Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 59(3): 737-746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37254969

RESUMO

The habenula (Hb) is involved in many natural human behaviors, and the relevance of its alterations in size and neural activity to several psychiatric disorders and addictive behaviors has been presumed and investigated in recent years using magnetic resonance imaging (MRI). Although the Hb is small, an increasing number of studies have overcome the difficulties in MRI. Conventional structural-based imaging also has great defects in observing the Hb contrast with adjacent structures. In addition, more and more attention should be paid to the Hb's functional, structural, and quantitative imaging studies. Several advanced MRI methods have recently been employed in clinical studies to explore the Hb and its involvement in psychiatric diseases. This review summarizes the anatomy and function of the human Hb; moreover, it focuses on exploring the human Hb with noninvasive MRI approaches, highlighting strategies to overcome the poor contrast with adjacent structures and the need for multiparametric MRI to develop imaging markers for diagnosis and treatment follow-up. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Habenula , Transtornos Mentais , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Habenula/anatomia & histologia , Imageamento por Ressonância Magnética/métodos
2.
Obesity (Silver Spring) ; 30(1): 172-182, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889060

RESUMO

OBJECTIVE: The aim of this study was to investigate laparoscopic sleeve gastrectomy (LSG)-induced changes in connectivity between regions involved with reward/antireward and cognitive control and the extent to which these changes persist after surgery and predict sustainable weight loss. METHODS: Whole-brain local functional connectivity density (lFCD) was studied in 25 participants with obesity who underwent resting-state functional MRI before (PreLSG), 1 month after (PostLSG1 ), and 12 months after (PostLSG12 ) LSG and compared with 25 normal-weight controls. Regions with significant time effects of LSG on functional connectivity density were identified for subsequent seed-based connectivity analyses and to examine associations with behavior. RESULTS: LSG significantly increased lFCD in the mediodorsal thalamic nucleus (MD) and in the habenula (Hb) at PostLSG12 compared with PreLSG/PostLSG1 , whereas it decreased lFCD in the posterior cingulate cortex/precuneus (PCC/PreCun) at PostLSG1 /PostLSG12 , and these changes were associated with reduction in BMI. In contrast, controls had no significant lFCD differences between baseline and repeated measures. MD had stronger connectivity with PreCun and Hb at PostLSG12 compared with PreLSG/PostLSG1 , and the increased MD-left PreCun and Hb-MD connectivity correlated with decreases in hunger and BMI, respectively. PCC/PreCun had stronger connectivity with the insula at PostLSG1-12 . CONCLUSIONS: The findings highlight the importance of reward and interoceptive regions as well as that of regions mediating negative emotions in the long-term therapeutic benefits of LSG.


Assuntos
Gastrectomia , Habenula , Núcleo Mediodorsal do Tálamo , Obesidade Mórbida , Cognição/fisiologia , Gastrectomia/métodos , Habenula/anatomia & histologia , Habenula/fisiologia , Humanos , Laparoscopia/métodos , Imageamento por Ressonância Magnética , Núcleo Mediodorsal do Tálamo/anatomia & histologia , Núcleo Mediodorsal do Tálamo/fisiologia , Vias Neurais , Obesidade Mórbida/fisiopatologia , Obesidade Mórbida/cirurgia , Resultado do Tratamento , Redução de Peso
3.
Psychoneuroendocrinology ; 131: 105321, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34157587

RESUMO

BACKGROUND: The habenula-pancreas axis regulates the stimulatory effects of nicotine on blood glucose levels and may participate in the emergence of type 2 diabetes in human tobacco smokers. This secondary analysis of young adults from the Human Connectome Project (HCP-YA) evaluated whether smoking status links the relationship between habenular volume and glycated hemoglobin (HbA1c), a marker of long-term glycemic control. METHODS: Habenula segmentation was performed using a fully-automated myelin content-based approach in HCP-YA participants and the results were inspected visually (n = 693; aged 22-37 years). A linear regression analysis was used with habenular volume as the dependent variable, the smoking-by-HbA1c interaction as the independent variable of interest, and age, gender, race, ethnicity, education, income, employment status, body mass index, and total gray matter volume as covariates. RESULTS: Habenula volume and HbA1c were similar in smokers and nonsmokers. There was a significant interaction effect (F(1, 673)= 5.03, p = 0.025) indicating that habenular volume was related to HbA1c in a manner that depended on smoking status. Among participants who were smokers (n = 120), higher HbA1c was associated with apparently larger habenular volume (ß = 6.74, standard error=2.36, p = 0.005). No such association between habenular volume and HbA1c was noted among participants who were nonsmokers (n = 573). DISCUSSION: Blood glucose levels over an extended time period, reflected by HbA1c, were correlated with habenular volume in smokers, consistent with a relationship between the habenula and blood glucose homeostasis in smokers. Future studies are needed to evaluate how habenular function relates to glycemic control in smokers and nonsmokers.


