Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
PLoS One ; 19(5): e0303040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713652

RESUMO

In the present study, we attempted to use melatonin combined with germination treatment to remove pesticide residues from contaminated grains. High levels of pesticide residues were detected in soybean seeds after soaking with chlorothalonil (10 mM) and malathion (1 mM) for 2 hours. Treatment with 50 µM melatonin for 5 days completely removed the pesticide residues, while in the control group, only 61-71% of pesticide residues were removed from soybean sprouts. Compared with the control, melatonin treatment for 7 days further increased the content of ascorbic acid (by 48-66%), total phenolics (by 52-68%), isoflavones (by 22-34%), the total antioxidant capacity (by 37-40%), and the accumulated levels of unsaturated fatty acids (C18:1, C18:2, and C18:3) (by 17-30%) in soybean sprouts. Moreover, melatonin treatment further increased the accumulation of ten components of phenols and isoflavones in soybean sprouts relative to those in the control. The ability of melatonin to accelerate the degradation of pesticide residues and promote the accumulation of antioxidant metabolites might be related to its ability to trigger the glutathione detoxification system in soybean sprouts. Melatonin promoted glutathione synthesis (by 49-139%) and elevated the activities of glutathione-S-transferase (by 24-78%) and glutathione reductase (by 38-61%). In summary, we report a new method in which combined treatment by melatonin and germination rapidly degrades pesticide residues in contaminated grains and improves the nutritional quality of food.


Assuntos
Antioxidantes , Germinação , Glycine max , Melatonina , Valor Nutritivo , Resíduos de Praguicidas , Sementes , Melatonina/farmacologia , Germinação/efeitos dos fármacos , Resíduos de Praguicidas/análise , Sementes/efeitos dos fármacos , Sementes/química , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Glycine max/química , Antioxidantes/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Fenóis/análise , Contaminação de Alimentos/análise , Glutationa/metabolismo
2.
J Environ Sci Health B ; 57(6): 458-469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422183

RESUMO

Glyphosate applied at low doses can stimulate photosynthesis and yield. The objective of this study was to evaluate the application of low doses of glyphosate and sowing seasons in physiological characteristics and grain yield of common bean of early cycle. Two experiments were conducted in the field, the first in winter season and the second in wet season. The experimental design was a randomized complete block design, consisting of five and seven low doses of glyphosate and one period of application, with four replications. Glyphosate low dose of 108.0 g a.e. ha-1 impaired net CO2 assimilation rate, stomatal conductance, transpiration rate, instantaneous carboxylation efficiency, number of pods per plant, number of grains per plant and number of grains per pod. Glyphosate dose of 7.2 g a.e. ha-1 provided a 23% increase in grain yield in winter season, and the dose of 36.0 g a.e. ha-1 provided a 109% increase in grain yield in wet season. To our knowledge, this is the first report on effect of glyphosate at low doses and sowing season to obtain yield increases in common bean of early cycle.


Assuntos
Glicina/administração & dosagem , Herbicidas/administração & dosagem , Phaseolus/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Phaseolus/fisiologia , Fotossíntese/efeitos dos fármacos , Estações do Ano , Glifosato
3.
PLoS One ; 17(1): e0262771, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35085333

RESUMO

Nutrient use efficiency is crucial for increasing crop yield and quality while reducing fertilizer inputs and minimizing environmental damage. The experiments were carried out in silty clay loam soil of Lalitpur, Nepal, to examine how different amounts of nitrogen (N), phosphorus (P), and potassium (K) influenced crop performance and nutrient efficiency indices in wheat during 2019/20 and 2020/21. The field experiment comprised three factorial randomized complete block designs that were replicated three times. N levels (100, 125, 150 N kg ha-1), P levels (25, 50, 75 P2O5 kg ha-1), and K levels (25, 50, 75 K2O kg ha-1) were three factors evaluated, with a total of 27 treatment combinations. Grain yields were significantly increased by N and K levels and were optimum @ 125 kg N ha-1 and @ 50 kg K2O ha-1 with grain yields of 6.33 t ha-1 and 6.30 t ha-1, respectively. Nutrient levels influenced statistically partial factor productivity, internal efficiency, partial nutrient budget, recovery efficiency, agronomic efficiency, and physiological efficiency of NPK for wheat. Nutrient efficiency was found to be higher at lower doses of their respective nutrients. Higher P and K fertilizer rates enhanced wheat N efficiencies, and the case was relevant for P and K efficiencies as well. Wheat was more responsive to N and K fertilizer, and a lower rate of P application reduced N and K fertilizer efficiency. This study recommends to use N @ 125 kg ha-1, P2O5 @ 25 kg ha-1 and K2O @ 50 kg ha-1 as an optimum rate for efficient nutrient management in wheat in mid-hills of Nepal.


