Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
J Exp Bot ; 74(1): 72-90, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264277

RESUMO

Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.


Assuntos
Grão Comestível , Triticum , Triticum/fisiologia , Fenótipo , Grão Comestível/fisiologia , Fotossíntese/fisiologia , Folhas de Planta
2.
Plant Cell Environ ; 46(4): 1384-1401, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36319615

RESUMO

Preharvest sprouting (PHS) is an unfavorable trait in cereal crops and causes serious yield loss. However, the molecular mechanism underlying PHS remains largely elusive. Here, we identified a member of 9-cis-epoxycarotenoid dioxygenase family, OsNCED3, which regulates PHS and grain development in rice (Oryza sativa L.). OsNCED3 encodes a chloroplast-localized abscisic acid (ABA) biosynthetic enzyme highly expressed in the embryo of developing seeds. Disruption of OsNCED3 by CRISPR/Cas9-mediated mutagenesis led to a lower ABA and higher gibberellic acid (GA) levels (thus a skewed ABA/GA ratio) in the embryo, promoting embryos growth and breaking seed dormancy before seed maturity and harvest, thus decreased seed dormancy and enhanced PHS in rice. However, the overexpression of OsNCED3 enhanced PHS resistance by regulating proper ABA/GA ratio in the embryo. Intriguingly, the overexpression of OsNCED3 resulted in increased grain size and weight, whereas the disruption of OsNCED3 function decreased grain size and weight. Nucleotide diversity analyses suggested that OsNCED3 may be selected during japonica populations adaptation of seed dormancy and germination. Taken together, we have identified a new OsNCED regulator involved rice PHS and grain development, and provide a potential target gene for improving PHS resistance and grain development in rice.


Assuntos
Grão Comestível , Oryza , Grão Comestível/fisiologia , Oryza/fisiologia , Germinação/genética , Dormência de Plantas/genética , Ácido Abscísico , Sementes/fisiologia , Regulação da Expressão Gênica de Plantas
3.
PeerJ ; 10: e14141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164605

RESUMO

Maize (Zea mays L.) is the second most commonly produced and consumed crop after wheat globally and is adversely affected by high heat, which is a significant abiotic stress factor. This study was carried out to determine the physiological and biochemical responses of hybrid corn varieties under heat stress ('HS') compared to control ('C') conditions during the 2020 and 2021 growing seasons. The experiment was conducted under natural conditions in the Southeastern region of Turkey, where the most intense temperatures are experienced. This experiment used split plots in randomized blocks with three replications, with 'HS' and 'C' growing conditions applied to the main plots and the different hybrid corn varieties (FAO 650) planted on the sub plots. Mean values of days to 50% tasseling (DT, day), grain yield (GY, kg ha-1), leaf water potential (LWP, %), chlorophyll-a (Chl-a, mg g-1), cell membrane damage (CMD, %), and total phenol content (TPC, µg g-1) were significantly different between years, growing conditions, and hybrid corn varieties. Changes in the climate played a significant role in the differences between the years and growing conditions (GC), while the genetic characteristics of the different corn varieties explained the differences in outcomes between them. The values of DT, GY, LWP, Chl-a, CMD, and TPC ranged from 49.06-53.15 days, 9,173.0-10,807.2 kg ha-1, 78.62-83.57%, 6.47-8.62 mg g-1, 9.61-13.54%, and 232.36-247.01 µg g-1, respectively. Significant correlations were recorded between all the parameters. Positive correlations were observed between all the variables except for CMD. The increased damage to cell membranes under 'HS' caused a decrease in the other measured variables, especially GY. In contrast, the GY increased with decreased CMD. CMD was important in determining the stress and tolerance level of corn varieties under 'HS' conditions. The GY and other physiological parameters of ADA 17.4 and SYM-307 candidate corn varieties surpassed the control hybrid corn cultivars. The results revealed that the ADA 17.4 and SYM-307 cultivars might have 'HS'-tolerate genes.