Assuntos
Hemoglobinas Glicadas , Habenula , Fumar , Adulto , Hemoglobinas Glicadas/metabolismo , Habenula/anatomia & histologia , Humanos , Tamanho do Órgão , Fumar/epidemiologia , Fumar/metabolismo , Adulto Jovem
4.
Brain Struct Funct ; 225(5): 1437-1458, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32367265

RESUMO

The often-overlooked dorsal diencephalic conduction system (DDCS) is a highly conserved pathway linking the basal forebrain and the monoaminergic brainstem. It consists of three key structures; the stria medullaris, the habenula and the fasciculus retroflexus. The first component of the DDCS, the stria medullaris, is a discrete bilateral tract composed of fibers from the basal forebrain that terminate in the triangular eminence of the stalk of the pineal gland, known as the habenula. The habenula acts as a relay hub where incoming signals from the stria medullaris are processed and subsequently relayed to the midbrain and hindbrain monoaminergic nuclei through the fasciculus retroflexus. As a result of its wide-ranging connections, the DDCS has recently been implicated in a wide range of behaviors related to reward processing, aversion and motivation. As such, an understanding of the structure and connections of the DDCS may help illuminate the pathophysiology of neuropsychiatric disorders such as depression, addiction and pain. This is the first review of all three components of the DDCS, the stria medullaris, the habenula and the fasciculus retroflexus, with particular focus on their anatomy, function and development.


Assuntos
Diencéfalo/anatomia & histologia , Diencéfalo/fisiologia , Habenula/anatomia & histologia , Habenula/fisiologia , Mesencéfalo/anatomia & histologia , Mesencéfalo/fisiologia , Substância Branca/anatomia & histologia , Substância Branca/fisiologia , Animais , Humanos , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Rombencéfalo/anatomia & histologia , Rombencéfalo/fisiologia
5.
J Comp Neurol ; 528(5): 705-728, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31566737

RESUMO

Based on anatomical and functional data, the habenula-a phylogenetically old brain structure present in all vertebrates-takes part in the integration of limbic, sensory, and basal ganglia information to guide effective response strategies appropriate to environmental conditions. In the present study, we investigated the connections of the habenular nuclei of the oriental fire-bellied toad, Bombina orientalis, and compared them with published data from lampreys, chondrichthyes, teleosts, reptiles, birds, and mammals. During phylogenetic development, the primordial habenula circuitry underwent various evolutionary adaptations and in the tetrapod line, the circuit complexity increased. The habenula circuitry of anuran amphibians, decedents of the first land-living tetrapods, seem to exhibit a mix of ancient as well as modern features. The anuran medial and lateral habenula homologs receive differential input from the septum, nucleus of the diagonal band of Broca, preoptic area, hypothalamus, rostral pallium, nucleus accumbens, ventral pallidum, and bed nucleus of the stria terminalis. Additional input arises from a border region in the ventral prethalamus, here discussed as a putative homolog of the entopeduncular nucleus of rodents. The habenular subnuclei also differentially innervate the interpeduncular nucleus, raphe nuclei, substantia nigra pars compacta and ventral tegmental area homologs, superficial mamillary area, laterodorsal tegmental nucleus, locus coeruleus, inferior and superior colliculus homologs, hypothalamus, preoptic area, septum, nucleus of the diagonal band of Broca, and main olfactory bulb. It seems likely that the main connectivity between the habenula and the basal ganglia, limbic, and sensory systems was already present in the common tetrapod ancestor.