Assuntos
Nitrogênio/química , Nutrientes/farmacologia , Fósforo/química , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Agricultura/métodos , Grão Comestível/efeitos dos fármacos , Grão Comestível/crescimento & desenvolvimento , Fertilização/efeitos dos fármacos , Fertilizantes , Nepal , Solo/química
4.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946758

RESUMO

Biofortification of pulse crops with Zn and Fe is a viable approach to combat their widespread deficiencies in humans. Lentil (Lens culinaris Medik.) is a widely consumed edible crop possessing a high level of Zn and Fe micronutrients. Thus, the present study was conducted to examine the influence of foliar application of Zn and Fe on productivity, concentration, uptake and the economics of lentil cultivation (LL 931). For this, different treatment combinations of ZnSO4·7H2O (0.5%) and FeSO4·7H2O (0.5%), along with the recommended dose of fertilizer (RDF), were applied to the lentil. The results of study reported that the combined foliar application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at pre-flowering (S1) and pod formation (S2) stages was most effective in enhancing grain and straw yield, Zn and Fe concentration, and uptake. However, the outcome of this treatment was statistically on par with the results obtained under the treatment ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. A single spray of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage enhanced the grain and straw yield up to 39.6% and 51.8%, respectively. Similarly, Zn and Fe concentrations showed enhancement in grain (10.9% and 20.4%, respectively) and straw (27.5% and 27.6% respectively) of the lentil. The increase in Zn and Fe uptake by grain was 54.8% and 68.0%, respectively, whereas uptake by straw was 93.6% and 93.7%, respectively. Also the benefit:cost was the highest (1.96) with application of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage. Conclusively, the combined use of ZnSO4·7H2O (0.5%) + FeSO4·7H2O (0.5%) at S1 stage can contribute significantly towards yield, Zn and Fe concentration, as well as uptake and the economic returns of lentil to remediate the Zn and Fe deficiency.


Assuntos
Grão Comestível/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Fertilizantes/análise , Lens (Planta)/efeitos dos fármacos , Micronutrientes/farmacologia , Sulfato de Zinco/farmacologia , Biofortificação , Grão Comestível/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Lens (Planta)/metabolismo , Micronutrientes/química , Micronutrientes/metabolismo , Sulfato de Zinco/química , Sulfato de Zinco/metabolismo
5.
Ecotoxicol Environ Saf ; 208: 111597, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396118

RESUMO

Tribolium castaneum (Herbst) is an important pest of stored grain, and benzoquinones secreted by this pest are harmful to humans. T. castaneum has developed strong resistance to fumigants, and an ecofriendly alternative for managing T. castaneum is urgently needed. 1-Octen-3-ol is a major volatile compound present in many mushrooms and fungi. In the current study, the direct toxicity and sublethal and transgenerational effects of 1-octen-3-ol on T. castaneum were investigated. Our results showed that 1-octen-3-ol had strong insecticidal activity against all developmental stages of T. castaneum and repelled T. castaneum adults. 1-Octen-3-ol showed negative effects on the development and reproduction of parental T. castaneum and the subsequent generation: LC30 and LC50 treatments significantly decreased the pupa and adult weights, pupation and emergence rates and fecundity of the parental generation. In addition, LC50 treatment shortened the larval and pupal periods. In the unexposed progeny (F1) of 1-octen-3-ol-exposed parents, decreased survival and pupation rates as well as reduced pupa and adult weights were observed under LC30 and LC50 treatments. In addition, a model food-system experiment showed that 1-octen-3-ol at 98 µL/L exhibited an efficacy of 100% after 7 days of fumigation and completely eliminated T. castaneum offspring. Although a higher concentration of 1-octen-3-ol was needed to achieve an efficacy equal to that of the positive control, dichlorvos (DDVP), 1-octen-3-ol promoted the seedling growth of wheat seeds, suggesting that the concentration used was not only acceptable but also beneficial for wheat seeds. Overall, 1-octen-3-ol seems to be a promising candidate for use as a fumigant and repellent against T. castaneum as well as a seed protectant.


