynthetic production. From full flowering stage to late full bolling stage, the light absorption proportion in the upper, middle and lower canopy layers in the super-high yielding cotton fields was 2:2:1, and the canopy transmission coefficients for radiation penetration and diffuse penetration were 0.20-0.55 and 0.22-0.56, respectively, being at reasonable level. The leaves in the middle and lower canopy layers could well accept light, and the leaf photosynthetic rate had little difference among different canopy layers. Compared with high yielding (3500 kg x hm(-2)) and generally high yielding (3000 kg x hm(-2)) cotton fields, super-high yielding cotton field had higher leaf area index and the highest canopy photosynthesis rate at early full boiling stage, and slowly decreased leaf area index, higher canopy photosynthesis rate, increased contribution of non-foliar organs to photosynthetic production, and larger dry matter accumulation from early boll-opening stage to full boll-opening stage. In cotton cultivation, to adjust the canopy structure for the equidistribution of light and canopy photosynthesis capacity in vertical direction could be the important strategy for the efficient utilization of absorbed light energy and the realization of super-high yielding.


Assuntos
Biomassa , Ecossistema , Gossypium/fisiologia , Luz , Fotossíntese/fisiologia , China , Gossypium/efeitos da radiação , Folhas de Planta/metabolismo
18.
Electromagn Biol Med ; 31(2): 143-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22268861

RESUMO

Two different pre-sowing techniques have been investigated for their influence in an important industrial plant, namely cotton. Priming methods are very useful for agricultural practices because they improve crop seedling establishment, especially when environmental conditions are not optimum. Pulsed electromagnetic fields have been found to promote germination and improve early growth characteristics of cotton seedlings. Such priming techniques are especially valuable in organic cultivation, where chemical compounds are prohibited. PEG treatment showed an enhancement in some measurements, however in some cases the results were not statistically different compared to control plants. In addition, PEG treatment is a sophisticated method that is far from agricultural practices and farmers. In this research, two different ages of seeds were used (1- and 2-year-old) in order to investigate the promotory effects of priming techniques. Magnetic field treatment of 15 min was found to stimulate germination percentage and to promote seeds, resulting in 85% higher values than control seeds under real field conditions. Furthermore, seeds that were treated with magnetic field performed better in terms of early-stage measurements and root characteristics.


Assuntos
Campos Eletromagnéticos , Germinação/efeitos da radiação , Gossypium/crescimento & desenvolvimento , Gossypium/efeitos da radiação , Agricultura Orgânica/métodos , Gossypium/química , Osmose/efeitos da radiação , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Plântula/química , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Fatores de Tempo
19.
J Exp Bot ; 61(11): 2991-3002, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20478966

RESUMO

Phospholipase Dalpha (PLDalpha) was isolated from cultivated cotton (Gossypium hirsutum) and characterized. Two PLDalpha genes were identified in the allotetraploid genome of G. hirsutum, derived from its diploid progenitors, G. raimondii and G. arboreum. The genes contained three exons and two introns. The translated products shared a 98.6% homology and were designated as GrPLDalpha and GaPLDalpha. Their ORFs encoded a polypeptide of 807 amino acids with a predicted molecular mass of 91.6 kDa sharing an 81-82% homology with PLDalpha1 and PLDalpha2 from A. thaliana. A possible alternative splicing event was detected at the 5' untranslated region which, however, did not result in alternative ORFs. Cold stress (10 degrees C or less) resulted in gene induction which was suppressed below control levels (25 degrees C or 22 degrees C growth temperature) when plants were acclimated at 17 degrees C before applying the cold treatment. Differences in the expression levels of the isoforms were recorded under cold acclimation, and cold stress temperatures. Expression was light regulated under growth, acclimation, and cold stress temperatures. Characterization of the products of lipid hydrolysis by the endogenous PLDalpha indicated alterations in lipid species and a variation in levels of the signalling molecule phosphatidic acid (PA) following acclimation or cold stress.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Gossypium/enzimologia , Gossypium/fisiologia , Fosfolipases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Temperatura Baixa , Gossypium/genética , Gossypium/efeitos da radiação , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Dados de Sequência Molecular , Fosfolipases/química , Fosfolipases/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/classificação , Plantas/enzimologia , Plantas/genética , Alinhamento de Sequência
20.
Appl Radiat Isot ; 67(11): 2003-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19709891

RESUMO

Henna is a very popular plant in many countries, including Tunisia. Henna leaves have been used for thousands of years as a medicine, as a cosmetic and also for dyeing textile fabrics. This paper investigates the color modification of cotton, which has been colored by henna, due to gamma-ray irradiation. A cotton fabric tinted by means of a henna solution is irradiated using a (60)Co source at doses ranging from 0 to 25 kGy with a dose rate of 146.53 Gy/min. Decoloration of the henna dye in cotton fabrics was observed by studying variation of the L* and the h degrees as a function of the irradiation dose. This work reveals that cotton colored by henna can be used as a new indicator to differentiate between an unirradiated and irradiated product.


Assuntos
Cor , Colorimetria/métodos , Fibra de Algodão , Gossypium/efeitos da radiação , Naftoquinonas/química , Naftoquinonas/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama , Naftoquinonas/análise , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...