Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Stroke Cerebrovasc Dis ; 33(2): 107484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064974

RESUMO

OBJECTIVES: Ischemic stroke is a common and debilitating disease that can cause permanent neurological damage. Gucy1a3, which encodes the α1 subunit of soluble guanylyl cyclase, has been reported to be associated with functional recovery after ischemic stroke. However, the mechanism is still not well understood. In the present study, we investigated the effects of Gucy1a3 on (i) post-stroke recovery; (ii) vascular endothelial growth factor A (VEGFA) and hypoxia inducible factor 1 alpha (HIF-1α) expression; and (iii) angiogenesis after ischemic stroke. MATERIALS AND METHODS: Wild-type and Gucy1a3 knockout C57BL/6J male mice were respectively used to establish the models of permanent middle cerebral artery occlusion (pMCAO). Neurological deficit scores were evaluated at 24 h and 96 h after pMCAO. Cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. For determining microvessel density, immunohistochemical analysis was performed with CD31. The expression of VEGFA and HIF-1α was detected by western blotting. RESULTS: Our results suggest that loss of Gucy1a3 increased the infarct volume and aggravated neurological deficits after pMCAO. In addition, the Gucy1a3 knockout brains exhibited significantly lower microvessel densities and VEGFA and HIF-1α expression levels than the wild-type brains at 96 h post-pMCAO. CONCLUSIONS: Our study indicates that GUCY1A3 might be involved in angiogenesis after ischemic stroke. Further investigation of GUCY1A3 will provide a new therapeutic target for stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Angiogênese , Isquemia Encefálica/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Guanilil Ciclase Solúvel/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Diabetes Obes Metab ; 25(8): 2218-2226, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37232058

RESUMO

AIMS: Albuminuria is associated with abnormalities in the nitric oxide (NO)-soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate pathway. We assessed safety and efficacy of the NO-independent sGC activator BI 685509 in patients with diabetic kidney disease and albuminuria. MATERIALS AND METHODS: In this Phase Ib trial (NCT03165227), we randomized patients with type 1 or 2 diabetes, estimated glomerular filtration rate (eGFR) 20-75 mL/min/1.73 m2 and urinary albumin:creatinine ratio (UACR) 200-3500 mg/g to oral BI 685509 (1 mg three times daily, n = 20; 3 mg once daily, n = 19; 3 mg three times daily, n = 20, after final titration) or placebo (n = 15) for 28 days. Changes from baseline in UACR in first morning void (UACRFMV ) and 10-hour (UACR10h ) urine (3 mg once daily/three times daily only) were assessed. RESULTS: Baseline median eGFR and UACR were 47.0 mL/min/1.73 m2 and 641.5 mg/g, respectively. Twelve patients had drug-related adverse events (AEs; 16.2%: BI 685509, n = 9; placebo, n = 3), most frequently hypotension (4.1%: BI 685509, n = 2; placebo, n = 1) and diarrhoea (2.7%: BI 685509, n = 2; placebo, n = 0). Four patients experienced AEs leading to study discontinuation (5.4%: BI 685509, n = 3; placebo, n = 1). Placebo-corrected mean UACRFMV decreased from baseline in the 3-mg once-daily (28.8%, P = 0.23) and three-times-daily groups (10.2%, P = 0.71) and increased in the 1-mg three-times-daily group (6.6%, P = 0.82); changes were not significant. UACR10h decreased by 35.3% (3 mg once daily, P = 0.34) and 56.7% (3 mg three times daily, P = 0.09); ≥50.0% of patients (UACR10h 3 mg once daily/three times daily) responded (≥20% UACR decrease from baseline). CONCLUSIONS: BI 685509 was generally well tolerated. Effects on UACR lowering merit further investigation.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Guanilil Ciclase Solúvel/farmacologia , Guanilil Ciclase Solúvel/uso terapêutico , Albuminúria/tratamento farmacológico , Albuminúria/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Taxa de Filtração Glomerular , Método Duplo-Cego
3.
J Pharmacol Exp Ther ; 386(1): 70-79, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230799

