Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 70(9): 4978-4985, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32783801

RESUMO

A halophilic archaeon named strain LR21T was isolated from a salt mine in Yunnan Province, PR China. Cells were spherical, Gram-stain-negative and motile. Strain LR21T grew at 20-50 °C (optimum, 42 °C), with 8-30 % (w/v) NaCl (optimum, 23 %) and at pH 5.5-9.5 (optimum, pH 7.5-8.5). Mg2+ was not required for growth. The major polar lipid profile comprised phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. Strain LR21T had two dissimilar 16S rRNA genes (rrnA and rrnB) and they were closely related to Halomicroarcula limicola YGHS32T, Hma. pellucida BNERC31T and Hma. salina YGHS18T with sequence similarities of 95.3-99.0, 93.0-96.2 and 93.2-95.9 %, respectively, and much lower values to other members. The rpoB' gene sequence similarities between strain LR21T and Hma. limicola YGHS32T, Hma. pellucida BNERC31T and Hma. salina YGHS18T were 95.2, 91.2 and 91.2 % respectively. The values of average nucleotide identity (ANI) and average amino-acid identity (AAI) between strain LR21T and Hma. limicola YGHS32T, were 89.0 and 90.1 %, respectively. DNA relatedness between strains LR21T and Hma. limicola YGHS32T determined by in silico DNA-DNA hybridization was 36.8 %. Values of ANI and AAI between strain LR21T and other members in the genus Halomicroarcula were far below 95 % and the DNA-DNA relatedness values between strain LR21T and its close relatives were much lower than 70 %, which is far below the boundary for delineation of a new species prokaryote. The DNA G+C content of strain LR21T was 62.0 mol% (genome). The results suggested that strain LR21T represents a novel species of the genus Halomicroarcula, for which the name Halomicroarcula amylolytica sp. nov. is proposed. The type strain is LR21T (=CGMCC 1.13611T=NBRC 113588T).


Assuntos
Halobacteriales/classificação , Filogenia , Composição de Bases , China , DNA Arqueal/genética , Ácidos Graxos/química , Genes Arqueais , Halobacteriales/isolamento & purificação , Mineração , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio
2.
Int J Syst Evol Microbiol ; 70(4): 2879-2887, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32213254

RESUMO

A novel Gram-stain-negative, aerobic and rod-shaped halophilic archaeon, designated HD8-45T, was isolated from the red brine of salted brown alga Laminaria produced at Dalian, PR China. According to the results of 16S rRNA gene and rpoB' gene sequence comparisons, strain HD8-45T showed the highest sequence similarity to the corresponding genes of Salinirussus salinus YGH44T (95.1 and 85.2 % similarities, respectively), Halovenus aranensis EB27T (91.2 and 86.0 % similarities, respectively). The low sequence similarity and the phylogeny implied the novel generic status of strain HD8-45T. Genomic relatedness analyses showed that strain HD8-45T were clearly distinguished from other species in the order Halobacteriales, with average nucleotide identity, amino acid identity and in silico DNA-DNA hybridization values not more than 75.1, 65.6 and 21.5 %. The polar lipid pattern contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids and two minor glycolipids. The two major glycolipids and a minor glycolipid were chromatographically identical to disulfated mannosyl glucosyl diether, sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. The major respiratory quinones were menaquinone MK-8 and MK-8(H2). The DNA G+C content was 62.0 mol% (Tm) and 61.9 mol% (genome). All these results showed that strain HD8-45T represents a novel species of a new genus in the order Halobacteriales, for which the name Salinibaculum litoreum gen. nov., sp. nov. is proposed. The type strain of Salinibaculum litoreum is HD8-45T (=CGMCC 1.15328T=JCM 31107T).


