Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 103(8): 1383-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27507839

RESUMO

PREMISE OF THE STUDY: Bet-hedging strategies maximize long-term geometric fitness at the cost of reduced arithmetic fitness by offsetting different mortality risks. Heterocarpic systems accomplish bet-hedging through the production of two or more fruit types that vary in dormancy and dispersal ability. It is unknown whether heterocarpy also offsets predispersal mortality risks. To address this question, we investigated whether heterocarpy in Grindelia ciliata (Asteraceae) also offsets mortality risks posed by a seed predator Schinia mortua (Noctuidae) to increase plant fitness. METHODS: We conducted two manipulative experiments to quantify critical life history components of this plant-insect interaction. We measured predispersal achene mortality from herbivory, postdispersal achene mortality in the seed bank, and seedling emergence. These measurements were then used in deterministic models to evaluate evolutionary consequences of predispersal seed mortality in G. ciliata. KEY RESULTS: Dormant achene types were less vulnerable to herbivory but more susceptible to mortality in the seed bank due to delayed seed emergence. Nondormant achene types experienced high predispersal mortality but low seed bank mortality due to rapid germination. Our herbivore-dependent model improved fit between observed and expected proportions of dormant and nondormant G. ciliata achenes and showed that heterocarpy could evolve in the absence of postgermination mortality. CONCLUSIONS: Our study provides empirical support of how predispersal herbivory can be equally important to postdispersal seed mortality risks in the evolution and maintenance of a heterocarpic reproductive system and expands understanding of how bet-hedging theory can be used to understand this unique reproductive strategy.


Assuntos
Evolução Biológica , Aptidão Genética , Grindelia/fisiologia , Herbivoria , Mariposas/fisiologia , Dormência de Plantas , Animais , Grindelia/genética , Grindelia/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Oklahoma , Dispersão de Sementes
2.
Ann Bot ; 106(2): 297-307, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20519238

RESUMO

BACKGROUND AND AIMS: The growth-differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient. METHODS: One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % - field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect. KEY RESULTS: Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis. CONCLUSIONS: Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done with caution, at least for Patagonian Monte species.


Assuntos
Biomassa , Carboidratos , Secas , Grindelia/crescimento & desenvolvimento , Grindelia/metabolismo , Larrea/crescimento & desenvolvimento , Larrea/metabolismo , Nitrogênio/metabolismo , Nyctaginaceae/crescimento & desenvolvimento , Nyctaginaceae/metabolismo , Fenóis/metabolismo , Prosopis/crescimento & desenvolvimento , Prosopis/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...