RESUMO

Portal hypertension (PT) commonly occurs in cirrhosis. Nitric oxide (NO) imbalance contributes to PT via reduced soluble guanylyl cyclase (sGC) activation and cGMP production, resulting in vasoconstriction, endothelial cell dysfunction, and fibrosis. We assessed the effects of BI 685509, an NO-independent sGC activator, on fibrosis and extrahepatic complications in a thioacetamide (TAA)-induced cirrhosis and PT model. Male Sprague-Dawley rats received TAA twice-weekly for 15 weeks (300-150 mg/kg i.p.). BI 685509 was administered daily for the last 12 weeks (0.3, 1, and 3 mg/kg p.o.; n = 8-11 per group) or the final week only (Acute, 3 mg/kg p.o.; n = 6). Rats were anesthetized to measure portal venous pressure. Pharmacokinetics and hepatic cGMP (target engagement) were measured by mass spectrometry. Hepatic Sirius Red morphometry (SRM) and alpha-smooth muscle actin (αSMA) were measured by immunohistochemistry; portosystemic shunting was measured using colored microspheres. BI 685509 dose-dependently increased hepatic cGMP at 1 and 3 mg/kg (3.92 ± 0.34 and 5.14 ± 0.44 versus 2.50 ± 0.19 nM in TAA alone; P < 0.05). TAA increased hepatic SRM, αSMA, PT, and portosystemic shunting. Compared with TAA, 3 mg/kg BI 685509 reduced SRM by 38%, αSMA area by 55%, portal venous pressure by 26%, and portosystemic shunting by 10% (P < 0.05). Acute BI 685509 reduced SRM and PT by 45% and 21%, respectively (P < 0.05). BI 685509 improved hepatic and extrahepatic cirrhosis pathophysiology in TAA-induced cirrhosis. These data support the clinical investigation of BI 685509 for PT in patients with cirrhosis. SIGNIFICANCE STATEMENT: BI 685509 is an NO-independent sGC activator that was tested in a preclinical rat model of TAA-induced nodular, liver fibrosis, portal hypertension, and portal systemic shunting. BI 685509 reduced liver fibrosis, portal hypertension, and portal-systemic shunting in a dose-dependent manner, supporting its clinical assessment to treat portal hypertension in patients with cirrhosis.


Assuntos
Hipertensão Portal , Cirrose Hepática Experimental , Ratos , Masculino , Animais , Guanilil Ciclase Solúvel/farmacologia , Tioacetamida/efeitos adversos , Ratos Sprague-Dawley , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/tratamento farmacológico , Hipertensão Portal/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/complicações , Fígado , GMP Cíclico
4.
Atherosclerosis ; 372: 32-40, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023506

RESUMO

BACKGROUND AND AIMS: The NO-cGMP pathway is essential for angiogenesis, vasculogenesis and post-natal neovascularization. The key enzyme responsible for the synthesis of cGMP following binding of NO is soluble guanylate cyclase (sGC). Riociguat is the first member of a novel class of compounds known as sGC stimulators. We tested the hypothesis that stimulation of sGC with riociguat might improve neovascularization in response to ischemia. METHODS: In vitro, the angiogenic effect of riociguat was tested in human umbilical vein endothelial cells (HUVECs). In vivo, neovascularization was investigated in a mouse model of limb ischemia. C57Bl/6 mice were treated by gavage with 3 mg/kg/day of riociguat for a total of 28 days. After two weeks of treatment, hindlimb ischemia was surgically induced by femoral artery removal. RESULTS: In a matrigel assay in vitro, riociguat dose-dependently stimulates tubule formation in HUVECs. Cell migration (scratch assay) is also increased in HUVECs treated with riociguat. At the molecular level, riociguat treatment leads to rapid activation of the p44/p42 MAP kinase pathway in HUVECs. Inhibition of protein kinase G (PKG) activity supresses both p44/p42 MAP kinase activation and angiogenesis in HUVECs treated with riociguat. In vivo, treatment with riociguat improves blood flow recovery after ischemia (Laser Doppler imaging), and increases capillary density in ischemic muscles (CD31 immunostaining). Clinically, this is associated with a significant decrease of ambulatory impairment and ischemic damages. Interestingly, mice treated with riociguat also show a 94% increase in the number of bone marrow-derived pro-angiogenic cells (PACs) compared to control mice. Moreover, riociguat treatment is associated with a significant improvement of PAC functions including migratory capacity, adhesion to an endothelial monolayer, and integration into endothelial tubular networks. CONCLUSIONS: The sGC stimulator riociguat promotes angiogenesis and improves neovascularization after ischemia. The mechanism involves PKG-dependent activation of p44/p42 MAP kinase pathway, together with an improvement of PAC number and functions. sGC stimulation could constitute a novel therapeutic strategy to reduce tissue ischemia in patients with severe atherosclerotic diseases.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno , Neovascularização Patológica , Humanos , Camundongos , Animais , Guanilil Ciclase Solúvel/farmacologia , Isquemia , Células Endoteliais da Veia Umbilical Humana , Neovascularização Fisiológica , Membro Posterior
5.
Cell Rep Med ; 4(4): 100992, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023747