Assuntos
Besouros/fisiologia , Repelentes de Insetos/toxicidade , Inseticidas/toxicidade , Octanóis/toxicidade , Tribolium/efeitos dos fármacos , Animais , Besouros/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Pupa/efeitos dos fármacos , Triticum/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 208: 111605, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396125

RESUMO

This is a novel study about responses of leaf photosynthetic traits and plant mercury (Hg) accumulation of rice grown in Hg polluted soils to elevated CO2 (ECO2). The aim of this study was to provide basic information on the acclimation capacity of photosynthesis and Hg accumulation in rice grown in Hg polluted soil under ECO2 at day, night, and full day. For this purpose, we analyzed leaf photosynthetic traits of rice at flowering and grain filling. In addition, chlorophyll content, soluble sugar and Malondialdehyde (MDA) of rice leaves were measured at flowering. Seed yield, ear number, grain number per ear, 1000-grain weight, total mercury (THg) and methylmercury (MeHg) contents were determined after harvest. Our results showed that Hg polluted soil and ECO2 had no significant effect on leaf chlorophyll content and leaf mass per area (LMA) in rice. The contents of soluble sugar and MDA in leaves increased significantly under ECO2. Mercury polluted soil treatment significantly reduced the light saturated CO2 assimilation rate (Asat) of rice leaves only at flowering, but not at grain filling. Night ECO2 greatly improved rice leaf water use efficiency (WUE). ECO2 greatly increased seed yield and ear number. In addition, ECO2 did not affect THg accumulation in rice organs, but ECO2 and Hg treatment had a significant interaction on MeHg in seeds, husks and roots.


Assuntos
Dióxido de Carbono/análise , Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Oryza/metabolismo , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , Bioacumulação , Clorofila/metabolismo , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Monitoramento Ambiental/métodos , Mercúrio/análise , Compostos de Metilmercúrio/análise , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/química , Raízes de Plantas/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
7.
Plant Physiol Biochem ; 160: 184-192, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33513465

RESUMO

An appropriate selenium intake can be beneficial for human health. Se-biofortified food in Se-deficient regions is becoming an increasingly common practice but there are still issues to be addressed regarding the observed Se-induced toxicity to the plant. In this respect, plant biostimulants are used to enhance nutrition efficiency, abiotic stress tolerance and crop quality. In this work, the efficacy of a plant biostimulant to counteract the Se-induced stress in wheat plants is experimentally assessed. The co-application of different Se-biofortification treatments and the biostimulant at different growth stages (tillering or heading stage) was investigated. The use of micro focused X-ray spectroscopy allows us to confirm organic Se species to be the main Se species found in wheat grain and that the proportion of organic Se species is only slightly affected by the Se application stage. Our study proves that the biostimulant had a key role in the enhancement of both the amount of grains produced per spike and their dry biomass without hindering Se enrichment process, neither diminishing the Se concentration nor massively disrupting the Se species present. This information will be useful to minimize both plant toxicity and economic cost towards a more effective and plant healthy selenium supplementation.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Selênio , Triticum/efeitos dos fármacos , Biofortificação , Grão Comestível/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Selênio/farmacologia , Triticum/crescimento & desenvolvimento
8.
Environ Geochem Health ; 43(4): 1427-1439, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31522310

RESUMO

In recent decades, the problem of the constantly increasin level of anthropogenic load on the environment is becoming more and more acute. Some of the most dangerous pollutants entering the environment from industrial emissions are heavy metals. These pollutants are not susceptible to biodegradation over time, which leads to their accumulation in the environment in dangerous concentrations. The purpose of this work is to study the sustainability of cultivated and wild plants of the Poaceae family to aerotechnogenic pollution in the soil. The content of heavy metals in couch grass (Elytrigia repens (L.) Nevski), meadow bluegrass (Poa pratensis L.) and soft wheat (Triticum aestivum) plants grown in the impact zone of Novocherkassk Power Station has been analyzed. Contamination of cultivated and wild cereals with Pb, Zn, Ni and Cd has been established. It has been shown that the accumulation of heavy metals is individual for each plant species. An average and close correlation have been established between the total HM content and the content of their mobile forms in the soil and their content in plants. For the plants studied, the translocation factor (TF) and the distribution coefficient (DC) of HM have been calculated. The TF is formed by the ratio of the concentration of an element in the root plant dry weight to the content of its mobile compounds in the soil. The DC value makes it possible to estimate the capacity of the aboveground parts of plants to absorb and accumulate elements under soil pollution conditions and is determined as the ratio of the metal content in the aboveground biomass to its concentration in the roots. TF and DC values have shown a significant accumulation of elements by plants from the soil, as well as their translocation from the root system to the aboveground part. It has been revealed that even within the same Poaceae family, cultural species are more sensitive to man-made pollution than wild-growing ones.