Assuntos
Anuros/anatomia & histologia , Habenula/anatomia & histologia , Vias Neurais/anatomia & histologia , Animais , Evolução Biológica , Filogenia
6.
Magn Reson Imaging ; 65: 55-61, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655137

RESUMO

The habenulae consist of a pair of small nuclei which bridge the limbic forebrain and midbrain monoaminergic centers. They are implicated in major depressive disorders due to abnormal phasic response when provoked by a conditioned stimulus. The lateral habenula (Lhb) is believed to be involved in dopamine metabolism and is now a target for deep brain stimulation, a treatment which has shown promising anti-depression effects. We imaged the habenulae with susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) in order to localize the lateral habenula. Fifty-six healthy controls were recruited for this study. For the quantitative assessment, we traced the structure to compute volume from magnitude images and mean susceptibility bilaterally for the habenula on QSM. Thresholding methods were used to delineate the Lhb habenula on QSM. SWI, true SWI (tSWI), and QSM data were subjectively reviewed for increased Lhb contrast. SWI, QSM, and tSWI showed bilateral signal changes in the posterior location of the habenulae relative to the anterior location, which may indicate increased putative iron content within the Lhb. This signal behavior was shown in 41/44 (93%) subjects. In summary, it is possible to localize the lateral component of the habenula using SWI and QSM at 3 T.


Assuntos
Habenula/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Valores de Referência
7.
Psychiatry Clin Neurosci ; 73(10): 607-612, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31131942

RESUMO

The habenula is an evolutionarily conserved structure in the vertebrate brain. Lesion and electrophysiological studies in animals have suggested that it is involved in the regulation of monoaminergic activity through projection to the brain stem nuclei. Since studies in animal models of depression and human functional imaging have indicated that increased activity of the habenula is associated with depressive phenotypes, this structure has attracted a surge of interest in neuroscience research. According to pathway- and cell-type-specific dissection of habenular function in animals, we have begun to understand how the heterogeneity of the habenula accounts for alteration of diverse physiological functions in depression. Indeed, recent studies have revealed that the subnuclei embedded in the habenula show a wide variety of molecular profiles not only in neurons but also in glial cells implementing the multifaceted regulatory mechanism for output from the habenula. In this review, we overview the known facts on mediolateral subdivision in the habenular structure, then discuss heterogeneity of the habenular structure from the anatomical and functional viewpoint to understand its emerging role in diverse neural functions relevant to depressive phenotypes. Despite the prevalent use of antidepressants acting on monoamine metabolisms, ~30% of patients with major depression are reported to be treatment-resistant. Thus, cellular mechanisms deciphering such diversity in depressive symptoms would be a promising candidate for the development of new antidepressants.


Assuntos
Anedonia/fisiologia , Transtorno Depressivo Maior/fisiopatologia , Habenula/anatomia & histologia , Habenula/fisiopatologia , Animais , Humanos
8.
Elife ; 82019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30855228

RESUMO

Lateral habenula (LHb) neurons are activated by negative motivational stimuli and play key roles in the pathophysiology of depression. Prior reports suggested that rostral entopeduncular nucleus (rEPN) neurons drive these responses in the LHb and rostromedial tegmental nucleus (RMTg), but these influences remain untested. Using rabies viral tracers, we demonstrate disynaptic projections from the rEPN to RMTg, but not VTA, via the LHb in rats. Using in vivo electrophysiology, we find that rEPN or LHb subpopulations exhibit activation/inhibition patterns after negative/positive motivational stimuli, similar to the RMTg, while temporary inactivation of a region centered on the rEPN decreases LHb basal and burst firing, and reduces valence-related signals in LHb neurons. Additionally, excitotoxic rEPN lesions partly diminish footshock-induced cFos in the LHb and RMTg. Together, our findings indicate an important role of the rEPN, and possibly immediately adjacent hypothalamus, in driving basal activities and valence processing in LHb and RMTg neurons.


Assuntos
Globo Pálido/anatomia & histologia , Globo Pálido/fisiologia , Habenula/anatomia & histologia , Habenula/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Potenciais de Ação , Animais , Técnicas de Rastreamento Neuroanatômico , Ratos Sprague-Dawley
9.
Hum Brain Mapp ; 39(7): 3058-3071, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29582505

