Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Methods Mol Biol ; 2400: 163-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905200

RESUMO

In recent years, plant virus-based vectors have been widely applied to express heterologous proteins for genomic studies and commercial production. Among these versatile RNA viral vectors, the barley yellow striate mosaic virus (BYSMV)-based expression vector system has outstanding capability to express large and multiple heterologous proteins. Here we describe a detailed protocol for expression of heterologous proteins using BYSMV expression systems in monocot plants and insects.


Assuntos
Vírus de Plantas , Rhabdoviridae , Animais , Grão Comestível/virologia , Vetores Genéticos/genética , Genômica , Insetos/genética , Rhabdoviridae/genética
2.
Viruses ; 13(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696481

RESUMO

This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent's temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.


Assuntos
Produtos Agrícolas/virologia , Grão Comestível/virologia , Doenças das Plantas/virologia , Agricultura/métodos , Austrália , Ilarvirus , Luteovirus , Doenças das Plantas/etiologia , Potyviridae , Potyvirus , Tymovirus , Viroses/epidemiologia
3.
Mol Biol Rep ; 48(5): 4981-4985, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34132946

RESUMO

Brome mosaic virus (BMV) and cocksfoot mottle virus (CfMV) are pathogens of grass species including all economically important cereals. Both viruses have been identified in Poland therefore they create a potential risk to cereal crops. In this study, a duplex-reverse transcription-polymerase chain reaction (duplex-RT-PCR) was developed and optimized for simultaneous detection and differentiation of BMV and CfMV as well as for confirmation of their co-infection. Selected primers CfMVdiag-F/CfMVdiag-R and BMV2-F/BMV2-R amplified 390 bp and 798 bp RT-PCR products within coat protein (CP) region of CfMV and replicase gene of BMV, respectively. Duplex-RT-PCR was successfully applied for the detection of CfMV-P1 and different Polish BMV isolates. Moreover, one sample was found to be co-infected with BMV-ML1 and CfMV-ML1 isolates. The specificity of generated RT-PCR products was verified by sequencing. Duplex-RT-PCR, like conventional RT-PCR, was able to detect two viruses occurring in plant tissues in very low concentration (as low as 4.5 pg/µL of total RNA). In contrast to existing methods, newly developed technique offers a significant time and cost-saving advantage. In conclusion, duplex-RT-PCR is a useful tool which can be implemented by phytosanitary services to rapid detection and differentiation of BMV and CfMV.


Assuntos
Bromovirus , Vírus de Plantas , Poaceae/virologia , Bromovirus/genética , Bromovirus/isolamento & purificação , Produtos Agrícolas/virologia , Grão Comestível/virologia , Hordeum/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas Virais/genética
4.
Food Environ Virol ; 13(1): 107-116, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33501613

RESUMO

Enteric viruses, such as human norovirus (NoV) and hepatitis A virus (HAV), are the major causes of foodborne illnesses worldwide. These viruses have low infectious dose, and may remain infectious for weeks in the environment and food. Limited information is available regarding viral survival and transmission in low-moisture foods (LMF). LMFs are generally considered as ready-to-eat products, which undergo no or minimal pathogen reduction steps. However, numerous foodborne viral outbreaks associated with LMFs have been reported in recent years. The objective of this study was to examine the survival of foodborne viruses in LMFs during 4-week storage at ambient temperature and to evaluate the efficacy of advanced oxidative process (AOP) treatment in the inactivation of these viruses. For this purpose, select LMFs such as pistachios, chocolate, and cereal were inoculated with HAV and the norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), then viral survival on these food matrices was measured over a four-week incubation at ambient temperature, by both plaque assay and droplet-digital RT-PCR (ddRT-PCR) using the modified ISO-15216 method as well as the magnetic bead assay for viral recovery. We observed an approximately 0.5 log reduction in viral genome copies, and 1 log reduction in viral infectivity for all three tested viruses following storage of select inoculated LMFs for 4 weeks. Therefore, the present study shows that the examined foodborne viruses can persist for a long time in LMFs. Next, we examined the inactivation efficacy of AOP treatment, which combines UV-C, ozone, and hydrogen peroxide vapor, and observed that while approximately 100% (4 log) inactivation can be achieved for FCV, and MNV in chocolate, the inactivation efficiency diminishes to approximately 90% (1 log) in pistachios and 70% (< 1 log) in cereal. AOP treatment could therefore be a good candidate for risk reduction of foodborne viruses from certain LMFs depending on the food matrix and surface of treatment.


