Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(3): e0142321, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154407

RESUMO

The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors. IMPORTANCEIn vitro interrogations of the central replicative complex of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp), by structural, biochemical, and biophysical methods yielded an unprecedented windfall of information that, in turn, instructs drug development and administration, genomic surveillance, and other aspects of the evolving pandemic response. They also illuminated the vast disparity in the methods used to produce RdRp for experimental work and the hidden impact that this has on enzyme activity and research outcomes. In this report, we elucidate the positive and negative effects of codon optimization on the activity and folding of the recombinant RdRp and detail the design of a highly sensitive in vitro assay of RdRp-dependent RNA synthesis. Using this assay, we demonstrate that RdRp is allosterically activated by nontemplating phosphorylated nucleotides, including naturally occurring alarmone ppGpp and synthetic remdesivir triphosphate.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Guanosina Tetrafosfato/farmacologia , SARS-CoV-2/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Domínio Catalítico/fisiologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Humanos , Ribossomos/metabolismo , Tratamento Farmacológico da COVID-19
2.
PLoS Biol ; 18(1): e3000593, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995552

RESUMO

During host colonization, bacteria use the alarmones (p)ppGpp to reshape their proteome by acting pleiotropically on DNA, RNA, and protein synthesis. Here, we elucidate how the initiating ribosome senses the cellular pool of guanosine nucleotides and regulates the progression towards protein synthesis. Our results show that the affinity of guanosine triphosphate (GTP) and the inhibitory concentration of ppGpp for the 30S-bound initiation factor IF2 vary depending on the programmed mRNA. The TufA mRNA enhanced GTP affinity for 30S complexes, resulting in improved ppGpp tolerance and allowing efficient protein synthesis. Conversely, the InfA mRNA allowed ppGpp to compete with GTP for IF2, thus stalling 30S complexes. Structural modeling and biochemical analysis of the TufA mRNA unveiled a structured enhancer of translation initiation (SETI) composed of two consecutive hairpins proximal to the translation initiation region (TIR) that largely account for ppGpp tolerance under physiological concentrations of guanosine nucleotides. Furthermore, our results show that the mechanism enhancing ppGpp tolerance is not restricted to the TufA mRNA, as similar ppGpp tolerance was found for the SETI-containing Rnr mRNA. Finally, we show that IF2 can use pppGpp to promote the formation of 30S initiation complexes (ICs), albeit requiring higher factor concentration and resulting in slower transitions to translation elongation. Altogether, our data unveil a novel regulatory mechanism at the onset of protein synthesis that tolerates physiological concentrations of ppGpp and that bacteria can exploit to modulate their proteome as a function of the nutritional shift happening during stringent response and infection.


Assuntos
Guanosina Tetrafosfato/farmacologia , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ligação Competitiva , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Interações Hospedeiro-Patógeno/fisiologia , Cinética , Conformação de Ácido Nucleico , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Iniciação Traducional da Cadeia Peptídica/fisiologia , Fator Tu de Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/química , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética
3.
J Biol Chem ; 293(15): 5679-5694, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475943

RESUMO

The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Guanosina Pentafosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Vibrio cholerae/metabolismo , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutação , Proteínas Periplásmicas de Ligação/biossíntese , Proteínas Periplásmicas de Ligação/genética , Vibrio cholerae/genética
4.
Sci Rep ; 7: 41839, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28157202

RESUMO

The alarmone nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p)ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p)ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work.


Assuntos
Ligases/genética , Mutagênese , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Guanosina Tetrafosfato/farmacologia , Ligases/antagonistas & inibidores , Ligases/metabolismo
5.
Biosci Biotechnol Biochem ; 78(6): 1022-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036129

RESUMO

The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.