RESUMO

In vivo morphological study of the human habenula, a pair of small epithalamic nuclei adjacent to the dorsomedial thalamus, has recently gained significant interest for its role in reward and aversion processing. However, segmenting the habenula from in vivo magnetic resonance imaging (MRI) is challenging due to the habenula's small size and low anatomical contrast. Although manual and semi-automated habenula segmentation methods have been reported, the test-retest reproducibility of the segmented habenula volume and the consistency of the boundaries of habenula segmentation have not been investigated. In this study, we evaluated the intra- and inter-site reproducibility of in vivo human habenula segmentation from 3T MRI (0.7-0.8 mm isotropic resolution) using our previously proposed semi-automated myelin contrast-based method and its fully-automated version, as well as a previously published manual geometry-based method. The habenula segmentation using our semi-automated method showed consistent boundary definition (high Dice coefficient, low mean distance, and moderate Hausdorff distance) and reproducible volume measurement (low coefficient of variation). Furthermore, the habenula boundary in our semi-automated segmentation from 3T MRI agreed well with that in the manual segmentation from 7T MRI (0.5 mm isotropic resolution) of the same subjects. Overall, our proposed semi-automated habenula segmentation showed reliable and reproducible habenula localization, while its fully-automated version offers an efficient way for large sample analysis.


Assuntos
Habenula/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Feminino , Habenula/diagnóstico por imagem , Humanos , Masculino , Adulto Jovem
10.
Curr Biol ; 28(7): 1052-1065.e7, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576475

RESUMO

The identification of cell types and marker genes is critical for dissecting neural development and function, but the size and complexity of the brain has hindered the comprehensive discovery of cell types. We combined single-cell RNA-seq (scRNA-seq) with anatomical brain registration to create a comprehensive map of the zebrafish habenula, a conserved forebrain hub involved in pain processing and learning. Single-cell transcriptomes of ∼13,000 habenular cells with 4× cellular coverage identified 18 neuronal types and dozens of marker genes. Registration of marker genes onto a reference atlas created a resource for anatomical and functional studies and enabled the mapping of active neurons onto neuronal types following aversive stimuli. Strikingly, despite brain growth and functional maturation, cell types were retained between the larval and adult habenula. This study provides a gene expression atlas to dissect habenular development and function and offers a general framework for the comprehensive characterization of other brain regions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Habenula/anatomia & histologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neurônios/citologia , Análise de Célula Única/métodos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Habenula/crescimento & desenvolvimento , Habenula/metabolismo , Larva , Neurogênese , Neurônios/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
11.
Semin Cell Dev Biol ; 78: 116-119, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28803896

RESUMO

The thalamus is one of the most highly connected hubs of the vertebrate brain, with roles in perception, arousal, navigation, memory and consciousness. One connection that is missing from contemporary maps is a link to the habenula. This link was reported in the early part of the last century, but appears to have slipped into obscurity. Here, I review the evidence for the existence of this innervation and consider the potential roles it could play. In particular, the possibility that this pathway is involved in non-visual responses to ambient illumination, including emotional responses, is examined.


Assuntos
Cognição/fisiologia , Habenula/anatomia & histologia , Habenula/fisiologia , Tálamo/anatomia & histologia , Tálamo/fisiologia , Animais , Humanos , Camundongos , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia
12.
Semin Cell Dev Biol ; 78: 103-106, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29107476

RESUMO

The medial and lateral habenulae are conserved throughout vertebrate evolution, and form an integrated part in the forebrain control of behavior together with the basal ganglia, the dopamine and serotonin systems and cortex. The lateral habenula plays a role in the control of dopamine activity in the context of aversive behavior and the converse, a reward situation. These circuits are important for a value-based evaluation of the success of prior actions. The medial habenula is involved in mediating escape and freezing behavior. These structures are reviewed with a focus on the lamprey, belonging to the oldest group of now living vertebrate, showing that most aspects of the habenular structure and function have been conserved throughout vertebrate phylogeny.


Assuntos
Comportamento Animal/fisiologia , Habenula/anatomia & histologia , Habenula/fisiologia , Lampreias/anatomia & histologia , Lampreias/fisiologia , Vias Neurais/fisiologia , Animais , Gânglios da Base/fisiologia , Evolução Biológica , Dopamina/metabolismo , Serotonina/metabolismo
13.
Brain Behav Evol ; 90(4): 276-288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29130952