Assuntos
Chocolate/virologia , Grão Comestível/virologia , Conservação de Alimentos/métodos , Doenças Transmitidas por Alimentos/virologia , Vírus da Hepatite A/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Pistacia/virologia , Inativação de Vírus/efeitos dos fármacos , Água/análise , Animais , Calicivirus Felino/efeitos dos fármacos , Calicivirus Felino/genética , Calicivirus Felino/crescimento & desenvolvimento , Calicivirus Felino/fisiologia , Chocolate/análise , Grão Comestível/química , Contaminação de Alimentos/análise , Conservação de Alimentos/instrumentação , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacologia , Armazenamento de Alimentos , Vírus da Hepatite A/efeitos dos fármacos , Vírus da Hepatite A/genética , Vírus da Hepatite A/fisiologia , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Camundongos , Norovirus/efeitos dos fármacos , Norovirus/genética , Norovirus/fisiologia , Oxirredução , Ozônio/química , Ozônio/farmacologia , Pistacia/química
5.
PLoS One ; 15(5): e0233507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32469925

RESUMO

The wheat curl mite, Aceria tosichella Keifer, one of the most destructive arthropod pests of bread wheat worldwide, inflicts significant annual reductions in grain yields. Moreover, A. tosichella is the only vector for several economically important wheat viruses in the Americas, Australia and Europe. To date, mite-resistant wheat genotypes have proven to be one of the most effective methods of controlling the A. tosichella-virus complex. Thus, it is important to elucidate A. tosichella population genetic structure, in order to better predict improved mite and virus management. Two genetically distinct A. tosichella lineages occur as pests of wheat in Australia, Europe, North America, South America and the Middle East. These lineages are known as type 1 and type 2 in Australia and North America and in Europe and South America as MT-8 and MT-1, respectively. Type 1 and type 2 mites in Australia and North America are delineated by internal transcribed spacer 1 region (ITS1) and cytochrome oxidase I region (COI) sequence differences. In North America, two A. tosichella genotypes known as biotypes are recognized by their response to the Cmc3 mite resistance gene in wheat. Aceria tosichella biotype 1 is susceptible to Cmc3 and biotype 2 is virulent to Cmc3. In this study, ITS1 and COI sequence differences in 25 different populations of A. tosichella of known biotype 1 or biotype 2 composition were characterized for ITS1 and COI sequence differences and used to model spatio-temporal dynamics based on biotype prevalence. Results showed that the proportion of biotype 1 and 2 varies both spatially and temporally. Greater ranges of cropland and grassland within 5000m of the sample site, as well as higher mean monthly precipitation during the month prior to sampling appear to reduce the probability of occurrence of biotype 1 and increase the probability of occurrence of biotype 2. The results suggest that spatio-temporal modeling can effectively improve A. tosichella management. Continual integration of additional current and future precipitation and ground cover data into the existing model will further improve the accuracy of predicting the occurrence of A. tosichella in annual wheat crops, allowing producers to make informed decisions about the selection of varieties with different A. tosichella resistance genes.


Assuntos
Ácaros/classificação , Ácaros/genética , Triticum/parasitologia , Animais , Vetores Aracnídeos/patogenicidade , Vetores Aracnídeos/virologia , Resistência à Doença/genética , Grão Comestível/genética , Grão Comestível/parasitologia , Grão Comestível/virologia , Genes de Plantas , Genética Populacional , Genótipo , Meio-Oeste dos Estados Unidos , Ácaros/virologia , Modelos Biológicos , Filogenia , Filogeografia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Análise Espaço-Temporal , Texas , Triticum/genética , Triticum/virologia , Virulência/genética
6.
J Virol Methods ; 278: 113823, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31981568