Assuntos
Produtos Agrícolas/efeitos dos fármacos , Metais Pesados/toxicidade , Poaceae/fisiologia , Poluentes do Solo/toxicidade , Agricultura , Biodegradação Ambiental , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Metais Pesados/análise , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Federação Russa , Poluentes do Solo/análise , Especificidade da Espécie , Triticum/efeitos dos fármacos , Triticum/metabolismo
9.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167324

RESUMO

In plant tissues, sugar levels are determined by the balance between sugar import, export, and sugar synthesis. So far, water soluble carbohydrate (WSC) dynamics have not been investigated in a diurnal context in wheat stems as compared to the dynamics in flag leaves during the terminal phases of grain filling. Here, we filled this research gap and tested the hypothesis that WSC dynamics interlink with gene expression of TaSUT1. The main stems and flag leaves of two genotypes, Westonia and Kauz, were sampled at four hourly intervals over a 24 h period at six developmental stages from heading to 28 DAA (days after anthesis). The total levels of WSC and WSC components were measured, and TaSUT1 gene expression was quantified at 21 DAA. On average, the total WSC and fructan levels in the stems were double those in the flag leaves. In both cultivars, diurnal patterns in the total WSC and sucrose were detected in leaves across all developmental stages, but not for the fructans 6-kestose and bifurcose. However, in stems, diurnal patterns of the total WSC and fructan were only found at anthesis in Kauz. The different levels of WSC and WSC components between Westonia and Kauz are likely associated with leaf chlorophyll levels and fructan degradation, especially 6-kestose degradation. High correlation between levels of TaSUT1 expression and sucrose in leaves indicated that TaSUT1 expression is likely to be influenced by the level of sucrose in leaves, and the combination of high levels of TaSUT1 expression and sucrose in Kauz may contribute to its high grain yield under well-watered conditions.


Assuntos
Metabolismo dos Carboidratos/genética , Proteínas de Transporte de Monossacarídeos/genética , Folhas de Planta/metabolismo , Sacarose/metabolismo , Triticum , Metabolismo dos Carboidratos/efeitos dos fármacos , Carboidratos/química , Ritmo Circadiano/fisiologia , Desidratação/genética , Desidratação/metabolismo , Secas , Grão Comestível/efeitos dos fármacos , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Transporte de Monossacarídeos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Solubilidade , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Água/química , Água/farmacologia
10.
PLoS One ; 15(10): e0241481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119693

RESUMO

The application of controlled release urea (CRU) has been proposed as a crucial method to reduce the adverse environmental effects induced by conventional urea (CU). Yet, a systematic and quantitative analysis on how CRU affects staple crop production including wheat (Triticum aestivum L.), maize (Zea mays L.), and rice (Oryza sativa L.) is lacking. Here, a meta-analysis was conducted to determine how CRU influences soil chemical properties, total nitrogen (TN) uptake, grain yield, and nitrogen use efficiency (NUE) of staple crop in China. The results indicated that CRU application significantly increased soil organic carbon (SOC), TN, and available nitrogen (AN) by 5.93%, 3.89% and 13.98% respectively overall, while soil pH showed no significant changes. Compared to the application of CU, applying CRU significantly increased grain yield by 7.23%, which was mainly owing to the higher TN uptake (9.13%) across all the studies. In addition, the application of CRU significantly increased NUE, nitrogen agronomy efficiency (NAE), utilization rate of nitrogen fertilizer (NUR), and nitrogen physiological efficiency (NPE) by an average of 23.4%, 34.65%, 25.83% and 15.8% respectively which could be attributed to the slow nitrogen (N) release characteristics of CRU. The positive effect of CRU on grain yield and NUE of staple crop was greatest when the content of SOC and TN were extremely low, indicating that it was most effective to improve grain production of infertile soil by applying CRU. The finding of this study indicated that the application of CRU should be promoted for grain production, especially for infertile soil.