Assuntos
Grão Comestível , Zea mays , Zea mays/genética , Grão Comestível/fisiologia , Folhas de Planta/genética , Estresse Fisiológico/genética , Resposta ao Choque Térmico/genética
4.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216463

RESUMO

Grain weight, a crucial trait that determines the grain yield in rice, is influenced by grain size. Although a series of regulators that control grain size have been identified in rice, the mechanisms underlying grain development are not yet well understood. In this study, we identified OsPUB43, a U-box E3 ubiquitin ligase, as an important negative regulator determining the gain size and grain weight in rice. Phenotypes of large grain are observed in ospub43 mutants, whereas overexpression of OsPUB43 results in short grains. Scanning electron microscopy analysis reveals that OsPUB43 modulates the grain size mainly by inhibiting cell proliferation in the spikelet hull. The OsPUB43 protein is localized in the cytoplasm and nucleus. The ospub43 mutants display high sensitivity to exogenous BR, while OsPUB43-OE lines are hyposensitive to BR. Furthermore, the transient transcriptional activity assay shows that OsBZR1 can activate the expression of OsPUB43. Collectively, our results indicate that OsPUB43 negatively controls the gain size by modulating the expression of BR-responsive genes as well as MADS-box genes that are required for lemma/palea specification, suggesting that OsPUB43 has a potential valuable application in the enlargement of grain size in rice.


Assuntos
Proliferação de Células , Grão Comestível/anatomia & histologia , Mutação , Oryza/enzimologia , Ubiquitina-Proteína Ligases/genética , Sistemas CRISPR-Cas , Grão Comestível/fisiologia , Edição de Genes , Oryza/anatomia & histologia , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética
5.
Plant Biotechnol J ; 20(5): 846-861, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34890091

RESUMO

The role of abscisic acid (ABA) receptors, PYR1/PYL/RCAR (PYLs), is well established in ABA signalling and plant drought response, but limited research has explored the regulation of wheat PYLs in this process, especially the effects of their allelic variations on drought tolerance or grain yield. Here, we found that the overexpression of a TaABFs-regulated PYL gene, TaPYL1-1B, exhibited higher ABA sensitivity, photosynthetic capacity and water-use efficiency (WUE), all contributed to higher drought tolerance than that of wild-type plants. This heightened water-saving mechanism further increased grain yield and protected productivity during water deficit. Candidate gene association analysis revealed that a favourable allele TaPYL1-1BIn-442 , carrying an MYB recognition site insertion in the promoter, is targeted by TaMYB70 and confers enhanced expression of TaPYL1-1B in drought-tolerant genotypes. More importantly, an increase in frequency of the TaPYL1-1BIn-442 allele over decades among modern Chinese cultivars and its association with high thousand-kernel weight together demonstrated that it was artificially selected during wheat improvement efforts. Taken together, our findings illuminate the role of TaPYL1-1B plays in coordinating drought tolerance and grain yield. In particular, the allelic variant TaPYL1-1BIn-442 substantially contributes to enhanced drought tolerance while maintaining high yield, and thus represents a valuable genetic target for engineering drought-tolerant wheat germplasm.


Assuntos
Ácido Abscísico , Proteínas de Plantas , Receptores Citoplasmáticos e Nucleares , Triticum , Ácido Abscísico/metabolismo , Secas , Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Triticum/fisiologia , Água/fisiologia
6.
Mol Biol Rep ; 49(1): 617-628, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34669126

RESUMO

Abiotic stresses, among which extreme temperatures, salinity, drought, UV radiation, heavy metal pollution, etc., adversely affect the growth and yield of cereals, the most important group of monocotyledonous plants that have met the nutritional and other needs of mankind for thousands of years. To cope with stress, plants deploy certain adaptive strategies that combine morphological, physiological, and biochemical responses, and on which growth and productivity depend. An important place in the formation of such strategies is occupied by phytohormones - signaling biomolecules of a different chemical structure and physicochemical properties, which act in nanomolar concentrations and regulate most physiological and metabolic processes of plants. In this review, the latest literature data concerning the growth and development regulation by exogenous phytohormones in cereals under abiotic stresses have been analyzed and summarized. The effects of priming and foliar treatment with abscisic acid, gibberellins, auxins, cytokinins, brassinosteroids, jasmonic and salicylic acids on the cultivated cereals tolerance to different abiotic stressors are discussed. Peculiarities of bilateral and multilateral hormonal signaling in the formation of responses of cultivated cereals to abiotic stressors after application of exogenous phytohormones are considered. The issue of exogenous phytohormones effects on molecular mechanisms controlling the synthesis of endogenous hormones, their signaling and activity are singled out. It is emphasized that phytohormonal engineering opens new opportunities to increase yields and is seen as an important promising approach to overcoming the cereal losses caused by adverse external factors.