RESUMO

The Great Plains of the United States is a region comprised of approximately 45 million hectares of grasslands where several economically important cereal crops are grown. Arthropod-transmitted, cereal-infecting viruses vary in incidence from year-to-year and are often difficult to detect in large acreages. To facilitate the detection of economically important viruses of cereals that often exist in co-infections, a multiplex reverse transcriptase PCR (RT-PCR) platform assay was developed. This method can be used in combination with high resolution melting (HRM) to detect and allow for discrimination between three arthropod-transmitted plant viruses; Wheat streak mosaic virus (WSMV), Maize mosaic virus (MMV) and Barley yellow dwarf virus (BYDV). Multiplex PCR in combination with HRM allowed for successful detection of WSMV, MMV, and BYDV, as well as discrimination between three BYDV species, BYDV-PAS, BYDV-PAV and BYDV-MAV. All primer pairs amplified products of the predicted size. The BYDV-RT-PCR primers amplified products of identical length for all three species of BYDV. HRM was then used to discriminate between these products by determining significant differences between the melting rates for each (p < 0.05). This study demonstrates the flexibility of combining multiplex PCR with HRM to increase the specificity of plant virus diagnostics based on the needs of the diagnostician performing the assay.


Assuntos
Artrópodes/virologia , Grão Comestível/virologia , Reação em Cadeia da Polimerase Multiplex/métodos , Vírus de Plantas/isolamento & purificação , Animais , Primers do DNA/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Sensibilidade e Especificidade , Temperatura de Transição
7.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31631806

RESUMO

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Assuntos
Genoma Viral , Vírus do Mosaico , Vírus de Plantas , Animais , Grão Comestível/virologia , Genoma Viral/genética , Hemípteros/virologia , Vírus do Mosaico/genética , Noruega , Doenças das Plantas/virologia , Vírus de Plantas/genética , Suécia
8.
New Phytol ; 223(4): 2120-2133, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31059138

RESUMO

Plant viruses have been used as rapid and cost-effective expression vectors for heterologous protein expression in genomic studies. However, delivering large or multiple foreign proteins in monocots and insect pests is challenging. Here, we recovered a recombinant plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), for use as a versatile expression platform in cereals and the small brown planthopper (SBPH, Laodelphax striatellus) insect vector. We engineered BYSMV vectors to provide versatile expression platforms for simultaneous expression of three foreign proteins in barley plants and SBPHs. Moreover, BYSMV vectors could express the c. 600-amino-acid ß-glucuronidase (GUS) protein and a red fluorescent protein stably in systemically infected leaves and roots of cereals, including wheat, barley, foxtail millet, and maize plants. Moreover, we have demonstrated that BYSMV vectors can be used in barley to analyze biological functions of gibberellic acid (GA) biosynthesis genes. In a major technical advance, BYSMV vectors were developed for simultaneous delivery of CRISPR/Cas9 nuclease and single guide RNAs for genomic editing in Nicotiana benthamiana leaves. Taken together, our results provide considerable potential for rapid screening of functional proteins in cereals and planthoppers, and an efficient approach for developing other insect-transmitted negative-strand RNA viruses.


Assuntos
Grão Comestível/genética , Grão Comestível/virologia , Genoma de Planta , Genômica , Hemípteros/virologia , Vírus de Plantas/fisiologia , Rhabdoviridae/fisiologia , Animais , Sequência de Bases , DNA Complementar/genética , Edição de Genes , Vetores Genéticos/metabolismo , Glucuronidase/metabolismo , Hordeum/ultraestrutura , Hordeum/virologia , Folhas de Planta/virologia , Vírus de Plantas/ultraestrutura , RNA Guia de Cinetoplastídeos/metabolismo , Rhabdoviridae/ultraestrutura , Nicotiana/ultraestrutura , Nicotiana/virologia
9.
Plant Dis ; 103(6): 1101-1111, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31012820