RESUMO

Diabetic kidney disease (DKD) is the most common cause of renal failure. Therapeutics development is hampered by our incomplete understanding of animal models on a cellular level. We show that ZSF1 rats recapitulate human DKD on a phenotypic and transcriptomic level. Tensor decomposition prioritizes proximal tubule (PT) and stroma as phenotype-relevant cell types exhibiting a continuous lineage relationship. As DKD features endothelial dysfunction, oxidative stress, and nitric oxide depletion, soluble guanylate cyclase (sGC) is a promising DKD drug target. sGC expression is specifically enriched in PT and stroma. In ZSF1 rats, pharmacological sGC activation confers considerable benefits over stimulation and is mechanistically related to improved oxidative stress regulation, resulting in enhanced downstream cGMP effects. Finally, we define sGC gene co-expression modules, which allow stratification of human kidney samples by DKD prevalence and disease-relevant measures such as kidney function, proteinuria, and fibrosis, underscoring the relevance of the sGC pathway to patients.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Ratos , Animais , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Guanilil Ciclase Solúvel/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Rim/metabolismo , Fibrose
6.
Rheumatology (Oxford) ; 62(SI): SI125-SI137, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35900177

RESUMO

OBJECTIVES: In SSc, angiogenesis impairment advances in parallel with the development of fibrosis orchestrated by myofibroblasts originating from different sources, including endothelial-to-mesenchymal transition (EndoMT). Soluble guanylate cyclase (sGC) stimulation has shown antifibrotic effects in SSc skin fibroblasts and mouse models. Here, we investigated the effects of pharmacological sGC stimulation on impaired angiogenesis and myofibroblast-like features of SSc dermal microvascular endothelial cells (SSc-MVECs). METHODS: To determine whether sGC stimulation affected cell viability/proliferation, SSc-MVECs and healthy dermal MVECs (H-MVECs) were challenged with the sGC stimulator (sGCS) MK-2947 and assayed by annexin V/propidium iodide flow cytometry and the water-soluble tetrazolium salt (WST-1) assay. To study angiogenesis and EndoMT, MK-2947-treated SSc-MVECs were subjected to wound healing and capillary morphogenesis assays and analysed for the expression of endothelial/myofibroblast markers and contractile ability. RESULTS: MK-2947 treatment did not affect H-MVEC viability/proliferation, while it significantly increased SSc-MVEC proliferation, wound healing capability and angiogenic performance. After MK-2947 treatment, SSc-MVECs exhibited significantly increased proangiogenic MMP9 and decreased antiangiogenic MMP12 and PTX3 gene expression. A significant increase in the expression of CD31 and vascular endothelial cadherin paralleled by a decrease in α-smooth muscle actin, S100A4, type I collagen and Snail1 mesenchymal markers was also found in MK-2947-treated SSc-MVECs. Furthermore, stimulation of sGC with MK-2947 significantly counteracted the intrinsic ability of SSc-MVECs to contract collagen gels and reduced phosphorylated-extracellular signal-regulated kinases 1 and 2 protein levels. CONCLUSION: These findings demonstrate for the first time that pharmacological sGC stimulation effectively ameliorates the angiogenic performance and blunts the myofibroblast-like profibrotic phenotype of SSc-MVECs, thus providing new evidence for repurposing sGCSs for SSc.