RESUMO

The habenular complex and its associated axonal pathways are often thought of as phylogenetically conserved features of the brain among vertebrates despite the fact that detailed studies of this brain region are limited to a few species. Here, the gross morphology and axonal projection pattern of the habenular complex of an anuran amphibian, the fire-bellied toad Bombina orientalis, was studied to allow comparison with the situation in other vertebrates. Axonal pathways were traced using biocytin applications in dissected brain preparations. The results show that the rostral part of the left dorsal nucleus is enlarged in this species, while the rostral ventral nucleus and caudal parts do not show left-right size differences. Biocytin applications revealed widespread axonal projections of the habenular complex to the posterior tuberculum/dorsal hypothalamic region, ventral tegmentum, interpeduncular nucleus (IPN), and raphe median. Additionally, axons targeting the lateral hypothalamus originated from the ventral habenular nuclei. The results also suggest an asymmetrical pattern of projection to the IPN in the rostral part of the habenular complex, where the left habenula preferentially targeted the dorsal IPN while the right habenula preferentially targeted the ventral IPN. The caudal habenular nuclei showed no asymmetry of projections as both sides targeted the ventral IPN. Comparison of the habenular complex axonal connectivity across vertebrates argues against strong phylogenetic conservation of the axonal projection patterns of different habenular nuclei.


Assuntos
Anuros/anatomia & histologia , Anuros/fisiologia , Habenula/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Habenula/anatomia & histologia , Lisina/análogos & derivados , Lisina/metabolismo , Mesencéfalo/anatomia & histologia , Neurônios , Filogenia , Tegmento Mesencefálico/anatomia & histologia
14.
Sheng Li Xue Bao ; 69(5): 623-636, 2017 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-29063110

RESUMO

The habenula (Hb) is an evolutionarily conserved diencephalic structure in vertebrates. It is considered as an emotion center and plays critical roles in regulating diverse types of emotion-related behaviors, including anxiety, fear, reward, depression, and nicotine withdrawal. On the one hand, action selection- and emotion-relevant inputs are transferred to the Hb through the basal ganglia and limbic system, respectively. At the same time, sensory inputs of multiple modalities also converge on the Hb. Among them, the visual input of the Hb from the retina ganglion cells ‒ thalamus pathway has been found to play a critical role in light-preference behavior of zebrafish. On the other hand, the Hb projects to two main neuromodulatory systems, the dopaminergic system and the serotoninergic system. As the Hb receives both internal emotion inputs and external sensory inputs and regulates the function of neuromodulatory systems, its functions are quite diverse and complex. In this review, we summarize the progress in both the structure and connection of the Hb and propose future study direction.


Assuntos
Habenula/anatomia & histologia , Habenula/fisiologia , Animais , Ansiedade/fisiopatologia , Medo/fisiologia , Humanos , Dor/fisiopatologia , Recompensa , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
15.
Mech Dev ; 147: 49-60, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28986126

RESUMO

Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).


Assuntos
Evolução Biológica , Habenula/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Glândula Pineal/fisiologia , Visão Ocular/fisiologia , Animais , Anelídeos/anatomia & histologia , Anelídeos/fisiologia , Padronização Corporal/fisiologia , Ritmo Circadiano/fisiologia , Cnidários/anatomia & histologia , Cnidários/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , Lateralidade Funcional , Habenula/anatomia & histologia , Humanos , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Vertebrados/citologia , Glândula Pineal/anatomia & histologia
16.
PLoS One ; 12(4): e0176279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423013

RESUMO

Despite rhythmic expression of clock genes being found throughout the central nervous system, very little is known about their function outside of the suprachiasmatic nucleus. Determining the pattern of clock gene expression across neuronal subpopulations is a key step in understanding their regulation and how they may influence the functions of various brain structures. Using immunofluorescence and confocal microscopy, we quantified the co-expression of the clock proteins BMAL1 and PER2 with two neuropeptides, Substance P (SubP) and Enkephalin (Enk), expressed in distinct neuronal populations throughout the forebrain. Regions examined included the limbic forebrain (dorsal striatum, nucleus accumbens, amygdala, stria terminalis), thalamus medial habenula of the thalamus, paraventricular nucleus and arcuate nucleus of the hypothalamus and the olfactory bulb. In most regions examined, BMAL1 was homogeneously expressed in nearly all neurons (~90%), and PER2 was expressed in a slightly lower proportion of cells. There was no specific correlation to SubP- or Enk- expressing subpopulations. The olfactory bulb was unique in that PER2 and BMAL1 were expressed in a much smaller percentage of cells, and Enk was rarely found in the same cells that expressed the clock proteins (SubP was undetectable). These results indicate that clock genes are not unique to specific cell types, and further studies will be required to determine the factors that contribute to the regulation of clock gene expression throughout the brain.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/genética , Encefalinas/genética , Proteínas Circadianas Period/genética , Substância P/genética , Fatores de Transcrição ARNTL/metabolismo , Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/anatomia & histologia , Núcleo Arqueado do Hipotálamo/metabolismo , Mapeamento Encefálico , Corpo Estriado/anatomia & histologia , Corpo Estriado/metabolismo , Encefalinas/metabolismo , Expressão Gênica , Habenula/anatomia & histologia , Habenula/metabolismo , Imuno-Histoquímica , Masculino , Núcleo Accumbens/anatomia & histologia , Núcleo Accumbens/metabolismo , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/metabolismo , Núcleo Hipotalâmico Paraventricular/anatomia & histologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Circadianas Period/metabolismo , Ratos , Ratos Wistar , Núcleos Septais/anatomia & histologia , Núcleos Septais/metabolismo , Substância P/metabolismo
17.
Clin Neurol Neurosurg ; 156: 35-40, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28292695