RESUMO

Brome mosaic virus (BMV) is generally thought to be of little economic importance to crops; consequently, there is little information about its impact on wheat production under field conditions. After repeated detection of BMV in Ohio wheat fields at incidences up to 25%, the virus was isolated, sequenced, characterized, and tested for its impact on soft red winter wheat (SRWW). The Ohio isolate of brome mosaic virus (BMV-OH) was found to be >99% identical to a BMV-Fescue isolate (accession no. DQ530423-25) and capable of systemically infecting multiple monocot and dicot species, including cowpea and soybean, in experimental inoculations. BMV-OH was used in field experiments during the 2016 and 2017 growing seasons to quantify its effect on SRWW grain yield and development when inoculated at Feekes 1, 5, 8, and 10 in two to four cultivars. Cultivar and timing of inoculation had statistically significant (P < 0.05) main and interaction effects on grain yield, wheat growth, and multiple components of yield. Compared with noninoculated controls, BMV-OH reduced grain yield by up to 61% when inoculated at Feekes 1 and by as much as 25, 36, and 31% for inoculations at Feekes 5, 8, and 10, respectively. The magnitude of the yield reduction varied among cultivars and was associated with reductions in grain size and weight or plant population. These findings suggest that BMV could impact wheat productivity in Ohio and will serve as the basis for more large-scale investigations of the effects of this virus in commercial fields.


Assuntos
Bromovirus , Triticum , Bromovirus/fisiologia , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/virologia , Ohio , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/virologia
10.
Plant Dis ; 102(12): 2465-2472, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30307836

RESUMO

Yellow dwarf viruses (YDVs) form a complex of economically important pathogens that affect cereal production worldwide, reducing yield and quality. The prevalence and incidence of YDVs including barley yellow dwarf viruses (BYDV-PAV and BYDV-MAV) and cereal yellow dwarf virus (CYDV-RPV) in cereal fields in Victoria, Australia were measured. As temperature decreases and rainfall increases from north to south in Victoria, fields in three geographical regions were evaluated to determine potential differences in virus prevalence and incidence across the weather gradient. Cereal samples randomly collected from each field during spring for four consecutive years (2014-2017) were tested for BYDV-PAV, BYDV-MAV, and CYDV-RPV using tissue blot immunoassay. BYDV-PAV was the most prevalent YDV species overall and had the highest overall mean incidence. Higher temperature and lower rainfall were associated with reduced prevalence and incidence of YDVs as the northern region, which is hotter and drier, had a 17-fold decrease in virus incidence compared with the cooler and wetter regions. Considerable year-to-year variation in virus prevalence and incidence was observed. This study improves our understanding of virus epidemiology, which will aid the development of more targeted control measures and predictive models. It also highlights the need to monitor for YDVs and their vectors over multiple years to assess the level of risk and to make more informed and appropriate disease management decisions.


Assuntos
Grão Comestível/virologia , Luteovirus/isolamento & purificação , Doenças das Plantas/virologia , Geografia , Doenças das Plantas/estatística & dados numéricos , Vitória
11.
Methods Mol Biol ; 1659: 115-124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28856645

RESUMO

Cereal rust fungi are destructive pathogens, threatening grain production worldwide. Targeted breeding for resistance utilizing host resistance genes has been effective. However, breakdown of resistance occurs frequently and continued efforts are needed to understand how these fungi overcome resistance and to expand the range of available resistance genes. Whole genome sequencing, transcriptomic and proteomic studies followed by genome-wide computational and comparative analyses have identified large repertoire of genes in rust fungi among which are candidates predicted to code for pathogenicity and virulence factors. Some of these genes represent defence triggering avirulence effectors. However, functions of most genes still needs to be assessed to understand the biology of these obligate biotrophic pathogens. Since genetic manipulations such as gene deletion and genetic transformation are not yet feasible in rust fungi, performing functional gene studies is challenging. Recently, Host-induced gene silencing (HIGS) has emerged as a useful tool to characterize gene function in rust fungi while infecting and growing in host plants. We utilized Barley stripe mosaic virus-mediated virus induced gene silencing (BSMV-VIGS) to induce HIGS of candidate rust fungal genes in the wheat host to determine their role in plant-fungal interactions. Here, we describe the methods for using BSMV-VIGS in wheat for functional genomics study in cereal rust fungi.