Assuntos
Células Endoteliais , Escleroderma Sistêmico , Animais , Camundongos , Células Endoteliais/metabolismo , Miofibroblastos/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Escleroderma Sistêmico/metabolismo , Morfogênese , Células Cultivadas , Pele/metabolismo
7.
Cardiol Rev ; 31(2): 87-92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35609251

RESUMO

Heart failure (HF) affects 6.2 million Americans and is increasing annually in its frequency. Treatment of HF has been at the forefront of medical advancements due to the financial burden on our health care system. As such, changes to the guidelines regarding standard of care have been evolving over the last decade with the recent additions of sacubitril-valsartan and sodium glucose co-transporter-2 inhibitors to standard of care in the treatment of HF. Despite the aforementioned expansions in treatment options, HF continues to have a significant impact on the American health care system. Most recently, a novel drug vericiguat that targets an unprecedented pathway for the treatment of HF was Food and Drug Administration approved for the management of patients with HF with a reduced ejection fraction with a recent hospitalization or need for outpatient intravenous diuretics. In clinical trials, vericiguat was associated with a reduction in death from cardiovascular causes and first hospitalization in comparison to placebo. The aim of this review is to provide a comprehensive literature analysis of the various trials surrounding the approval of vericiguat and to both inform and synthesize the data surrounding the clinical use of vericiguat. The introduction of Vericiguat should be considered as a treatment option in patients to decrease the mortality/morbidity of HF with reduced ejection fraction and to increase the quality of life.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Humanos , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Guanilil Ciclase Solúvel/uso terapêutico , Resultado do Tratamento , Qualidade de Vida , Volume Sistólico , Insuficiência Cardíaca/tratamento farmacológico , Vasodilatadores/uso terapêutico
8.
Shock ; 58(4): 280-286, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018251

RESUMO

ABSTRACT: Introduction: Perioperative alterations in perfusion lead to ischemia and reperfusion injury, and supplemental oxygen is administered during surgery to limit hypoxic injury but can lead to hyperoxia. We hypothesized that hyperoxia impairs endothelium-dependent and endothelium-independent vasodilation but not the vasodilatory response to heme-independent soluble guanylyl cyclase activation. Methods: We measured the effect of oxygen on vascular reactivity in mouse aortas. Mice were ventilated with 21% (normoxia), 60% (moderate hyperoxia), or 100% (severe hyperoxia) oxygen during 30 minutes of renal ischemia and 30 minutes of reperfusion. After sacrifice, the thoracic aorta was isolated, and segments mounted on a wire myograph. We measured endothelium-dependent and endothelium-independent vasodilation with escalating concentrations of acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, and we measured the response to heme-independent soluble guanylyl cyclase activation with cinaciguat. Vasodilator responses to each agonist were quantified as the maximal theoretical response ( Emax ) and the effective concentration to elicit 50% relaxation (EC 50 ) using a sigmoid model and nonlinear mixed-effects regression. Aortic superoxide was measured with dihydroethidium probe and high-performance liquid chromatography quantification of the specific superoxide product 2-hydroxyethidium. Results: Hyperoxia impaired endothelium-dependent (ACh) and endothelium-independent (SNP) vasodilation compared with normoxia and had no effect on cinaciguat-induced vasodilation. The median ACh Emax was 76.4% (95% confidence interval = 69.6 to 83.3) in the normoxia group, 53.5% (46.7 to 60.3) in the moderate hyperoxia group, and 53.1% (46.3 to 60.0) in the severe hyperoxia group ( P < 0.001, effect across groups), while the ACh EC 50 was not different among groups. The SNP Emax was 133.1% (122.9 to 143.3) in normoxia, 128.3% (118.1 to 138.6) in moderate hyperoxia, and 114.8% (104.6 to 125.0) in severe hyperoxia ( P < 0.001, effect across groups), and the SNP EC 50 was 0.38 log M greater in moderate hyperoxia than in normoxia (95% confidence interval = 0.18 to 0.58, P < 0.001). Cinaciguat Emax and EC 50 were not different among oxygen treatment groups (median range Emax = 78.0% to 79.4% and EC 50 = -18.0 to -18.2 log M across oxygen groups). Aorta 2-hydroxyethidium was 1419 pmol/mg of protein (25th-75th percentile = 1178-1513) in normoxia, 1993 (1831-2473) in moderate hyperoxia, and 2078 (1936-2922) in severe hyperoxia ( P = 0.008, effect across groups). Conclusions: Hyperoxia, compared with normoxia, impaired endothelium-dependent and endothelium-independent vasodilation but not the response to heme-independent soluble guanylyl cyclase activation, and hyperoxia increased vascular superoxide production. Results from this study could have important implications for patients receiving high concentrations of oxygen and at risk for ischemia reperfusion-mediated organ injury.