Assuntos
Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Nitrogênio/metabolismo , Ureia/farmacologia , Transporte Biológico/efeitos dos fármacos , Preparações de Ação Retardada , Grão Comestível/crescimento & desenvolvimento , Solo/química
11.
Ecotoxicol Environ Saf ; 205: 111167, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827967

RESUMO

Contamination of agricultural fields with Cadmium (Cd) due to several agricultural practices is increasing worldwide. The rice plants can easily take up Cd and accumulate it into different parts, including the grains, posing a threat to human health even at low concentration exposure. Several phytohormones, including Salicylic acid (SA) have been investigated since long for its alleviating properties under various biotic and abiotic stress conditions. In the present study, 100 µM SA application to ameliorate 25 µM Cd stress was studied for 72 h in hydroponics in Oryza sativa cv. Bandana seedlings. Pot experiments were done with same treatment condition and plants were grown till maturity. SA application to Cd exposed rice seedlings alleviated the stress condition, which was established by several physiological, biochemical, histochemical and gene expression analysis. SA treatment to Cd stressed seedlings showed elevated photosynthetic pigment content, on-protein thiol content and relieved the Cd induced growth inhibition considerably. It lowered the accumulation of ROS like, O2- and H2O2 with a regulated antioxidative enzymatic activity. SA application in Cd exposed rice seedlings had upregulated expression of OsHMA3 and OsPCS1 whereasOsNRAMP2 gene was downregulated. Co-application of SA and Cd led to higher yield and improved agronomic traits in comparison to only Cd exposed plants under pot experimentation. Daily intake of Cd and Carcinogenic risk were also reduced by 99.75% and 99.99% respectively in the SA treated Cd stressed plants. SA positively affected the growth and tolerance of rice seedlings to Cd stress. Hence, SA addition to Cd contaminated soil can ensure rice cultivation without posing health risk to consumers.


Assuntos
Bioacumulação/efeitos dos fármacos , Cádmio/toxicidade , Grão Comestível/efeitos dos fármacos , Oryza/efeitos dos fármacos , Ácido Salicílico/farmacologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Cádmio/metabolismo , Grão Comestível/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroponia , Oryza/metabolismo , Fotossíntese/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/metabolismo , Poluentes do Solo/metabolismo , Estresse Fisiológico/efeitos dos fármacos
12.
Sci Rep ; 10(1): 11361, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647263

RESUMO

Due to fresh water scarcity, farmers are using polluted water for irrigation. This research was conducted to study the bioaccumulation of Pb in wheat (Cv. Shafaq-2006). The experiment was comprised of seven treatments of lead i.e. 0-1,000 mg Pb/kg. The results revealed that lead severely reduces germination (- 30%), seedling fresh weight (- 74%), seedling dry weight (- 77%), vigor index (- 89%), tolerance index (- 84%), plant height (- 33%), number of leaves (- 41%), root fresh weight (- 50%), shoot fresh weight (- 62%), root dry weight (- 63%), shoot dry weight (- 71%), and root length (- 45%). The physiological parameters also respond negatively like stomatal conductance (- 82%), transpiration rate (- 72%) and photosynthetic rate (- 74%). Similarly, biochemical parameters also showed negative impacts, like carotenoids (- 41), total chlorophyll (- 43), chlorophyll a (- 42) and chlorophyll b (- 53). Yield parameters like the number of seed/plant, seed weight/plant, 1,000 seed weight and harvest index were reduced by 90%, 88%, 44% and 61%, respectively in T6. In addition, protein contents (- 81%), phosphorous (- 60%) and potassium (- 55%) were highly effected in the highest lead concentration (T6). Lead accumulation was extremely higher in seeds (119%) as compared to control plants. Lead bio-accumulation above threshold concentrations in crop parts is a serious human health concern.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Resíduos Industriais/efeitos adversos , Chumbo/toxicidade , Triticum/crescimento & desenvolvimento , Águas Residuárias/toxicidade , Bioacumulação , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Germinação/efeitos dos fármacos , Chumbo/análise , Chumbo/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/química , Triticum/efeitos dos fármacos , Triticum/metabolismo , Águas Residuárias/química
13.
Bull Environ Contam Toxicol ; 105(2): 237-243, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32651610