Assuntos
Adenilossuccinato Sintase/metabolismo , Guanosina Tetrafosfato/farmacologia , Oryza/enzimologia , Purinas/biossíntese , Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Guanosina Tetrafosfato/química , Cinética , Oryza/metabolismo , Homologia de Sequência de Aminoácidos
6.
Mol Microbiol ; 92(1): 28-46, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612328

RESUMO

When Escherichia coli grows in the presence of DNA-damaging agents such as methyl methanesulphonate (MMS), absence of the full-length form of Translation Initiation Factor 2 (IF2-1) or deficiency in helicase activity of replication restart protein PriA leads to a considerable loss of viability. MMS sensitivity of these mutants was contingent on the stringent response alarmone (p)ppGpp being at low levels. While zero levels (ppGpp°) greatly aggravated sensitivity, high levels promoted resistance. Moreover, M+ mutations, which suppress amino acid auxotrophy of ppGpp° strains and which have been found to map to RNA polymerase subunits, largely restored resistance to IF2-1- and PriA helicase-deficient mutants. The truncated forms IF2-2/3 played a key part in inducing especially severe negative effects in ppGpp° cells when restart function priB was knocked out, causing loss of viability and severe cell filamentation, indicative of SOS induction. Even a strain with the wild-type infB allele exhibited significant filamentation and MMS sensitivity in this background whereas mutations that prevent expression of IF2-2/3 essentially eliminated filamentation and largely restored MMS resistance. The results suggest different influences of IF2-1 and IF2-2/3 on the replication restart system depending on (p)ppGpp levels, each having the capacity to maximize survival under differing growth conditions.


Assuntos
DNA Helicases/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Tetrafosfato/farmacologia , Fator de Iniciação 2 em Procariotos/metabolismo , Bacteriófago mu/genética , Bacteriófago mu/fisiologia , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Metanossulfonato de Metila/farmacologia , Fator de Iniciação 2 em Procariotos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
J Biol Chem ; 288(29): 21055-21064, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23749992

RESUMO

The alarmone guanosine tetraphosphate (ppGpp) acts as both a positive and a negative regulator of gene expression in the presence of DksA, but the underlying mechanisms of this differential control are unclear. Here, using uspA hybrid promoters, we show that an AT-rich discriminator region is crucial for positive control by ppGpp/DksA. The AT-rich discriminator makes the RNA polymerase-promoter complex extremely stable and therefore easily saturated with RNA polymerase. A more efficient transcription is achieved when the RNA polymerase-promoter complex is destabilized with ppGpp/DksA. We found that exchanging the AT-rich discriminator of uspA with the GC-rich rrnB-P1 discriminator made the uspA promoter negatively regulated by ppGpp/DksA both in vivo and in vitro. In addition, the GC-rich discriminator destabilized the RNA polymerase-promoter complex, and the effect of ppGpp/DksA on the kinetic properties of the promoter was reversed. We propose that the transcription initiation rate from promoters with GC-rich discriminators, in contrast to the uspA-promoter, is not limited by the stability of the open complex. The findings are discussed in view of models for both direct and indirect effects of ppGpp/DksA on transcriptional trade-offs.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/farmacologia , Regiões Promotoras Genéticas , Transcrição Gênica , Sequência Rica em At/genética , Composição de Bases/genética , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Cinética , Dados de Sequência Molecular , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética
8.
Mol Microbiol ; 88(1): 93-104, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23461544

RESUMO

DNA replication is regulated in response to environmental constraints such as nutrient availability. While much is known about regulation of replication during initiation, little is known about regulation of replication during elongation. In the bacterium Bacillus subtilis, replication elongation is paused upon sudden amino acid starvation by the starvation-inducible nucleotide (p)ppGpp. However, in many bacteria including Escherichia coli, replication elongation is thought to be unregulated by nutritional availability. Here we reveal that the replication elongation rate in E. coli is modestly but significantly reduced upon strong amino acid starvation. This reduction requires (p)ppGpp and is exacerbated in a gppA mutant with increased pppGpp levels. Importantly, high levels of (p)ppGpp, independent of amino acid starvation, are sufficient to inhibit replication elongation even in the absence of transcription. Finally, in both E. coli and B. subtilis, (p)ppGpp inhibits replication elongation in a dose-dependent manner rather than via a switch-like mechanism, although this inhibition is much stronger in B. subtilis. This supports a model where replication elongation rates are regulated by (p)ppGpp to allow rapid and tunable response to multiple abrupt stresses in evolutionarily diverse bacteria.