Assuntos
Acetilcolina , Hiperóxia , Camundongos , Animais , Guanilil Ciclase Solúvel/farmacologia , Nitroprussiato/farmacologia , Acetilcolina/farmacologia , Superóxidos/metabolismo , Endotélio Vascular/metabolismo , Vasodilatação , Vasodilatadores/farmacologia , Heme , Oxigênio/farmacologia , Óxido Nítrico/metabolismo
9.
Prostaglandins Other Lipid Mediat ; 162: 106661, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750298

RESUMO

AIM: This study aimed to investigate the effects of Rosa damascena Mill. essential oil on the vascular activity of rat thoracic aorta and its underlying mechanisms. METHODS: Experiments were performed using the isolated tissue bath model and Wistar rats. 0.1, 1, 10, and 100 µg/mL concentrations of rose oil were administered in all groups. To determine the vasoactive effects of rose oil, submaximal contractions were conducted by applying 10-5 M PE and 45 mM KCl separately in both endothelium-intact and -denuded segments. Time-matched distilled water groups were formed for control. To evaluate the role of endothelium-derived vasodilative factors, endothelium-intact segments were incubated with nitric oxide synthase inhibitor L-NAME, soluble guanylate cyclase inhibitor ODQ, and a non-selective cyclooxygenase inhibitor INDO. The statistical significance level was considered as p < 0.05. RESULTS: 1, 10, and 100 µg/mL rose oil doses led to vasorelaxation in thoracic aortas precontracted with 10-5 M PE (p: 0.029, p: 0.000, p: 0.000, respectively). In precontracted thoracic aortas with 45 mM KCl, the significant effect of rose oil persisted, albeit slightly diminished. When the endothelium was removed, the relaxant effect of rose oil was partially reduced, but still significant (p: 0.035, p: 0.028, p: 0.000, respectively). Preincubations with L-NAME and ODQ significantly attenuated rose oil-induced relaxation of endothelium-intact aortas precontracted with 10-5 M PE. In contrast, preincubation INDO did not modulate rose oil-induced relaxation. CONCLUSION: In conclusion, it was shown for the first time that rose oil can significantly mediate vasorelaxation in both PE and KCl precontracted rat thoracic aortas. Rose oil induced vasodilation with or without endothelium in a concentration-dependent manner. It was also shown that rose oil-induced vasorelaxant effects were reduced by L-NAME or ODQ pretreatment, but not modulated by INDO. These results demonstrated that rose oil-induced endothelium-dependent vasodilation is mediated by the NO-cGMP-dependent pathway.


Assuntos
Óleos Voláteis , Rosa , Animais , Aorta Torácica/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Endotélio Vascular , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Ratos , Ratos Wistar , Rosa/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Vasodilatação , Vasodilatadores/farmacologia
10.
Am J Cardiovasc Drugs ; 22(2): 117-125, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34151411