RESUMO

We assessed the effects of carbon dioxide (CO2) and decabromodiphenyl ether (BDE-209, 0, 3 and 30 mg/kg) on rice (Oryza sativa L. cv. Wuyunjing) in field free-air CO2 enrichment system. Rice at elevated (580 ppm) CO2 had increased net photosynthetic rate, intercellular CO2 concentration, shoot biomass, yield and phosphorus content in grains. However, there were no significant changes in such parameters observed on rice at elevated CO2 combined with BDE-209 (3 and 30 mg/kg). Elevated CO2 alone had no significant effects on sugar or starch content in rice grains, whereas its combination with BDE-209 (3 mg/kg) significantly decreased grain sugar and starch content. In conclusion, rice reared in soil polluted by BDE-209 under elevated CO2 modulates the effects in grain feature.


Assuntos
Dióxido de Carbono/toxicidade , Éteres Difenil Halogenados/toxicidade , Oryza/efeitos dos fármacos , Poluentes do Solo/toxicidade , Biomassa , Dióxido de Carbono/análise , China , Mudança Climática , Grão Comestível/química , Grão Comestível/efeitos dos fármacos , Éteres Difenil Halogenados/análise , Oryza/química , Fotossíntese/efeitos dos fármacos , Solo/química , Poluentes do Solo/análise
14.
Ecotoxicol Environ Saf ; 203: 110964, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678754

RESUMO

Soil salinization is the most common abiotic stress limiting agricultural productivity worldwide. Recent research has suggested that the application of silicon (Si) has beneficial effects against salt stress in sorghum (Sorghum bicolor L. Moench) and sunflower (Helianthus annuus L.) by regulating the antioxidant system, mineral nutrients, and other important mechanisms. However, whether these effects can be achieved through foliar application of Si, or whether Si application affects Si-accumulating (e.g., sorghum), and intermediate-Si-accumulating (e.g., sunflower) plant species differently, remains unclear. This study investigated different methods of Si application in attenuating the detrimental effects of salt stress, based on the biological responses of two distinct species of Si accumulators, under greenhouse conditions. Two pot experiments were designed as a factorial (2 × 4), randomized complete blocks design (RCBD) with control and salt-stress groups (0 and 100 mmol.L-1 NaCl), and four Si-treatment groups: control (no Si), foliar application (28.6 mmol.L-1), root application (2 mmol.L-1), and combined foliar and root applications. Our results showed that the harmful effects of salt stress were attenuated by Si treatments in both plant species, which decreased Na+ uptake and lipid peroxidation, and increased Si and K+ uptake, relative leaf water content, antioxidant enzyme activities, leaf area, and shoot dry matter. These results were more prominent when Si was applied via nutrient solution in the sorghum plants, and the combined foliar and root applications of Si in sunflower plants. In addition, foliar application of Si alone is an efficient alternative in attenuating the effects of salinity in both plant species when Si is not available in the growth medium. These results suggest that the Si application method plays an important role in Na+ detoxification by modifying the antioxidative defense mechanism, which could actively mediate some important physiological and biochemical processes and helps to increase the shoot dry matter production in sorghum and sunflower plants under salt stress.


Assuntos
Antioxidantes/metabolismo , Helianthus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Salino , Silício/farmacologia , Sorghum/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Helianthus/metabolismo , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Distribuição Aleatória , Salinidade , Solo/química , Sorghum/metabolismo
15.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610484

RESUMO

Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.


Assuntos
Ácido Abscísico/farmacologia , Grão Comestível/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Ácido Abscísico/metabolismo , Secas , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Hordeum/genética , Hordeum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Estresse Fisiológico/fisiologia , Triticum/genética , Triticum/metabolismo
16.
BMC Plant Biol ; 20(1): 282, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560674