Assuntos
Grão Comestível/fisiologia , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico , Biomarcadores , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais
7.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34884864

RESUMO

Drought affects plant growth and development, causing severe yield losses, especially in cereal crops. The identification of genes involved in drought tolerance is crucial for the development of drought-tolerant crops. The aim of this study was to identify genes that are conserved key players for conferring drought tolerance in cereals. By comparing the transcriptomic changes between tolerant and susceptible genotypes in four Gramineae species, we identified 69 conserved drought tolerant-related (CDT) genes that are potentially involved in the drought tolerance of all of the analysed species. The CDT genes are principally involved in stress response, photosynthesis, chlorophyll biogenesis, secondary metabolism, jasmonic acid signalling, and cellular transport. Twenty CDT genes are not yet characterized and can be novel candidates for drought tolerance. The k-means clustering analysis of expression data highlighted the prominent roles of photosynthesis and leaf senescence-related mechanisms in differentiating the drought response between tolerant and sensitive genotypes. In addition, we identified specific transcription factors that could regulate the expression of photosynthesis and leaf senescence-related genes. Our analysis suggests that the balance between the induction of leaf senescence and maintenance of photosynthesis during drought plays a major role in tolerance. Fine-tuning of CDT gene expression modulation by specific transcription factors can be the key to improving drought tolerance in cereals.


Assuntos
Secas , Grão Comestível/genética , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Sítios de Ligação , Brachypodium/genética , Bases de Dados Genéticas , Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , Análise de Sequência de RNA , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética
8.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884769

RESUMO

Abiotic stresses, including drought, extreme temperatures, salinity, and waterlogging, are the major constraints in crop production. These abiotic stresses are likely to be amplified by climate change with varying temporal and spatial dimensions across the globe. The knowledge about the effects of abiotic stressors on major cereal and legume crops is essential for effective management in unfavorable agro-ecologies. These crops are critical components of cropping systems and the daily diets of millions across the globe. Major cereals like rice, wheat, and maize are highly vulnerable to abiotic stresses, while many grain legumes are grown in abiotic stress-prone areas. Despite extensive investigations, abiotic stress tolerance in crop plants is not fully understood. Current insights into the abiotic stress responses of plants have shown the potential to improve crop tolerance to abiotic stresses. Studies aimed at stress tolerance mechanisms have resulted in the elucidation of traits associated with tolerance in plants, in addition to the molecular control of stress-responsive genes. Some of these studies have paved the way for new opportunities to address the molecular basis of stress responses in plants and identify novel traits and associated genes for the genetic improvement of crop plants. The present review examines the responses of crops under abiotic stresses in terms of changes in morphology, physiology, and biochemistry, focusing on major cereals and legume crops. It also explores emerging opportunities to accelerate our efforts to identify desired traits and genes associated with stress tolerance.


Assuntos
Aclimatação/fisiologia , Grão Comestível/fisiologia , Fabaceae/fisiologia , Poaceae/fisiologia , Estresse Fisiológico/fisiologia , Agricultura , Mudança Climática , Secas , Clima Extremo , Oryza/fisiologia , Salinidade , Temperatura , Triticum/fisiologia , Zea mays/fisiologia
10.
Plant Cell ; 33(11): 3391-3401, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34387354