Assuntos
Halobacteriales/classificação , Laminaria/microbiologia , Filogenia , Composição de Bases , China , DNA Arqueal/genética , Genes Arqueais , Glicolipídeos/química , Halobacteriales/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Sais , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
3.
Int J Syst Evol Microbiol ; 69(9): 2662-2673, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31166158

RESUMO

Eight pure cultures of alkaliphilic haloaloarchaea capable of growth by dissimilatory sulfur reduction (previously only shown for neutrophilic haloarchaea) were isolated from hypersaline alkaline lakes in different geographic locations. These anaerobic enrichments, inoculated with sediments and brines, used formate, butyrate and peptone as electron donors and elemental sulfur as an electron acceptor 4 M total Na+ and at pH 9-10. According to 16S rRNA gene sequencing, the isolates fell into two distinct groups. A major group, comprising seven obligate alkaliphilic isolates from highly alkaline soda lakes, represents a new species-level branch within the genus Natronolimnobius (order Natrialbales), while a single moderately alkaliphilic isolate from the less alkaline Searles Lake forms a novel genus-level lineage within the order Haloferacales. The cells of the isolates are either flat rods or coccoid. They are facultative anaerobes using formate or H2 (in the presence of acetate or yeast extract as carbon source), C4-C9 fatty acids or peptone (the major group) as electron donors and either sulfur or DMSO (the major group) as electron acceptors. Aerobic growth is only possible with organic acids and peptone-yeast extract. All isolates are extreme halophiles, growing optimally at 4 M total Na+. On the basis of their unique physiological properties and distinct phylogeny, we propose that the seven isolates from the soda lakes are placed into a novel species, Natronolimnobiussulfurireducens sp. nov. (type strain AArc1T=JCM 30663T=UNIQEM U932T), and the Searles Lake isolate, AArc-SlT, into a new genus and species Halalkaliarchaeum desulfuricum (=JCM 30664T=UNIQEM U999T).


Assuntos
Halobacteriaceae/classificação , Halobacteriales/classificação , Lagos/microbiologia , Filogenia , Salinidade , Composição de Bases , California , Ácidos Graxos/química , Halobacteriaceae/isolamento & purificação , Halobacteriales/isolamento & purificação , Pigmentação , RNA Ribossômico 16S/genética , Federação Russa , Sais , Análise de Sequência de DNA , Enxofre/metabolismo
4.
Int J Syst Evol Microbiol ; 69(5): 1327-1335, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30801242

RESUMO

An extremely halophilic euryarchaeon, strain HArcel1T, was enriched and isolated in pure culture from the surface brines and sediments of hypersaline athalassic lakes in the Kulunda Steppe (Altai region, Russia) using amorphous cellulose as the growth substrate. The colonies of HArcel1T are pale-orange, and form large zones of cellulose hydrolysis around them. The cells are non-motile cocci of variable size with a thin monolayer cell wall. The isolate is an obligate aerobic heterotroph capable of growth with only three substrates: various forms of insoluble cellulose, xylan and cellobiose. Strain HArcel1T is an extremely halophilic neutrophile, growing within the salinity range from 2.5 to 5 M NaCl (optimum at 3.5-4 M). The core archaeal lipids are dominated by C20-C20 and C25-C20 dialkyl glycerol ethers, in approximately 6:1 proportion. The 16S rRNA and rpoB' gene analysis indicated that HArcel1T forms a separate lineage within the family Haloarculaceae, order Halobacteriales, with the genera Halorhabdus and Halopricus as closest relatives. On the basis of the unique phenotypic properties and distinct phylogeny of the 16S rRNA and rpoB' genes, it is suggested that strain HArcel1T is classified into a new genus and species Halococcoides cellulosivorans gen. nov., sp. nov. (JCM 31941T=UNIQEM U975T).


Assuntos
Sedimentos Geológicos/microbiologia , Halobacteriales/classificação , Lagos/microbiologia , Filogenia , Sais , Celulose , DNA Arqueal/genética , Ácidos Graxos/química , Genes Arqueais , Halobacteriales/isolamento & purificação , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA
5.
Mar Drugs ; 16(9)2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213145

RESUMO

The solar salterns located in the Odiel marshlands, in southwest Spain, are an excellent example of a hypersaline environment inhabited by microbial populations specialized in thriving under conditions of high salinity, which remains poorly explored. Traditional culture-dependent taxonomic studies have usually under-estimated the biodiversity in saline environments due to the difficulties that many of these species have to grow at laboratory conditions. Here we compare two molecular methods to profile the microbial population present in the Odiel saltern hypersaline water ponds (33% salinity). On the one hand, the construction and characterization of two clone PCR amplified-16S rRNA libraries, and on the other, a high throughput 16S rRNA sequencing approach based on the Illumina MiSeq platform. The results reveal that both methods are comparable for the estimation of major genera, although massive sequencing provides more information about the less abundant ones. The obtained data indicate that Salinibacter ruber is the most abundant genus, followed by the archaea genera, Halorubrum and Haloquadratum. However, more than 100 additional species can be detected by Next Generation Sequencing (NGS). In addition, a preliminary study to test the biotechnological applications of this microbial population, based on its ability to produce and excrete haloenzymes, is shown.