Assuntos
Basidiomycota/genética , Grão Comestível/microbiologia , Inativação Gênica , Genes Fúngicos , Genômica/métodos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Basidiomycota/virologia , Grão Comestível/virologia , Vetores Genéticos/genética , Vírus de Plantas/genética , Triticum/virologia
12.
J Virol Methods ; 249: 170-174, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28918076

RESUMO

Wheat dwarf virus (WDV), barley yellow striate mosaic virus (BYSMV), rice black-streaked dwarf virus (RBSDV) and northern cereal mosaic virus (NCMV) are four viruses infecting wheat and causing similar symptoms. In this paper, a multiplex reverse transcription polymerase chain reaction (m-RT-PCR) method has been developed for the simultaneous detection and discrimination of these viruses. The protocol uses specific primer set for each virus and produces four distinct fragments (273, 565, 783 and 1296bp), detecting the presence of RBSDV, BYSMV, WDV and NCMV, respectively. Annealing temperature, concentrations of dNTP, Taq polymerase and Mg2+ were optimized for the m-RT-PCR. The detection limit of the assay was up to 10-2 dilution. The amplification specificity of these primers was tested against a range of field samples from different regions of China, where RBSDV, BYSMV, WDV have been detected. This study fulfills the need for a rapid and specific wheat virus detection that also has the potential for investigating the epidemiology of these new viral diseases.


Assuntos
Geminiviridae/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex , Vírus de Plantas/isolamento & purificação , Potyviridae/isolamento & purificação , Rhabdoviridae/isolamento & purificação , Triticum/virologia , China , Primers do DNA , Grão Comestível/virologia , Geminiviridae/genética , Vírus do Mosaico/genética , Vírus do Mosaico/isolamento & purificação , Oryza/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Potyviridae/genética , Sensibilidade e Especificidade
13.
Mol Plant Microbe Interact ; 30(12): 974-983, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28840785

RESUMO

Previously, we reported that coat protein (CP) of Wheat streak mosaic virus (WSMV) (genus Tritimovirus, family Potyviridae) tolerates deletion of amino acids 36 to 84 for efficient systemic infection of wheat. In this study, we demonstrated that WSMV mutants with deletion of CP amino acids 58 to 84 but not of 36 to 57 induced severe chlorotic streaks and spots, followed by acute chlorosis in wheat, maize, barley, and rye compared with mild to moderate chlorotic streaks and mosaic symptoms by wild-type virus. Deletion of CP amino acids 58 to 84 from the WSMV genome accelerated cell-to-cell movement, with increased accumulation of genomic RNAs and CP, compared with the wild-type virus. Microscopic examination of wheat tissues infected by green fluorescent protein-tagged mutants revealed that infection by mutants lacking CP amino acids 58 to 84 caused degradation of chloroplasts, resulting in acute macroscopic chlorosis. The profile of CP-specific proteins was altered in wheat infected by mutants causing acute chlorosis, compared with mutants eliciting wild-type symptoms. All deletion mutants accumulated CP-specific major protein similarly to that in wild-type virus; however, mutants that elicit acute chlorosis failed to accumulate a 31-kDa minor protein compared with wild-type virus or mutants lacking amino acids 36 to 57. Taken together, these data suggest that deletion of CP amino acids 58 to 84 from the WSMV genome enhanced accumulation of CP and genomic RNA, altered CP-specific protein profiles, and caused severe symptom phenotypes in multiple cereal hosts.