Assuntos
Bacillus subtilis/metabolismo , Replicação do DNA/efeitos dos fármacos , Escherichia coli/metabolismo , Guanosina Pentafosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Aminoácidos/deficiência , Aminoácidos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
9.
PLoS One ; 7(8): e42561, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880033

RESUMO

Inorganic polyphosphate (poly-P), guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) are ubiquitous in bacteria. These molecules play a variety of important physiological roles associated with stress resistance, persistence, and virulence. In the bacterial pathogen Mycobacterium tuberculosis, the identities of the proteins responsible for the metabolism of polyphosphate and (p)ppGpp remain to be fully established. M. tuberculosis encodes two PPX-GppA homologues, Rv0496 (MTB-PPX1) and Rv1026, which share significant sequence similarity with bacterial exopolyphosphatase (PPX) and guanosine pentaphosphate 5'-phosphohydrolase (GPP) proteins. Here we delineate the respective biochemical activities of the Rv0496 and Rv1026 proteins and benchmark these against the activities of the PPX and GPP proteins from Escherichia coli. We demonstrate that Rv0496 functions as an exopolyphosphatase, showing a distinct preference for relatively short-chain poly-P substrates. In contrast, Rv1026 has no detectable exopolyphosphatase activities. Analogous to the E. coli PPX and GPP enzymes, the exopolyphosphatase activities of Rv0496 are inhibited by pppGpp and, to a lesser extent, by ppGpp alarmones, which are produced during the bacterial stringent response. However, neither Rv0496 nor Rv1026 have the ability to hydrolyze pppGpp to ppGpp; a reaction catalyzed by E. coli PPX and GPP. Both the Rv0496 and Rv1026 proteins have modest ATPase and to a lesser extent ADPase activities. pppGpp alarmones inhibit the ATPase activities of Rv1026 and, to a lesser extent, the ATPase activities of Rv0496. We conclude that PPX-GppA family proteins may not possess all the catalytic activities implied by their name and may play distinct biochemical roles involved in polyphosphate and (p)ppGpp metabolic pathways.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Bactérias/metabolismo , Guanosina Pentafosfato/metabolismo , Mycobacterium tuberculosis/enzimologia , Homologia de Sequência de Aminoácidos , Hidrolases Anidrido Ácido/antagonistas & inibidores , Hidrolases Anidrido Ácido/isolamento & purificação , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/isolamento & purificação , Sistema Livre de Células/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Tetrafosfato/farmacologia , Hidrólise/efeitos dos fármacos , Cinética , Mycobacterium tuberculosis/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
10.
Plant Mol Biol ; 78(1-2): 185-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22108865

RESUMO

Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(ß,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.


Assuntos
Cloroplastos/genética , Guanosina Tetrafosfato/metabolismo , Elongação Traducional da Cadeia Peptídica/genética , Proteínas de Plantas/genética , Antibacterianos/farmacologia , Radioisótopos de Carbono , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Relação Dose-Resposta a Droga , Ácido Fusídico/farmacologia , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Leucina/genética , Leucina/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Poli U/genética , RNA Mensageiro/genética , Tioestreptona/farmacologia
11.
J Bacteriol ; 192(17): 4275-80, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20581211