RESUMO

Grasslands dominate the terrestrial landscape, and grasses have evolved complex and elegant strategies to overcome abiotic stresses. The C4 grasses are particularly stress tolerant and thrive in tropical and dry temperate ecosystems. Growing evidence suggests that the presence of C4 photosynthesis alone is insufficient to account for drought resilience in grasses, pointing to other adaptations as contributing to tolerance traits. The majority of grasses from the Chloridoideae subfamily are tolerant to drought, salt, and desiccation, making this subfamily a hub of resilience. Here, we discuss the evolutionary innovations that make C4 grasses so resilient, with a particular emphasis on grasses from the Chloridoideae (chloridoid) and Panicoideae (panicoid) subfamilies. We propose that a baseline level of resilience in chloridoid ancestors allowed them to colonize harsh habitats, and these environments drove selective pressure that enabled the repeated evolution of abiotic stress tolerance traits. Furthermore, we suggest that a lack of evolutionary access to stressful environments is partially responsible for the relatively poor stress resilience of major C4 crops compared to their wild relatives. We propose that chloridoid crops and the subfamily more broadly represent an untapped reservoir for improving resilience to drought and other abiotic stresses in cereals.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Carbono/metabolismo , Grão Comestível/fisiologia , Poaceae/fisiologia , Estresse Fisiológico
11.
Methods Mol Biol ; 2288: 3-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34270002

RESUMO

High frequency of albino plant formation in isolated microspore or anther cultures is a great problem limiting the possibility of their exploitation on a wider scale. It is highly inconvenient as androgenesis-based doubled haploid (DH) technology provides the simplest and shortest way to total homozygosity, highly valued by plant geneticists, biotechnologists and especially, plant breeders, and this phenomenon constitutes a serious limitation of these otherwise powerful tools. The genotype-dependent tendency toward albino plant formation is typical for many monocotyledonous plants, including cereals like wheat, barley, rice, triticale, oat and rye - the most important from the economical point of view. Despite many efforts, the precise mechanism underlying chlorophyll deficiency has not yet been elucidated. In this chapter, we review the data concerning molecular and physiological control over proper/disturbed chloroplast biogenesis, old hypotheses explaining the mechanism of chlorophyll deficiency, and recent studies which shed new light on this phenomenon.


Assuntos
Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Pigmentação , Melhoramento Vegetal/métodos , Clorofila/deficiência , Clorofila/genética , Diploide , Grão Comestível/genética , Haploidia , Homozigoto , Modelos Biológicos , Biologia Molecular/métodos , Pigmentação/genética , Pigmentos Biológicos/deficiência , Pigmentos Biológicos/genética , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Regeneração/genética , Regeneração/fisiologia
12.
Plant Mol Biol ; 106(4-5): 419-432, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34129189

RESUMO

KEY MESSAGE: Coordinated regulation of amylose and amylopectin synthesis via manipulation of SSII-2, SSII-3 and Wx expression in endosperm can improve rice eating and cooking quality. With increasing rice consumption worldwide, many researchers are working to increase the yield and improve grain quality, especially eating and cooking quality (ECQ). The rice ECQ is mainly controlled by the expression of starch synthesis-related genes (SSRGs) in endosperm. Although the Wx and SSII-3/SSIIa/ALK genes, two major SSRGs, have been manipulated to improve rice ECQ via various breeding approaches, new methods to further improve ECQ are desired. In our previous study, we enhanced rice ECQ by knocking down SSII-2 expression in the japonica Nipponbare cultivar (carrying the Wxb allele) via RNA interference. Herein, the SSII-2 RNAi was introduced into two Nipponbare-derived near-isogenic lines (NILs), Nip(Wxa) and Nip(wx), carrying Wxa and wx alleles respond for high and no amylose levels, respectively. Analysis of physicochemical properties revealed that the improved grain quality of SSII-2 RNAi transgenic lines was achieved by coordinated downregulating the expression of SSII-2, SSII-3 and Wx. To further confirm this conclusion, we generated ssii-2, ssii-3 and ssii-2ssii-3 mutants via CRISPR/Cas9 technique. The amylopectin structure of the resulting ssii-2sii-3 mutants was similar to that in SSII-2 RNAi transgenic lines, and the absence of SSII-2 decreased the amylose content, gelatinisation temperature and rapid visco-analyser profile, indicating essential roles for SSII-2 in the regulation of amylopectin biosynthesis and amylose content in rice endosperm. The effect of SSII-2 was seen only when the activity of SSII-3 was very low or lacking. Our study provides novel approaches and valuable germplasm resources for improving ECQ via plant breeding.