RESUMO

The anti-cancer agent doxorubicin (DOX) has high cardiotoxicity that is linked to DOX-mediated increase in oxidative stress, mitochondrial iron overload, DNA damage, autophagy, necrosis, and apoptosis, all of which are also associated with secondary tumorigenicity. This limits the clinical application of DOX therapies. Previous studies have attributed DOX-mediated cardiotoxicity to mitochondrial iron accumulation and the production of reactive oxygen species (ROS), which seem to be independent of its anti-tumor DNA damaging effects. Chemo-sensitization of soluble guanylate cyclase (sGC) in the cyclic guanosine monophosphate (cGMP) pathway induces tumor cell death despite the cardiotoxicity associated with DOX treatment. However, sGC-cGMP signaling must be activated during heart failure to facilitate myocardial cell survival. The sGC pathway is dependent on nitric oxide and signal transduction via the nitric oxide-sGC-cGMP pathway and is attenuated in various cardiovascular diseases. Additionally, cGMP signaling is regulated by the action of certain phosphodiesterases (PDEs) that protect the heart by inhibiting PDE, an enzyme that hydrolyses cGMP to GMP activity. In this review, we discuss the studies describing the interactions between cGMP regulation and DOX-mediated cardiotoxicity and their application in improving DOX therapeutic outcomes. The results provide novel avenues for the reduction of DOX-induced secondary tumorigenicity and improve cellular autonomy during DOX-mediated cardiotoxicity.


Assuntos
GMP Cíclico , Insuficiência Cardíaca , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Doxorrubicina/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Transdução de Sinais , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia
11.
J Cardiovasc Pharmacol Ther ; 26(6): 593-600, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487435

RESUMO

Over the past decade, soluble guanylate cyclase (sGC) activators and stimulators have been developed and studied to improve outcomes in patients with heart failure with reduced ejection fraction (HFrEF). The sGC enzyme plays an important role in the nitric oxide (NO)-sGC-cyclic guanosine monophosphate (cGMP) pathway, that has been largely untargeted by current guideline directed medical therapy (GDMT) for HFrEF. Disruption of the NO-sCG-cGMP pathway can be widely observed in patients with HFrEF leading to endothelial dysfunction. The disruption is caused by an oxidized state resulting in low bioavailability of NO and cGMP. The increase in reactive oxygen species can also result in an oxidized, and subsequently heme free, sGC enzyme that NO is unable to activate, furthering the endothelial dysfunction. The novel sGC stimulators enhance the sensitivity of sGC to NO, and independently stimulate sGC, while the sGC activators target the oxidized and heme free sGC to stimulate cGMP production. This review will discuss the pathophysiologic basis for sGC stimulator and activator use in HFrEF, review the pre-clinical and clinical data, and propose a place in the HFrEF armamentarium for this novel pharmacotherapeutic class.


Assuntos
Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Guanilil Ciclase Solúvel/farmacologia , Volume Sistólico/efeitos dos fármacos , Humanos , Óxido Nítrico/metabolismo , Estresse Oxidativo , Ensaios Clínicos Controlados Aleatórios como Assunto , Volume Sistólico/fisiologia
12.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200064

RESUMO

For years, guanylate cyclase seemed to be homogenic and tissue nonspecific enzyme; however, in the last few years, in light of preclinical and clinical trials, it became an interesting target for pharmacological intervention. There are several possible options leading to an increase in cyclic guanosine monophosphate concentrations. The first one is related to the uses of analogues of natriuretic peptides. The second is related to increasing levels of natriuretic peptides by the inhibition of degradation. The third leads to an increase in cyclic guanosine monophosphate concentration by the inhibition of its degradation by the inhibition of phosphodiesterase type 5. The last option involves increasing the concentration of cyclic guanosine monophosphate by the additional direct activation of soluble guanylate cyclase. Treatment based on the modulation of guanylate cyclase function is one of the most promising technologies in pharmacology. Pharmacological intervention is stable, effective and safe. Especially interesting is the role of stimulators and activators of soluble guanylate cyclase, which are able to increase the enzymatic activity to generate cyclic guanosine monophosphate independently of nitric oxide. Moreover, most of these agents are effective in chronic treatment in heart failure patients and pulmonary hypertension, and have potential to be a first line option.