RESUMO

ppGpp regulates gene expression in a variety of bacteria and in plants. We proposed previously that ppGpp or its precursor, pppGpp [referred to collectively as (p)ppGpp], or both might regulate the activity of the enzyme polynucleotide phosphorylase in Streptomyces species. We have examined the effects of (p)ppGpp on the polymerization and phosphorolysis activities of PNPase from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli. We have shown that (p)ppGpp inhibits the activities of both Streptomyces PNPases but not the E. coli enzyme. The inhibition kinetics for polymerization using the Streptomyces enzymes are of the mixed noncompetitive type, suggesting that (p)ppGpp binds to a region other than the active site of the enzyme. ppGpp also inhibited the phosphorolysis of a model RNA substrate derived from the rpsO-pnp operon of S. coelicolor. We have shown further that the chemical stability of mRNA increases during the stationary phase in S. coelicolor and that induction of a plasmid-borne copy of relA in a relA-null mutant increases the chemical stability of bulk mRNA as well. We speculate that the observed inhibition in vitro may reflect a role of ppGpp in the regulation of antibiotic production in vivo.


Assuntos
Escherichia coli/enzimologia , Guanosina Pentafosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Polirribonucleotídeo Nucleotidiltransferase/antagonistas & inibidores , Streptomyces coelicolor/enzimologia , Dimerização , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Estabilidade de RNA/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo
12.
Bioorg Med Chem ; 18(12): 4485-97, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483622

RESUMO

A prominent feature of the stringent response is the accumulation of two unusual phosphorylated derivatives of GTP and GDP (pppGpp: 5'-triphosphate-3'-diphosphate, and ppGpp: 5'-3'-bis-diphosphate), collectively called (p)ppGpp, within a few seconds after the onset of amino-acid starvation. The synthesis of these 'alarmone' compounds is catalyzed by RelA homologues. Other features of the stringent response include inhibition of stable RNA synthesis and modulation of transcription, replication, and translation. (p)ppGpp accumulation is important for virulence induction, differentiation and antibiotic resistance. We have synthesized a group of (p)ppGpp analogues and tested them as competitive inhibitors of Rel proteins in vitro. 2'-Deoxyguanosine-3'-5'-di(methylene bisphosphonate) [compound (10)] was found as an inhibitor that reduces ppGpp formation in both Gram-negative and Gram-positive bacteria. In silico docking together with competitive inhibition analysis suggests that compound (10) inhibits activity of Rel proteins by competing with GTP/GDP for its binding site. As Rel proteins are completely absent in mammalians, this appears to be a very attractive approach for the development of novel antibacterial agents.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Guanosina Tetrafosfato/análogos & derivados , Ligases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Guanosina Tetrafosfato/síntese química , Guanosina Tetrafosfato/farmacologia , Ligases/metabolismo , Conformação Molecular
13.
J Biol Chem ; 285(1): 473-82, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19901023

RESUMO

The cyclic dinucleotide c-di-AMP [corrected] synthesized by the diadenylate cyclase domain was discovered recently [corrected] as a messenger molecule for signaling DNA breaks in Bacillus subtilis. By searching bacterial genomes, we identified a family of DHH/DHHA1 domain proteins (COG3387) that co-occur with a subset of the diadenylate cyclase domain proteins. Here we report that the B. subtilis protein YybT, a member of the COG3387 family proteins, exhibits phosphodiesterase activity toward cyclic dinucleotides. The DHH/DHHA1 domain hydrolyzes c-di-AMP and c-di-GMP to generate the linear dinucleotides 5'-pApA and 5'-pGpG. The data suggest that c-di-AMP could be the physiological substrate for YybT given the physiologically relevant Michaelis-Menten constant (K(m)) and the presence of YybT family proteins in the bacteria lacking c-di-GMP signaling network. The bacterial regulator ppGpp was found to be a strong competitive inhibitor of the DHH/DHHA1 domain, suggesting that YybT is under tight control during stringent response. In addition, the atypical GGDEF domain of YybT exhibits unexpected ATPase activity, distinct from the common diguanylate cyclase activity for GGDEF domains. We further demonstrate the participation of YybT in DNA damage and acid resistance by characterizing the phenotypes of the DeltayybT mutant. The novel enzymatic activity and stress resistance together point toward a role for YybT in stress signaling and response.