Assuntos
Proteínas do Capsídeo/metabolismo , Grão Comestível/virologia , Deleção de Genes , Doenças das Plantas/virologia , Potyviridae/metabolismo , Aminoácidos/metabolismo , Cloroplastos/metabolismo , Genoma Viral , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Potyviridae/genética , RNA Viral/metabolismo , Triticum/virologia
14.
Virus Res ; 241: 172-184, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28688850

RESUMO

As agricultural acreage expanded and came to dominate landscapes across the world, viruses gained opportunities to move between crop and wild native plants. In the Midwestern USA, virus exchange currently occurs between widespread annual Poaceae crops and remnant native perennial prairie grasses now under consideration as bioenergy feedstocks. In this region, the common aphid species Rhopalosiphum padi L. (the bird cherry-oat aphid) transmits several virus species in the family Luteoviridae, including Barley yellow dwarf virus (BYDV-PAV, genus Luteovirus) and Cereal yellow dwarf virus (CYDV-RPV and -RPS, genus Polerovirus). The yellow dwarf virus (YDV) species in these two genera share genetic similarities in their 3'-ends, but diverge in the 5'-regions. Most notably, CYDVs encode a P0 viral suppressor of RNA silencing (VSR) absent in BYDV-PAV. Because BYDV-PAV has been reported more frequently in annual cereals and CYDVs in perennial non-crop grasses, we examine the hypothesis that the viruses' genetic differences reflect different affinities for crop and non-crop hosts. Specifically, we ask (i) whether CYDVs might persist within and affect a native non-crop grass more strongly than BYDV-PAV, on the grounds that the polerovirus VSR could better moderate the defenses of a well-defended perennial, and (ii) whether the opposite pattern of effects might occur in a less defended annual crop. Because previous work found that the VSR of CYDV-RPS possessed greater silencing suppressor efficiency than that of CYDV-RPV, we further explored (iii) whether a novel grass-associated CYDV-RPS isolate would influence a native non-crop grass more strongly than a comparable CYDV-RPV isolate. In growth chamber studies, we found support for this hypothesis: only grass-associated CYDV-RPS stunted the shoots and crowns of Panicum virgatum L. (switchgrass), a perennial native North American prairie grass, whereas crop-associated BYDV-PAV (and coinfection with BYDV-PAV and CYDV-RPS) most stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis.


Assuntos
Avena/virologia , Grão Comestível/crescimento & desenvolvimento , Luteoviridae/crescimento & desenvolvimento , Panicum/virologia , Raízes de Plantas/crescimento & desenvolvimento , Interferência de RNA , Triticum/virologia , Sequência de Aminoácidos , Animais , Afídeos/virologia , Avena/crescimento & desenvolvimento , Sequência de Bases , Grão Comestível/virologia , Luteoviridae/genética , Panicum/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/virologia , Análise de Sequência de RNA , Triticum/crescimento & desenvolvimento
15.
Virus Res ; 241: 42-52, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28502641

RESUMO

Interactions among plant pathogenic viruses in the family Luteoviridae and their plant hosts and insect vectors are governed by the topology of the viral capsid, which is the sole vehicle for long distance movement of the viral genome. Previous application of a mass spectrometry-compatible cross-linker to preparations of the luteovirid Potato leafroll virus (PLRV; Luteoviridae: Polerovirus) revealed a detailed network of interactions between viral structural proteins and enabled generation of the first cross-linking guided coat protein models. In this study, we extended application of chemical cross-linking technology to the related Turnip yellows virus (TuYV; Luteoviridae: Polerovirus). Remarkably, all cross-links found between sites in the viral coat protein found for TuYV were also found in PLRV. Guided by these data, we present two models for the TuYV coat protein trimer, the basic structural unit of luteovirid virions. Additional cross-links found between the TuYV coat protein and a site in the viral protease domain suggest a possible role for the luteovirid protease in regulating the structural biology of these viruses.


Assuntos
Proteínas do Capsídeo/genética , Luteoviridae/genética , Luteoviridae/ultraestrutura , Doenças das Plantas/virologia , Vírus de Plantas/genética , Brassica/virologia , Proteínas do Capsídeo/metabolismo , Grão Comestível/virologia , Genoma Viral/genética , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Saccharum/virologia , Solanum tuberosum/virologia , Glycine max/virologia , Nicotiana/virologia
16.
Plant Dis ; 101(9): 1621-1626, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30677333