RESUMO

BACKGROUND: The combination of mulch with N fertilizer application is a common agronomic technique used in the production of rainfed maize (Zea mays L.) to achieve higher yields under conditions of optimum planting density and adequate N supply. However, the combined effects of mulch, planting density, and N fertilizer application rate on plant N uptake and N translocation efficiency are not known. The objective of this study was to quantify the interaction effect of mulch, planting density, and N fertilizer application rate on maize grain yield, N uptake, N translocation, and N translocation efficiency. The experiment was arranged in a randomized complete block design with three factors (2 mulch levels × 2 planting densities × 4 N fertilizer application rates) replicated four times. RESULTS: There was a significant interaction among mulch, plant density, and N fertilizer on maize grain yield, kernel number per cob, N uptake, N translocation, and N translocation efficiency. Averaged over the 3 years of the study, total plant N uptake at silking ranged from 79 to 149 kg N ha- 1 with no mulch and from 76 to 178 kg N ha- 1 with mulch. The N uptake at silking in different plant organs ranked as leaf > grain > stem > cob. Averaged across all factors, the highest N translocation was observed in leaves, which was 59.4 and 88.7% higher than observed in stems and ears, respectively. The mean vegetative organ N translocation efficiency averaged over mulch, planting density, and N fertilizer application rate treatments decreased in the order of leaf > stem > cob. CONCLUSIONS: Mulch, planting density, and N fertilizer application rate not only have significant effects on improving maize grain yield and NUE, but also on N uptake, N translocation, and N translocation efficiency. Our results showed clearly that under high planting density, the combination of mulch and moderate N fertilizer application rate was the optimal strategy for increasing maize grain yield and N use efficiency.


Assuntos
Produção Agrícola/métodos , Grão Comestível/efeitos dos fármacos , Fertilizantes , Nitrogênio/metabolismo , Zea mays/efeitos dos fármacos , China , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
17.
PLoS One ; 15(6): e0234029, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32484836

RESUMO

The aim of this study was to determine the effects and underlying molecular mechanisms of humic acid (HA) on foxtail millet (Setaria italica Beauv.) under drought conditions. The rainless climate of the Shanxi Province (37°42'N, 112°58'E) in China provides a natural simulation of drought conditions. Two foxtail millet cultivars, Jingu21 and Zhangza10, were cultivated in Shanxi for two consecutive years (2017-2018) based on a split-plot design. Plant growth, grain quality, and mineral elements were analyzed in foxtail millet treated with HA (50, 100, 200, 300, and 400 mg L-1) and those treated with clear water. Transcriptome sequencing followed by bioinformatics analysis was performed on plants in the normal control (CK), drought treatment (D), and drought + HA treatment (DHA) groups. Results were verified using real-time quantitative PCR (RT-qPCR). HA at a concentration of 100-200 mg L-1 caused a significant increase in the yield of foxtail millet and had a positive effect on dry weight and root-shoot ratio. HA also significantly increased P, Fe, Cu, Zn, and Mg content in grains. Moreover, a total of 1098 and 409 differentially expressed genes (DEGs) were identified in group D vs. CK and D vs. DHA, respectively. A protein-protein interaction network and two modules were constructed based on DEGs (such as SETIT_016654mg) between groups D and DHA. These DEGs were mainly enriched in the metabolic pathway. In conclusion, HA (100 mg L-1) was found to promote the growth of foxtail millet under drought conditions. Furthermore, SETIT_016654mg may play a role in the effect of HA on foxtail millet via control of the metabolic pathway. This study lays the foundation for research into the molecular mechanisms that underlie the alleviating effects of HA on foxtail millet under drought conditions.


Assuntos
Substâncias Húmicas , Proteínas de Plantas/genética , Setaria (Planta)/crescimento & desenvolvimento , Transcriptoma/genética , China , Secas , Grão Comestível/efeitos dos fármacos , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Setaria (Planta)/efeitos dos fármacos , Setaria (Planta)/genética , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
18.
Int J Biol Macromol ; 160: 328-339, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32473221

RESUMO

The quality of rice grain is characterized by the component, structure and physicochemical properties of starch accumulated in endosperm cell. Nitrogen uptake strongly affects rice growth and starch development. In this study, Nangeng 9108 was used to investigated the accumulation of starch in different positions of the endosperm and physical properties of starch under nitrogen treatment of panicle initiation (PI) stage. Compared with the control group (CG), nitrogen treatment group (NTG) featured a higher number of grains per panicle and 1000-grain weight. Nitrogen treatment significantly increased starch accumulation among different regions during endosperm development, which was expressed as central endosperm cells > sub-aleurone cells of abdominal endosperm > sub-aleurone cells of dorsal endosperm. The amyloplast increased by constricting and budding-type division, generated a bead-like structure and derived some vesicles. The particle size of the starch granules obtained from the NTG was smaller and the apparent amylose content was lower than those of the CG, resulting in higher relative crystallinity. Nitrogen treatment promoted double helical components and provided a higher degree of order at short-rang scale for the starch granules. This study indicated that nitrogen significantly affected the accumulation and physicochemical properties of starch in the endosperm.