Assuntos
Adenosina Trifosfatases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Diester Fosfórico Hidrolases/química , Transdução de Sinais , Ácidos , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/efeitos dos fármacos , Dano ao DNA , Fosfatos de Dinucleosídeos/metabolismo , Guanosina Tetrafosfato/farmacologia , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Hidrólise/efeitos dos fármacos , Metais/farmacologia , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Especificidade por Substrato/efeitos dos fármacos
14.
Plasmid ; 63(1): 61-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19945481

RESUMO

DNA primase is an enzyme required for replication of both chromosomes and vast majority of plasmids. Guanosine tetra- and penta-phosphate (ppGpp and pppGpp, respectively) are alarmones of the bacterial stringent response to starvation and stress conditions, and act by modulation of the RNA polymerase activity. Recent studies indicated that the primase-catalyzed reaction is also inhibited by (p)ppGpp in Bacillus subtilis, where a specific regulation of DNA replication elongation, the replication fork arrest, was discovered. Although in Escherichia coli such a replication regulation was not reported to date, here we show that E. coli DnaG primase is directly inhibited by ppGpp and pppGpp. However, contrary to the B. subtilis primase response to the stringent control alarmones, the E, coli DnaG was inhibited more efficiently by ppGpp than by pppGpp.


Assuntos
Endodesoxirribonucleases/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Exodesoxirribonucleases/antagonistas & inibidores , Guanosina Tetrafosfato/farmacologia , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , DNA Primase , Primers do DNA/metabolismo , DnaB Helicases/metabolismo , Endodesoxirribonucleases/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/química , Exodesoxirribonucleases/química , Guanosina Difosfato/farmacologia , Guanosina Pentafosfato/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
Chembiochem ; 10(7): 1227-33, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19308923

RESUMO

It's alarming: Bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp), which is a key regulatory molecule that controls the stringent response, also exists in chloroplasts of plant cells. Cross-linking experiments with 6-thioguanosine 5'-diphosphate 3'-diphosphate (6-thioppGpp) and chloroplast RNA polymerase indicate that ppGpp binds the beta' subunit of plastid-encoded plastid RNA polymerase that corresponds to the Escherichia coli beta' subunit. Chloroplasts, which are thought to have originated from cyanobacteria, have their own genetic system that is similar to that of the bacteria from which they were derived. Recently, bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp, 1), a key regulatory molecule that controls the stringent response, was identified in the chloroplasts of plant cells. Similar to its function in bacteria, ppGpp inhibits chloroplast RNA polymerase; this suggests that ppGpp mediates gene expression through the stringent response in chloroplasts. However, a detailed mechanism of ppGpp action in chloroplasts remains elusive. We synthesized 6-thioguanosine 5'-diphosphate 3'-diphosphate (6-thioppGpp) as a photoaffinity probe of ppGpp; this probe thus enabled the investigation of ppGpp binding to chloroplast RNA polymerase. We found that 6-thioppGpp, as well as ppGpp, inhibits chloroplast RNA synthesis in vitro in a dose-dependent manner. Cross-linking experiments with 6-thioppGpp and chloroplast RNA polymerase indicated that ppGpp binds the beta' subunit (corresponding to the Escherichia coli beta' subunit) of plastid-encoded plastid RNA polymerase composed of alpha, beta, beta', beta'', and sigma subunits. Furthermore, ppGpp did not inhibit transcription in plastid nucleoids prepared from tobacco BY-2 cells; this suggests that ppGpp does not inhibit nuclear-encoded plastid RNA polymerase.