Assuntos
Bacteroidetes/genética , Halobacteriales/genética , Salinidade , Microbiologia da Água , Bacteroidetes/isolamento & purificação , Biodiversidade , Biotecnologia/métodos , DNA Bacteriano/isolamento & purificação , Variação Genética , Halobacteriales/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Áreas Alagadas
6.
Mol Biol Rep ; 45(5): 1297-1309, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30062501

RESUMO

The screening of bacteria and archaea from Chott El Jerid, a hypersaline lake in the south of Tunisia, led to the isolation of 68 extremely halophilic prokaryotes growing in media with 15-25% of salt. Assessment of 68 partial 16S rRNA analyzed by amplified rDNA restriction analysis (ARDRA) revealed 15 different bacterial and archaeal taxonomic groups. Based on ARDRA results, phenotypic and hydrolytic activity tests, 20 archaeal and 6 bacterial isolates were selected for sequencing. The halophilic isolates were identified as members of the genera: Salicola, Bacillus, Halorubrum, Natrinema and Haloterrigena. Most of these isolates are able to produce hydrolytic enzymes such as amylase, protease, lipase, cellulase, xylanase, pectinase and some of them showed combined activities. Natrinema genus is an excellent candidate for lipase production. These results indicated that the extremely halophilic archaea and bacteria from Chott El Jerid are a potential source of hydrolytic enzymes and may possess commercial value.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Halobacteriales/enzimologia , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Classificação/métodos , Enzimas/análise , Enzimas/classificação , Halobacteriales/classificação , Halobacteriales/isolamento & purificação , Lagos , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Tunísia , Microbiologia da Água
7.
Syst Appl Microbiol ; 41(4): 355-362, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29752017

RESUMO

Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8M total Na+ (optimum at 4M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5-9). The core archaeal lipids of strain AArcel5T were dominated by C20-C20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C20-C25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5T as the type strain (JCM 31939T=UNIQEM U972T).


Assuntos
Halobacteriales , Lagos/microbiologia , Salinidade , Cloreto de Sódio/análise , Celobiose/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/análise , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/isolamento & purificação , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
ISME J ; 11(5): 1245-1260, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28106880

RESUMO

Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.


Assuntos
Ecossistema , Halobacteriales/classificação , Salinidade , Anaerobiose , Halobacteriales/genética , Halobacteriales/isolamento & purificação , Halobacteriales/metabolismo , Processos Heterotróficos , Filogenia , Proteômica , Enxofre/metabolismo
9.
Gene ; 601: 56-64, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27919704

RESUMO

Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides.


Assuntos
Halobacteriales/genética , Halobacteriales/metabolismo , Tolerância ao Sal/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Halobacteriales/isolamento & purificação , RNA Arqueal/genética , Salinidade , Análise de Sequência de RNA , Transcriptoma
10.
Extremophiles ; 20(5): 747-57, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27444744

RESUMO

Stability of microbial communities can impact the ability of dispersed cells to colonize a new habitat. Saturated brines and their halophile communities are presumed to be steady state systems due to limited environmental perturbations. In this study, the bacteriorhodopsin-containing fraction of the haloarchaeal community from Eilat salt crystallizer ponds was sampled five times over 3 years. Analyses revealed the existence of a constant core as several OTUs were found repeatedly over the length of the study: OTUs comprising 52 % of the total cloned and sequenced PCR amplicons were found in every sample, and OTUs comprising 89 % of the total sequences were found in more than one, and often more than two samples. LIBSHUFF and UNIFRAC analyses showed statistical similarity between samples and Spearman's coefficient denoted significant correlations between OTU pairs, indicating non-random patterns in abundance and co-occurrence of detected OTUs. Further, changes in the detected OTUs were statistically linked to deviations in salinity. We interpret these results as indicating the existence of an ever-present core bacteriorhodopsin-containing Eilat crystallizer community that fluctuates in population densities, which are controlled by salinity rather than the extinction of some OTUs and their replacement through immigration and colonization.