Assuntos
Endosperma/efeitos dos fármacos , Nitrogênio/administração & dosagem , Oryza/efeitos dos fármacos , Oryza/metabolismo , Amido/metabolismo , Amilose/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Endosperma/metabolismo , Tamanho da Partícula , Fenômenos Físicos , Proteínas de Plantas/metabolismo
19.
Ecotoxicol Environ Saf ; 196: 110525, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224370

RESUMO

Fragrant rice is a high-valued quality rice type which is gaining much popularity over the globe due to its better cooking qualities and special aromatic characteristics. Selenium (Se) and silicon (Si) could improve the growth and yield of rice; however, the combine effects of Se and Si (Se-Si treatments) on rice grain quality, aroma and lodging in fragrant rice were rarely investigated. The pot and field experiments were conducted with two fragrant rice cultivars i.e., Xiangyaxiangzhan and Yuxiangyouzhan, grown under three Se levels i.e., 0, 120, and 240 mg kg-1 of soil (for pot experiment) and 0, 300, and 600 kg ha-1 (for field experiment) regarded as LSe, MSe and HSe, respectively and two Si levels i.e., 0 and 60 mg kg-1 of soil (for pot experiment) and 0 and 150 kg ha-1 (for field experiment) regarded as -Si and +Si, respectively. Results depicted that the Se-Si treatments regulated head rice yield, grain yield and yield related traits and the HSe+Si treatment sustainably improved the grain yield and head rice yield by regulating plant growth, antioxidant response and malondialdehyde (MDA) contents in fragrant rice. The Se-Si treatments also improved the grain 2AP contents owing to regulation in the proline, pyrroline-5-carboxylate (P5C) and γ-aminobutyric acid (GABA) contents. Besides, Se-Si treatments also regulated the grain quality attributes and influenced the plant Se contents. Moreover, the Si mitigated Se-induced lodging resulted from changes in the lodging parameters i.e., lodging index, fresh weight per tiller, pushing resistance force, plant height and bending moment. Overall, the Se and Si application improved the grain yield and regulated the dry weight accumulation, antioxidant attributes and quality attributes. Meanwhile, the Si application mitigated the negative effect of Se-induced lodging in fragrant rice.


Assuntos
Grão Comestível/efeitos dos fármacos , Odorantes/análise , Oryza/efeitos dos fármacos , Selênio/farmacologia , Silício/farmacologia , Antioxidantes/análise , Relação Dose-Resposta a Droga , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Malondialdeído/análise , Oryza/química , Oryza/crescimento & desenvolvimento , Prolina/análise , Pirróis/análise , Solo/química
20.
Int J Mol Sci ; 21(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204325

RESUMO

We present the first comprehensive proteome analysis of wheat flag leaves under water-deficit, high-nitrogen (N) fertilization, and combined treatments during grain development in the field. Physiological and agronomic trait analyses showed that leaf relative water content, total chlorophyll content, photosynthetic efficiency, and grain weight and yield were significantly reduced under water-deficit conditions, but dramatically enhanced under high-N fertilization and moderately promoted under the combined treatment. Two-dimensional electrophoresis detected 72 differentially accumulated protein (DAP) spots representing 65 unique proteins, primarily involved in photosynthesis, signal transduction, carbohydrate metabolism, redox homeostasis, stress defense, and energy metabolism. DAPs associated with photosynthesis and protein folding showed significant downregulation and upregulation in response to water-deficit and high-N treatments, respectively. The combined treatment caused a moderate upregulation of DAPs related to photosynthesis and energy and carbohydrate metabolism, suggesting that high-N fertilization can alleviate losses in yield caused by water-deficit conditions by enhancing leaf photosynthesis and grain storage compound synthesis.


Assuntos
Grão Comestível/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Triticum/metabolismo , Água/metabolismo , Clorofila/metabolismo , Grão Comestível/efeitos dos fármacos , Grão Comestível/crescimento & desenvolvimento , Eletroforese em Gel Bidimensional , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Fertilizantes , Homeostase/efeitos dos fármacos , Nitrogênio/farmacologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Proteômica/métodos , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...