RESUMO

Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root development. Because of the declining Ogallala Aquifer water level, water conservation has become one of the major pressing issues in the region. Thus, questions are often raised as to whether it is worthwhile to irrigate infected fields in light of the water conservation issues, associated energy costs, and current wheat prices. To address some of these questions, field experiments were conducted in 2013 and 2016 at two separate locations to determine whether grain yield could be predicted from disease severity levels, assessed early in the spring, for potential use as a decision tool for crop management, including irrigation. In both fields, disease severity assessments started in April, using a handheld hyperspectral radiometer with which reflectance measurements were taken weekly in multiple plots in arbitrarily selected locations across the fields. The relationship between WSM severity levels and grain yield for the different assessment dates were determined by fitting reflectance and yield values into the logistic regression function. The model predicted yield levels with r2 values ranging from 0.67 to 0.85 (P < 0.0001), indicating that the impact of WSM on grain yield could be fairly well predicted from early assessments of WSM severity levels. As the disease is normally progressive over time, this type of information will be useful for making management decisions of whether to continue irrigating infected fields, especially if combined with an economic threshold for WSM severity levels.


Assuntos
Doenças das Plantas , Potyviridae , Triticum , Agricultura , Animais , Grão Comestível/virologia , Ácaros/virologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Potyviridae/fisiologia , Texas , Triticum/crescimento & desenvolvimento , Triticum/virologia
17.
Phytopathology ; 106(2): 202-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26799958

RESUMO

Vector-borne virus diseases of wheat are recurrent in nature and pose significant threats to crop production worldwide. In the spring of 2011 and 2012, a state-wide sampling survey of multiple commercial field sites and university-managed Kansas Agricultural Experiment Station variety performance trial locations spanning all nine crop-reporting regions of the state was conducted to determine the occurrence of Barley yellow dwarf virus-PAV (BYDV-PAV), Cereal yellow dwarf virus-RPV, Wheat streak mosaic virus (WSMV), High plains virus, Soilborne wheat mosaic virus, and Wheat spindle streak mosaic virus using enzyme-linked immunosorbent assays (ELISA). As a means of directly coupling tiller infection status with tiller grain yield, multiple pairs of symptomatic and nonsymptomatic plants were selected and individual tillers were tagged for virus species and grain yield determination at the variety performance trial locations. BYDV-PAV and WSMV were the two most prevalent species across the state, often co-occurring within location. Of those BYDV-PAV- or WSMV-positive tillers, 22% and 19%, respectively, were nonsymptomatic, a finding that underscores the importance of sampling criteria to more accurately assess virus occurrence in winter wheat fields. Symptomatic tillers that tested positive for BYDV-PAV produced significantly lower grain yields compared with ELISA-negative tillers in both seasons, as did WSMV-positive tillers in 2012. Nonsymptomatic tillers that tested positive for either of the two viruses in 2011 produced significantly lower grain yields than tillers from nonsymptomatic, ELISA-negative plants, an indication that these tillers were physiologically compromised in the absence of virus-associated symptoms. Overall, the virus survey and tagged paired-tiller sampling strategy revealed effects of virus infection on grain yield of individual tillers of plants grown under field conditions and may provide a complementary approach toward future estimates of the impact of virus incidence on crop health in Kansas.


Assuntos
Luteoviridae/isolamento & purificação , Doenças das Plantas/virologia , Potyviridae/isolamento & purificação , Triticum/virologia , Agricultura , Biomassa , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/virologia , Ensaio de Imunoadsorção Enzimática , Kansas , Luteoviridae/fisiologia , Luteovirus , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/virologia , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/fisiologia , Potyviridae/fisiologia , Triticum/crescimento & desenvolvimento
18.
Phytopathology ; 105(5): 621-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25901871