Assuntos
Grão Comestível/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Amido/biossíntese , Culinária , Grão Comestível/enzimologia , Grão Comestível/fisiologia , Qualidade dos Alimentos , Oryza/enzimologia , Oryza/fisiologia , Proteínas de Plantas/genética , Interferência de RNA , Amido/genética , Sintase do Amido/genética
13.
Theor Appl Genet ; 134(9): 3023-3036, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081150

RESUMO

KEY MESSAGE: Multi-environment QTL mapping identified 23 stable loci and 34 co-located QTL clusters for panicle architecture and grain yield-related traits, which provide a genetic basis for foxtail millet yield improvement. Panicle architecture and grain weight, both of which are influenced by genetic and environmental factors, have significant effects on grain yield potential. Here, we used a recombinant inbred line (RIL) population of 333 lines of foxtail millet, which were grown in 13 trials with varying environmental conditions, to identify quantitative trait loci (QTL) controlling nine agronomic traits related to panicle architecture and grain yield. We found that panicle weight, grain weight per panicle, panicle length, panicle diameter, and panicle exsertion length varied across different geographical locations. QTL mapping revealed 159 QTL for nine traits. Of the 159 QTL, 34 were identified in 2 to 12 environments, suggesting that the genetic control of panicle architecture in foxtail millet is sensitive to photoperiod and/or other environmental factors. Eighty-eight QTL controlling different traits formed 34 co-located QTL clusters, including the triple QTL cluster qPD9.2/qPL9.5/qPEL9.3, which was detected 23 times in 13 environments. Several candidate genes, including Seita.2G388700, Seita.3G136000, Seita.4G185300, Seita.5G241500, Seita.5G243100, Seita.9G281300, and Seita.9G342700, were identified in the genomic intervals of multi-environmental QTL or co-located QTL clusters. Using available phenotypic and genotype data, we conducted haplotype analysis for Seita.2G002300 and Seita.9G064000,which showed high correlations with panicle weight and panicle exsertion length, respectively. These results not only provided a basis for further fine mapping, functional studies and marker-assisted selection of traits related to panicle architecture in foxtail millet, but also provide information for comparative genomics analyses of cereal crops.


Assuntos
Cromossomos de Plantas/genética , Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Setaria (Planta)/fisiologia , Mapeamento Cromossômico/métodos , Grão Comestível/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Setaria (Planta)/genética
14.
Plant Sci ; 307: 110894, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902855

RESUMO

Cadmium (Cd) is a highly toxic element to living organisms, and its accumulation in the edible portions of crops poses a potential threat for human health. The molecular mechanisms underlying Cd detoxification and accumulation are not fully understood in plants. In this study, the involvement of a C-type ABC transporter, OsABCC9, in Cd tolerance and accumulation in rice was investigated. The expression of OsABCC9 was rapidly induced by Cd treatment in a concentration-dependent manner in the root. The transporter, localized on the tonoplast, was mainly expressed in the root stele under Cd stress. OsABCC9 knockout mutants were more sensitive to Cd and accumulated more Cd in both the root and shoot compared to the wild-type. Moreover, the Cd concentrations in the xylem sap and grain were also significantly increased in the knockout lines, suggesting that more Cd was distributed from root to shoot and grain in the mutants. Heterologous expression of OsABCC9 in yeast enhanced Cd tolerance along with an increase of intracellular Cd content. Taken together, these results indicated that OsABCC9 mediates Cd tolerance and accumulation through sequestration of Cd into the root vacuoles in rice.