Assuntos
Cloroplastos/enzimologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Guanosina Tetrafosfato/farmacologia , Sequência de Aminoácidos , Cloroplastos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Guanosina Tetrafosfato/síntese química , Guanosina Tetrafosfato/química , Plastídeos/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos
16.
Proc Natl Acad Sci U S A ; 105(52): 20924-9, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19091955

RESUMO

We present a molecular mechanism for signal transduction that activates transcription of the SlyA regulon in Salmonella typhimurium. We demonstrate that SlyA mediates transcriptional activation in response to guanosine tetraphosphate, ppGpp, according to the following observations: (i) in vivo transcription of SlyA-dependent genes is repressed when ppGpp is absent; this transcription can be restored by overproducing SlyA; (ii) in vivo dimerization and binding of SlyA to the target promoter are facilitated in the presence of ppGpp; and (iii) in vitro SlyA binding to the target promoter is enhanced when ppGpp is supplemented. Thus, ppGpp must be the cytoplasmic component that stimulates SlyA regulatory function by interacting directly with this regulator in Salmonella. This signaling domain, integrated by the PhoP/PhoQ 2-component system that activates slyA transcription by sensing Mg(2+), forms feedforward loops that regulate chromosomal loci identified through a motif search over the S. typhimurium genome. Many such loci are divergent operons, each formed by 2 neighboring genes in which transcription of these 2 loci proceeds in opposite directions. Both genes, however, are controlled by PhoP and SlyA through a single shared PhoP box and SlyA box present in their intergenic regions. A substitution in either box sequence causes a simultaneous cessation of transcription of a divergent operon, pagD-pagC, equivalent to the phenotype in a phoP or slyA mutant. We also identified several chromosomal loci that possess pagC-type genes without the cognate pagD-type genes. Therefore, our results provide a molecular basis for the understanding of SlyA-dependent phenotypes associated with Salmonella virulence.


Assuntos
Óperon/fisiologia , Regiões Promotoras Genéticas/fisiologia , Salmonella typhimurium/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cromossomos Bacterianos/fisiologia , DNA Intergênico/genética , DNA Intergênico/metabolismo , Guanosina Tetrafosfato/farmacologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Mutação , Estrutura Terciária de Proteína/fisiologia , Locos de Características Quantitativas/fisiologia , Salmonella typhimurium/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
17.
Mol Microbiol ; 60(6): 1520-33, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16796685

RESUMO

In this report we have examined the role of the regulatory alarmone (p)ppGpp on expression of virulence determinants of uropathogenic Escherichia coli strains. The ability to form biofilms is shown to be markedly diminished in (p)ppGpp-deficient strains. We present evidence (i) that (p)ppGpp tightly regulates expression of the type 1 fimbriae in both commensal and pathogenic E. coli isolates by increasing the subpopulation of cells that express the type 1 fimbriae; and (ii) that the effect of (p)ppGpp on the number of fimbrial expressing cells can ultimately be traced to its role in transcription of the fimB recombinase gene, whose product mediates inversion of the fim promoter to the productive (ON) orientation. Primer extension analysis suggests that the effect of (p)ppGpp on transcription of fimB occurs by altering the activity of only one of the two fimB promoters. Furthermore, spontaneous mutants with properties characteristic of ppGpp(0) suppressors restore fimB transcription and consequent downstream effects in the absence of (p)ppGpp. Consistently, the rpoB3770 allele also fully restores transcription of fimB in a ppGpp(0) strain and artificially elevated levels of FimB bypass the need for (p)ppGpp for type 1 fimbriation. Our findings suggest that the (p)ppGpp-stimulated expression of type 1 fimbriae may be relevant during the interaction of pathogenic E. coli with the host.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/patogenicidade , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/fisiologia , Guanosina Tetrafosfato/fisiologia , Integrases/genética , Aglutinação , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA Nucleotidiltransferases/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Guanosina Pentafosfato/genética , Guanosina Pentafosfato/farmacologia , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/farmacologia , Mutação , Regiões Promotoras Genéticas/efeitos dos fármacos , Fator sigma/metabolismo , Supressão Genética , Transcrição Gênica/efeitos dos fármacos , Doenças Urológicas/microbiologia , Leveduras/citologia
18.
J Biotechnol ; 125(3): 328-37, 2006 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-16621093