Assuntos
GMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Peptídeos Natriuréticos/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/farmacologia , Humanos , Terapia de Alvo Molecular , Transdução de Sinais , Guanilil Ciclase Solúvel/farmacologia , Regulação para Cima
13.
Proc Natl Acad Sci U S A ; 117(45): 28263-28274, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106416

RESUMO

Soluble guanylate cyclase (sGC) catalyzes the conversion of guanosine triphosphate into cyclic guanosine-3',5'-monophosphate, a key second messenger in cell signaling and tissue homeostasis. It was recently demonstrated that sGC stimulation is associated with a marked antiinflammatory effect in the liver of mice with experimental nonalcoholic steatohepatitis (NASH). Here, we investigated the mechanisms underlying the antiinflammatory effect of the sGC stimulator praliciguat (PRL) in the liver. Therapeutic administration of PRL exerted antiinflammatory and antifibrotic actions in mice with choline-deficient l-amino acid-defined high-fat diet-induced NASH. The PRL antiinflammatory effect was associated with lower F4/80- and CX3CR1-positive macrophage infiltration into the liver in parallel with lower Ly6CHigh- and higher Ly6CLow-expressing monocytes in peripheral circulation. The PRL antiinflammatory effect was also associated with suppression of hepatic levels of interleukin (IL)-1ß, NLPR3 (NACHT, LRR, and PYD domain-containing protein 3), ASC (apoptosis-associated speck-like protein containing a caspase-recruitment domain), and active cleaved-caspase-1, which are components of the NLRP3 inflammasome. In Kupffer cells challenged with the classical inflammasome model of lipopolysaccharide plus adenosine triphosphate, PRL inhibited the priming (expression of Il1b and Nlrp3) and blocked the release of mature IL-1ß. Mechanistically, PRL induced the protein kinase G (PKG)-mediated phosphorylation of the VASP (vasodilator-stimulated phosphoprotein) Ser239 residue which, in turn, reduced nuclear factor-κB (NF-κB) activity and Il1b and Nlrp3 gene transcription. PRL also reduced active cleaved-caspase-1 levels independent of pannexin-1 activity. These data indicate that sGC stimulation with PRL exerts antiinflammatory actions in the liver through mechanisms related to a PKG/VASP/NF-κB/NLRP3 inflammasome circuit.


Assuntos
Moléculas de Adesão Celular/metabolismo , Inflamassomos/metabolismo , Fígado/metabolismo , Proteínas dos Microfilamentos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fosfoproteínas/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Células de Kupffer/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Guanilil Ciclase Solúvel/farmacologia
14.
J Pharmacol Exp Ther ; 367(2): 194-202, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30108160

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) patients display exaggerated intravascular hemolysis and esophageal disorders. Since excess hemoglobin in the plasma causes reduced nitric oxide (NO) bioavailability and oxidative stress, we hypothesized that esophageal contraction may be impaired by intravascular hemolysis. This study aimed to analyze the alterations of the esophagus contractile mechanisms in a murine model of exaggerated intravascular hemolysis induced by phenylhydrazine (PHZ). For comparative purposes, sickle cell disease (SCD) mice were also studied, a less severe intravascular hemolysis model. Esophagus rings were dissected free and placed in organ baths. Plasma hemoglobin was higher in PHZ compared with SCD mice, as expected. The contractile responses produced by carbachol (CCh), KCl, and electrical-field stimulation (EFS) were superior in PHZ esophagi compared with control but remained unchanged in SCD mice. Preincubation with the NO-independent soluble guanylate cyclase stimulator 3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine (BAY 41-2272; 1 µM) completely reversed the increased contractile responses to CCh, KCl, and EFS in PHZ mice, but responses remained unchanged with prior treatment with NO donor sodium nitroprusside (300 µM). Protein expression of 3-nitrotyrosine and 4-hydroxynonenal increased in esophagi from PHZ mice, suggesting a state of oxidative stress. In endothelial nitric oxide synthase gene-deficient mice, the contractile responses elicited by KCl and CCh were increased in the esophagus but remained unchanged with the intravascular hemolysis induced by PHZ. In conclusion, our results show that esophagus hypercontractile state occurs in association with lower NO bioavailability due to exaggerated hemolysis intravascular and oxidative stress. Moreover, our study supports the hypothesis that esophageal disorders in PNH patients are secondary to intravascular hemolysis affecting the NO-cGMP pathway.