RESUMO

OBJECTIVE: The Klingler fiber dissection technique is a relevant and reliable method for neurosurgery to identify with accuracy the fine structure of the brain anatomy highlighting white matter tracts. In order to demonstrate the significance of the application of this technique, we aimed to observe the course and relations of the mammillothalamic and habenulo-interpeduncular tracts as there are very few papers showing these important diencephalic tracts. MATERIAL AND METHODS: Twelve formalin-fixed brains were dissected using the Klingler technique in order to expose the medial diencephalic surface. Diencephalic white matter tracts, particularly the mammillothalamic and habenulo-interpeduncular tracts, were dissected using wooden spatulas and metallic dissectors with different sizes and tips. Several measurements were performed in both dissected hemispheres relative to the mammillothalamic and habenulo-interpeduncular tracts. RESULTS: The course and length of these two tracts were visualized and the relations with other fiber systems and with the neighboring gray matter structures quantified and registered. The mammillothalamic tract approximately marks the anteroposterior coordinate of the anterior pole of the subthalamic nucleus in the anterior commissure - posterior commissure plane. CONCLUSION: The present study helps to understand the three-dimensional architecture of the white matter systems of tracts when the Klingler technique is used. The numerical data obtained may be helpful to neurosurgeons while approaching brain paraventricular and ventricular lesions and deep brain stimulation. Finally, the anatomical knowledge can lower surgical complications and improve patient care particularly in the field of neurosurgery.


Assuntos
Diencéfalo/anatomia & histologia , Diencéfalo/cirurgia , Procedimentos Neurocirúrgicos/métodos , Tratos Piramidais/anatomia & histologia , Tratos Piramidais/cirurgia , Substância Branca/anatomia & histologia , Substância Branca/cirurgia , Cadáver , Pedúnculo Cerebral/anatomia & histologia , Pedúnculo Cerebral/cirurgia , Dissecação/métodos , Habenula/anatomia & histologia , Habenula/cirurgia , Humanos , Corpos Mamilares/anatomia & histologia , Corpos Mamilares/cirurgia , Tálamo/anatomia & histologia , Tálamo/cirurgia , Fixação de Tecidos
18.
J Comp Neurol ; 525(10): 2310-2327, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28295296

RESUMO

That activation of the reward system involves increased activity of dopaminergic (DA) neurons in the ventral tegmental area (VTA) is widely accepted. In contrast, the lateral habenular complex (LHb), which is known as the center of the anti-reward system, directly and indirectly inhibits DA neurons in the VTA. The VTA, however, is not a homogenous entity. Instead, it displays major functional differences between its anterior (aVTA) and posterior (pVTA) regions. It is not precisely known, whether habenular input to the aVTA, pVTA, and the newly recognized rostromedial tegmental nucleus (RMTg) are similarly or differently organized. Consequently, the present investigation addressed the connections between LHb and aVTA, pVTA, and RMTg using retrograde and anterograde tracing techniques in the rat. Our experiments disclosed strictly reciprocal and conspicuously focal interconnections between LHbM (LHbMPc/LHbMC) and PN, as well as between RLi and LHbLO. In addition, we found that LHb inputs to the aVTA are dorsoventrally ordered. Dorsal parts of the aVTA receive afferents from LHbL and LHbM, whereas ventral parts of the aVTA are preferentially targeted by the LHbM. LHb afferents to the pVTA are distinct from those to the RMTg, given that the RMTg is primarily innervated from the LHbL, whereas pVTA receives afferents from LHbM and LHbL. These data indicate the existence of two separate pathways from the LHb to the VTA, a direct and an indirect one, which may subserve distinct biological functions.