RESUMO

Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect of WSMV, inoculated at different development stages, on shoot and root growth, water use, water use efficiency (WUE), and photosynthesis and (ii) understand the relationships between yield and photosynthetic parameters during WSMV infection. Two greenhouse experiments were conducted with two wheat cultivars mechanically inoculated with WSMV at different developmental stages, from three-leaf to booting. WSMV inoculated early, at three- to five-leaf stage, resulted in a significant reduction in shoot biomass, root dry weight, and yield compared with wheat infected at the jointing and booting stages. However, even when inoculated as late as jointing, WSMV still reduced grain yield by at least 53%. Reduced tillers, shoot biomass, root dry weight, water use, and WUE contributed to yield loss under WSMV infection. However, infection by WSMV did not affect rooting depth and the number of seminal roots but reduced the number of nodal roots. Leaf photosynthetic parameters (chlorophyll [SPAD], net photosynthetic rate [Pn], stomatal conductance [Gs], intercellular CO2 concentration [Ci], and transpiration rate [Tr]) were reduced when infected by WSMV, and early infection reduced parameters more than late infection. Photosynthetic parameters had a linear relationship with grain yield and shoot biomass. The reduced Pn under WSMV infection was mainly in response to decreased Gs, Ci, and SPAD. The results of this study indicated that leaf chlorophyll and gas exchange parameters can be used to quantify WSMV effects on biomass and grain yield in wheat.


Assuntos
Doenças das Plantas/virologia , Potyviridae/fisiologia , Triticum/fisiologia , Biomassa , Clorofila/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Grão Comestível/virologia , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/virologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Raízes de Plantas/virologia , Transpiração Vegetal/fisiologia , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/virologia , Água/fisiologia
19.
Sci Rep ; 5: 8153, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25633348

RESUMO

Genetic diversity and recombination patterns were evaluated for 229 isolates of Wheat dwarf virus (WDV), which are important cereal-infecting geminiviruses. Recombination hot spots were concentrated at the boundary of the genes encoding for the replication protein (Rep), the coat protein (cp) and the movement protein (mp), as well as inside Rep and cp and in the short intergenic regions (SIR). Phylogenomic analyses confirmed that the global population of WDV clustered into two groups according to their specific host: wheat and barley, and the crucial regions for the division of two groups were mp and the large intergenic regions (LIR). The computationally inferred pattern of coevolution between amino acid residues and the predicted 3D structure for the viral proteins provided further differences among the strains or species at the genome and protein level. Pervasive interaction between Rep and Rep A proteins in WDV-wheat-specific group reflected their important and complex function in the replication and transcription of WDV. Furthermore, significant predicted interactions between CP and Rep and CP and Rep A proteins in the WDV-wheat-specific group are thought to be crucial for successful encapsidation and movement of the virus during infection.


Assuntos
Biologia Computacional , Evolução Molecular , Geminiviridae/genética , Genoma Viral , Genômica , Recombinação Genética , Substituição de Aminoácidos , Códon , Biologia Computacional/métodos , Grão Comestível/virologia , Geminiviridae/classificação , Variação Genética , Genômica/métodos , Genótipo , Interações Hospedeiro-Patógeno , Filogenia , Proteínas de Plantas/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Seleção Genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
J Virol Methods ; 214: 1-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25497413

RESUMO

A number of viruses from the genera Furovirus, Hordeivirus and Rymovirus are known to infect and damage the four major temperate cereal crops, wheat, barley, sorghum and oats. Currently, there is no active testing in Australia for any of these viruses, which pose a significant biosecurity threat to the phytosanitary status of Australia's grains industry. To address this, broad spectrum PCR assays were developed to target virus species within the genera Furovirus, Hordeivirus and Rymovirus. Five sets of novel genus-specific primers were designed and tested in reverse-transcription polymerase chain reaction assays against a range of virus isolates in plant virus diagnostic laboratories in both Australia and New Zealand. Three of these assays were then chosen to screen samples in a three-year survey of cereal crops in western Victoria, Australia. Of the 8900 cereal plants screened in the survey, all were tested free of furoviruses, hordeiviruses and rymoviruses. To date, there were no published genus-specific primers available for the detection of furoviruses, hordeiviruses and rymoviruses. This study shows for the first time a broad-spectrum molecular test being used in a survey for exotic grain viruses in Australia. Results from this survey provide important evidence of the use of this method to demonstrate the absence of these viruses in Victoria, Australia. The primer pairs reported here are expected to detect a wide range of virus species within the three genera.


Assuntos
Primers do DNA/genética , Grão Comestível/virologia , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Austrália , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...