Assuntos
Doenças do Esôfago/tratamento farmacológico , Esôfago/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/metabolismo , Animais , GMP Cíclico/metabolismo , Doenças do Esôfago/metabolismo , Esôfago/metabolismo , Guanilato Ciclase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenil-Hidrazinas/farmacologia , Pirazóis/farmacologia , Piridinas/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Psychopharmacology (Berl) ; 235(8): 2407-2416, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29882087

RESUMO

RATIONALE: After stimulation with nitric oxide, soluble guanylate cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), which stimulates an important signalling pathway for long-term potentiation (LTP). By upregulating cGMP, LTP could be stimulated and thereby enhancing memory processes. The present study investigated the effects of the sGC stimulator riociguat on cognition in healthy volunteers. Participants were pre-treated with and without biperiden, which impairs memory performance, to investigate the memory-enhancing effects of riociguat. METHODS: Twenty volunteers participated in a double-blind placebo-controlled six-way crossover design with a cognitive test battery including the verbal learning task (VLT), n-back task, spatial memory test, the attention network test, and a reaction time task. Treatments were placebo and riociguat 0.5 mg, placebo and riociguat 1.0 mg, biperiden 2.0 mg and placebo, biperiden 2.0 mg and riociguat 0.5 mg and biperiden 2.0 mg and riociguat 1.0 mg. RESULTS: Blood pressure was found to be decreased and heart rate to be increased after administration of riociguat. Cognitive performance was not enhanced after administration of riociguat. Biperiden decreased episodic memory on the VLT, yet this deficit was not reversed by riociguat. CONCLUSION: This supports the notion that biperiden might be a valuable pharmacological model to induce episodic memory impairments as observed in AD/MCI.


Assuntos
Cognição/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Guanilil Ciclase Solúvel/farmacologia , Adulto , Atenção/efeitos dos fármacos , Biperideno/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Guanilato Ciclase , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Tempo de Reação/efeitos dos fármacos , Transdução de Sinais , Aprendizagem Verbal/efeitos dos fármacos , Adulto Jovem
16.
Am J Physiol Cell Physiol ; 313(1): C11-C26, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381519

RESUMO

Nitric oxide (NO) contributes to myogenesis by regulating the transition between myoblast proliferation and fusion through cGMP signaling. NO can form S-nitrosothiols (RSNO), which control signaling pathways in many different cell types. However, neither the role of RSNO content nor its regulation by the denitrosylase activity of S-nitrosoglutathione reductase (GSNOR) during myogenesis is understood. Here, we used primary cultures of chick embryonic skeletal muscle cells to investigate whether changes in intracellular RSNO alter proliferation and fusion of myoblasts in the presence and absence of cGMP. Cultures were grown to fuse most of the myoblasts into myotubes, with and without S-nitrosocysteine (CysNO), 8-Br-cGMP, DETA-NO, or inhibitors for NO synthase (NOS), GSNOR, soluble guanylyl cyclase (sGC), or a combination of these, followed by analysis of GSNOR activity, protein expression, RSNO, cGMP, and cell morphology. Although the activity of GSNOR increased progressively over 72 h, inhibiting GSNOR (by GSNOR inhibitor - GSNORi - or by knocking down GSNOR with siRNA) produced an increase in RSNO and in the number of myoblasts and fibroblasts, accompanied by a decrease in myoblast fusion index. This was also detected with CysNO supplementation. Enhanced myoblast number was proportional to GSNOR inhibition. Effects of the GSNORi and GSNOR knockdown were blunted by NOS inhibition, suggesting their dependence on NO synthesis. Interestingly, GSNORi and GSNOR knockdown reversed the attenuated proliferation obtained with sGC inhibition in myoblasts, but not in fibroblasts. Hence myoblast proliferation is enhanced by increasing RSNO, and regulated by GSNOR activity, independently of cGMP production and signaling.


Assuntos
Aldeído Oxirredutases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , Óxido Nítrico/metabolismo , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/genética , Animais , Diferenciação Celular , Fusão Celular , Embrião de Galinha , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacologia , Cisteína/análogos & derivados , Cisteína/metabolismo , Cisteína/farmacologia , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , S-Nitrosoglutationa/metabolismo , S-Nitrosotióis/metabolismo , S-Nitrosotióis/farmacologia , Transdução de Sinais , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Tionucleotídeos/farmacologia , Triazenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...