Assuntos
Habenula/anatomia & histologia , Habenula/fisiologia , Área Tegmentar Ventral/anatomia & histologia , Área Tegmentar Ventral/fisiologia , Vias Aferentes/anatomia & histologia , Vias Aferentes/química , Vias Aferentes/fisiologia , Animais , Habenula/química , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/química , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico/métodos , Ratos , Ratos Wistar , Área Tegmentar Ventral/química
19.
Anim Cogn ; 20(3): 537-551, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28324234

RESUMO

Cerebral lateralization, the partitioning of functions into a certain hemisphere of the brain, is ubiquitous among vertebrates. Evidence suggests that the cognitive processing of a stimulus is performed with a specific hemisphere depending in part upon the emotional valence of the stimulus (i.e. whether it is appetitive or aversive). Recent work has implicated a predominance of right-hemisphere processing for aversive stimuli. In fish with laterally placed eyes, the preference to view an object with a specific eye has been used as a proxy for assessing cerebral lateralization. The habenula, one of the most well-known examples of an asymmetrical neural structure, has been linked to behavioural asymmetry in some fish species. Here, we exposed convict cichlid fish (Amatitlania nigrofasciata) to both a social and non-social lateralization task and assessed behavioural lateralization in either the presence or absence of an aversive stimulus, damage-induced alarm cues. We also assessed whether behavioural asymmetry in these tests was related to asymmetry of the habenular nuclei. We found that when alarm cues were present, fish showed increased left-eye (and by proxy, right hemisphere) preference for stimulus viewing. In addition, females, but not males, showed stronger eye preferences when alarm cues were present. We did not find a relationship between behavioural lateralization and habenular lateralization. Our results conflict with previous reports of concordance between behavioural and habenular lateralization in this fish species. However, our results do provide support for the hypothesis of increased right-hemisphere use when an organism is exposed to aversive stimuli.


Assuntos
Ciclídeos/anatomia & histologia , Ciclídeos/fisiologia , Animais , Comportamento Animal/fisiologia , Sinais (Psicologia) , Feminino , Lateralidade Funcional/fisiologia , Habenula/anatomia & histologia , Habenula/fisiologia , Masculino , Fatores Sexuais , Olfato/fisiologia , Comportamento Social , Percepção Visual/fisiologia
20.
J Comp Neurol ; 525(10): 2411-2442, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28340505

RESUMO

The habenula is an epithalamic structure differentiated into two nuclear complexes, medial (MHb) and lateral habenula (LHb). Recently, MHb together with its primary target, the interpeduncular nucleus (IP), have been identified as major players in mediating the aversive effects of nicotine. However, structures downstream of the MHb-IP axis, including the median (MnR) and caudal dorsal raphe nucleus (DRC), may contribute to the behavioral effects of nicotine. The afferent and efferent connections of the IP have hitherto not been systematically investigated with sensitive tracers. Thus, we placed injections of retrograde or anterograde tracers into different IP subdivisions or the MnR and additionally examined the transmitter phenotype of major IP and MnR afferents by combining retrograde tract tracing with immunofluorescence and in situ hybridization techniques. Besides receiving inputs from MHb and also LHb, we found that IP is reciprocally interconnected mainly with midline structures, including the MnR/DRC, nucleus incertus, supramammillary nucleus, septum, and laterodorsal tegmental nucleus. The bidirectional connections between IP and MnR proved to be primarily GABAergic. Regarding a possible topography of IP outputs, all IP subnuclei gave rise to descending projections, whereas major ascending projections, including focal projections to ventral hippocampus, ventrolateral septum, and LHb originated from the dorsocaudal IP. Our findings indicate that IP is closely associated to a distributed network of midline structures that modulate hippocampal theta activity and forms a node linking MHb and LHb with this network, and the hippocampus. Moreover, they support a cardinal role of GABAergic IP/MnR interconnections in the behavioral response to nicotine.


Assuntos
Habenula/química , Núcleo Interpeduncular/química , Rede Nervosa/química , Núcleos da Rafe/química , Vias Aferentes/anatomia & histologia , Vias Aferentes/química , Vias Aferentes/citologia , Animais , Vias Eferentes/anatomia & histologia , Vias Eferentes/química , Vias Eferentes/citologia , Habenula/anatomia & histologia , Habenula/citologia , Núcleo Interpeduncular/anatomia & histologia , Núcleo Interpeduncular/citologia , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Núcleos da Rafe/anatomia & histologia , Núcleos da Rafe/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...