Assuntos
Transporte Biológico/genética , Transporte Biológico/fisiologia , Cádmio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Oryza/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Brotos de Planta/genética
15.
Plant Cell Environ ; 44(7): 2034-2048, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764557

RESUMO

Asymmetric warming resulting in a faster increase in night compared to day temperatures affects crop yields negatively. Physiological characterization and agronomic findings have been complemented more recently by molecular biology approaches including transcriptomic, proteomic, metabolomic and lipidomic investigations in crops exposed to high night temperature (HNT) conditions. Nevertheless, the understanding of the underlying mechanisms causing yield decline under HNT is still limited. The discovery of significant differences between HNT-tolerant and HNT-sensitive cultivars is one of the main research directions to secure continuous food supply under the challenge of increasing climate change. With this review, we provide a summary of current knowledge on the physiological and molecular basis of contrasting HNT tolerance in rice and wheat cultivars. Requirements for HNT tolerance and the special adaptation strategies of the HNT-tolerant rice cultivar Nagina-22 (N22) are discussed. Putative metabolite markers for HNT tolerance useful for marker-assisted breeding are suggested, together with future research directions aimed at improving food security under HNT conditions.


Assuntos
Grão Comestível/fisiologia , Regulação da Expressão Gênica de Plantas , Termotolerância/fisiologia , Temperatura Alta , Oryza/fisiologia , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Amido/genética , Amido/metabolismo
16.
Theor Appl Genet ; 134(7): 2113-2127, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33768282

RESUMO

KEY MESSAGE: Several stable QTL were detected using metaGWAS analysis for different agronomic and quality traits under 26 normal and heat stressed environments. Heat stress, exacerbated by global warming, has a negative influence on wheat production worldwide and climate resilient cultivars can help mitigate these impacts. Selection decisions should therefore depend on multi-environment experiments representing a range of temperatures at critical stages of development. Here, we applied a meta-genome wide association analysis (metaGWAS) approach to detect stable QTL with significant effects across multiple environments. The metaGWAS was applied to 11 traits scored in 26 trials that were sown at optimal or late times of sowing (TOS1 and TOS2, respectively) at five locations. A total of 2571 unique wheat genotypes (13,959 genotypes across all environments) were included and the analysis conducted on TOS1, TOS2 and both times of sowing combined (TOS1&2). The germplasm was genotyped using a 90 k Infinium chip and imputed to exome sequence level, resulting in 341,195 single nucleotide polymorphisms (SNPs). The average accuracy across all imputed SNPs was high (92.4%). The three metaGWAS analyses revealed 107 QTL for the 11 traits, of which 16 were detected in all three analyses and 23 were detected in TOS1&2 only. The remaining QTL were detected in either TOS1 or TOS2 with or without TOS1&2, reflecting the complex interactions between the environments and the detected QTL. Eight QTL were associated with grain yield and seven with multiple traits. The identified QTL provide an important resource for gene enrichment and fine mapping to further understand the mechanisms of gene × environment interaction under both heat stressed and unstressed conditions.


Assuntos
Resposta ao Choque Térmico , Locos de Características Quantitativas , Triticum/genética , Austrália , Grão Comestível/genética , Grão Comestível/fisiologia , Interação Gene-Ambiente , Estudos de Associação Genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/fisiologia
17.
Plant Sci ; 305: 110769, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691974

RESUMO

Drought stress can significantly affect plant growth and agricultural productivity. Thus, it is essential to explore and identify the optimal genes for the improvement of crop drought tolerance. Here, a fungal NADP(H)-dependent glutamate dehydrogenase gene (AcGDH) was isolated from Aspergillus candidus, and heterologously expressed in rice. AcGDH has a high affinity for NH4+ and increases the ammonium assimilation in rice. AcGDH transgenic plants exhibited a tolerance to drought and alkali stresses, and their photorespiration was significantly suppressed. Our findings demonstrate that AcGDH alleviates ammonium toxicity and suppresses photorespiration by assimilating excess NH4+ and disturbing the delicate balance of carbon and nitrogen metabolism, thereby improving drought tolerance in rice. Moreover, AcGDH not only improved drought tolerance at the seedling stage but also increased the grain yield under drought stress. Thus, AcGDH is a promising candidate gene for maintaining rice grain yield, and offers an opportunity for improving crop yield under drought stress.