RESUMO

Although the enhancement of amino-acid synthesis by guanosine-3',5'-tetraphosphate (ppGpp) is well known, the effect of intracellular ppGpp levels on amino-acid overproduction in Escherichia coli has not been investigated. In this study, we demonstrate that overexpression of the relA gene, encoding ppGpp synthetase, increases the accumulation of amino acids, such as glutamate and lysine, in amino-acid-overproducing strains of E. coli. Elevation of intracellular ppGpp levels due to depletion of required amino acids also enhances glutamate overproduction. Moreover, the extent of overproduction is highly dependent on the intracellular ppGpp level. These results demonstrate that amino-acid overproduction in E. coli is closely connected to amino-acid auxotrophy via the accumulation of ppGpp.


Assuntos
Escherichia coli/metabolismo , Ácido Glutâmico/biossíntese , Guanosina Tetrafosfato/farmacologia , Lisina/biossíntese , Aminoácidos/biossíntese , Escherichia coli/crescimento & desenvolvimento , Guanosina Tetrafosfato/metabolismo , Espaço Intracelular/metabolismo , Fator de Transcrição RelA/genética , Transformação Bacteriana
19.
J Biol Chem ; 279(19): 19860-6, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15014078

RESUMO

The bacterial response to nutritional deprivation, called the stringent response, results in the introduction of the specific nucleotide guanosine-3',5'-(bis) pyrophosphate (ppGpp). This nucleotide interacts with RNA polymerase and alters its action so that transcription from certain promoters is inhibited, whereas transcription from others seems to be activated. The exact mechanism of transcriptional stimulation by ppGpp in vivo remains unknown. A passive control model has been proposed according to which transcription inhibition during the stringent response at several very active promoters, like those for rRNA and tRNA genes, makes more free RNA polymerase (RNAP) molecules available for transcription at promoters with weak binding affinities for RNAP, thus leading to their passive activation. Among promoters whose transcription is activated by ppGpp in vivo is the histidine operon promoter (hisGp). However, in vitro it is only possible to demonstrate this effect in a coupled transcription-translation system. Here we demonstrate, using another in vivo ppGpp-stimulated promoter, the phage lambdapaQ promoter, that activation by ppGpp in a defined in vitro system is direct. A systematic study of ppGpp effects on the stimulation of paQ revealed that, as in the case of promoters inhibited by this nucleotide, ppGpp decreases the half-life of paQ open complexes. Our results also indicate that the equilibrium binding affinity of RNA polymerase to paQ seems not to be affected in the presence of ppGpp. Our data indicate that the mechanism underlying ppGpp stimulation of paQ is due to an increased rate of productive open complex formation.


Assuntos
Guanosina Tetrafosfato/análogos & derivados , Regiões Promotoras Genéticas , RNA Polimerases Dirigidas por DNA/metabolismo , Desoxirribonuclease I/metabolismo , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica , Guanosina Difosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Modelos Químicos , Permanganato de Potássio/farmacologia , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Tionucleotídeos/farmacologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Proteínas Virais
20.
Mikrobiologiia ; 71(4): 437-44, 2002.
Artigo em Russo | MEDLINE | ID: mdl-12244710

RESUMO

The paper discusses (1) programmed cell death, the phenomenon typical of the stationary phase of bacteria occurring under unfavorable conditions, (2) its pleiotropic regulation by guanosine tetraphosphate, and (3) the conception of "addiction module," a specific genetic system responsible for the cell choice between survival and death under unfavorable conditions. The shortcomings of the proposed interpretation of the problem at hand are considered and the necessity of their further investigation is substantiated.


Assuntos
Apoptose/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Guanosina Tetrafosfato/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...