Assuntos
Compostos de Amônio/toxicidade , Respiração Celular/fisiologia , Desidratação , Grão Comestível/fisiologia , Proteínas Fúngicas/metabolismo , Oryza/genética , Oryza/fisiologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Respiração Celular/genética , Secas , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
18.
Commun Biol ; 4(1): 428, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785858

RESUMO

Cereal grains contribute substantially to the human diet. The maternal plant provides the carbohydrate and nitrogen sources deposited in the endosperm, but the basis for their spatial allocation during the grain filling process is obscure. Here, vacuolar processing enzymes have been shown to both mediate programmed cell death (PCD) in the maternal tissues of a barley grain and influence the delivery of assimilate to the endosperm. The proposed centrality of PCD has implications for cereal crop improvement.


Assuntos
Apoptose , Cisteína Endopeptidases/metabolismo , Grão Comestível/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/fisiologia , Grão Comestível/enzimologia , Grão Comestível/fisiologia , Hordeum/enzimologia , Hordeum/crescimento & desenvolvimento
19.
Plant Cell Environ ; 44(7): 2049-2065, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576033

RESUMO

Rapid increases in minimum night temperature than in maximum day temperature is predicted to continue, posing significant challenges to crop productivity. Rice and wheat are two major staples that are sensitive to high night-temperature (HNT) stress. This review aims to (i) systematically compare the grain yield responses of rice and wheat exposed to HNT stress across scales, and (ii) understand the physiological and biochemical responses that affect grain yield and quality. To achieve this, we combined a synthesis of current literature on HNT effects on rice and wheat with information from a series of independent experiments we conducted across scales, using a common set of genetic materials to avoid confounding our findings with differences in genetic background. In addition, we explored HNT-induced alterations in physiological mechanisms including carbon balance, source-sink metabolite changes and reactive oxygen species. Impacts of HNT on grain developmental dynamics focused on grain-filling duration, post-flowering senescence, changes in grain starch and protein composition, starch metabolism enzymes and chalk formation in rice grains are summarized. Finally, we highlight the need for high-throughput field-based phenotyping facilities for improved assessment of large-diversity panels and mapping populations to aid breeding for increased resilience to HNT in crops.


Assuntos
Oryza/fisiologia , Sementes/química , Sementes/crescimento & desenvolvimento , Triticum/fisiologia , Agricultura/métodos , Grão Comestível/fisiologia , Temperatura Alta , Oryza/química , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Amido/química , Triticum/química
20.
Sci Rep ; 11(1): 4447, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627723

RESUMO

High night temperature (HNT) often reduces yield in field crops. In rice, HNT during the ripening stage diminishes endosperm cell size, resulting in a considerable reduction in final kernel weight; however, little is known about the underlying mechanisms at cell level. In this study, we performed picolitre pressure-probe-electrospray-ionization mass spectrometry to directly determine metabolites in growing inner endosperm cells of intact seeds produced under HNT conditions, combining with 13C feeding and water status measurements including in situ turgor assay. Microscopic observation in the inner zone suggested that approximately 24.2% of decrease in cell expansion rate occurred under HNT at early ripening stage, leading to a reduction in cell volume. It has been shown that HNT-treated plants were subjected to mild shoot water deficit at night and endosperm cell turgor was sustained by a decline in osmotic potential. Cell metabolomics also suggests that active solute accumulation was caused by a partial inhibition of wall and starch biosynthesis under HNT conditions. Because metabolites were detected in the single cells, it is concluded that a partial arrest of cell expansion observed in the inner endosperms was caused by osmotic adjustment at mild water deficit during HNT conditions.


Assuntos
Endosperma/fisiologia , Oryza/fisiologia , Osmose/fisiologia , Tamanho Celular , Parede Celular/metabolismo , Parede Celular/fisiologia , Grão Comestível/metabolismo , Grão Comestível/fisiologia , Endosperma/metabolismo , Temperatura Alta , Metabolômica/métodos , Oryza/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Sementes/metabolismo , Sementes/fisiologia , Amido/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...