Assuntos
Bacteriorodopsinas/genética , Halobacteriales/isolamento & purificação , Lagos/microbiologia , Microbiota , Filogenia , Bacteriorodopsinas/metabolismo , Halobacteriales/classificação , Lagos/química , Salinidade
11.
Int J Syst Evol Microbiol ; 66(6): 2377-2381, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27031647

RESUMO

Anaerobic enrichments with acetate as electron donor and carbon source, and elemental sulfur as electron acceptor at 4 M NaCl using anaerobic sediments and brines from several hypersaline lakes in Kulunda Steppe (Altai, Russia) resulted in isolation in pure culture of four strains of obligately anaerobic haloarchae growing exclusively by sulfur respiration. Such metabolism has not yet been demonstrated in any known species of Halobacteria, and in the whole archaeal kingdom, acetate oxidation with sulfur as acceptor was not previously demonstrated. The four isolates had nearly identical 16S rRNA gene sequences and formed a novel genus-level branch within the family Halobacteriaceae. The strains had a restricted substrate range limited to acetate and pyruvate as electron donors and elemental sulfur as electron acceptor. In contrast to aerobic haloarchaea, the biomass of anaerobic isolates completely lacked the typical red pigments. Growth with acetate+sulfur was observed between 3-5 M NaCl and at a pH range from 6.7 to 8.0. The membrane core lipids were dominated by archaeols. On the basis of distinct physiological and phylogenetic data, the sulfur-respiring isolates represent a novel species of a new genus in the family Halobacteriaceae, for which the name Halanaeroarchaeaum sulfurireducens gen. nov., sp. nov. is proposed. The type strain of the type species is HSR2T (=JCM 30661T=UNIQEM U935T).


Assuntos
Halobacteriales/classificação , Lagos/microbiologia , Filogenia , Salinidade , Enxofre/metabolismo , Composição de Bases , DNA Arqueal/genética , Sedimentos Geológicos/microbiologia , Halobacteriales/genética , Halobacteriales/isolamento & purificação , Oxirredução , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Federação Russa , Sais , Análise de Sequência de DNA
12.
Antonie Van Leeuwenhoek ; 109(6): 869-76, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27002961

RESUMO

A Gram-positive, aerobic, non-motile and extremely halophilic bacterial strain, designated K9(T), was isolated from kimchi, a Korean fermented food. The strain was observed as endospore-forming rod-shaped cells showing oxidase and catalase activity. It was found to grow at 10.0-30.0 % (w/v) NaCl (optimum, 15.0-20.0 %), pH 7.0-8.0 (optimum, pH 7.5) and 15-40 °C (optimum, 30 °C). The polar lipids of strain K9(T) were identified as phosphatidylglycerol, three unidentified phospholipids and an unidentified glycolipid. The isoprenoid quinone was identified as menaquinone-7. The major cellular fatty acids (>20 % of the total) were found to be anteisio-C15:0 and anteisio-C17:0. The cell wall peptidoglycan composition was determined to contain meso-diaminopimelic acid. The G + C content of genomic DNA was determined to be 48.2 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolated strain is closely related to Lentibacillus salinarum AHS-1(T) (96.7 % sequence similarity). Based on its phenotypic, chemotaxonomic and phylogenetic data, strain K9(T) is considered to represent a novel species of the genus Lentibacillus, for which the name Lentibacillus kimchii sp. nov., is proposed. The type strain is K9(T) (=KACC 18490(T) = JCM 30234(T)).


Assuntos
Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Verduras/microbiologia , Bacillaceae/genética , Bacillaceae/metabolismo , Técnicas de Tipagem Bacteriana , Parede Celular/metabolismo , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácido Diaminopimélico/metabolismo , Ácidos Graxos/metabolismo , Fermentação , Microbiologia de Alimentos , Halobacteriales/classificação , Halobacteriales/genética , Halobacteriales/isolamento & purificação , Halobacteriales/metabolismo , Peptidoglicano/química , Fenótipo , Fosfolipídeos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Vitamina K 2/análogos & derivados , Vitamina K 2/metabolismo
13.
Extremophiles ; 20(3): 235-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26955981

RESUMO

Abiotic and biotic processes associated with the degradation of a light petroleum in brines close to the salt-saturation (~31 %) and the effect of labile organic matter (LOM) supply (casaminoacids/citrate; 0.2 and 0.1 % w/v, respectively) were followed during an incubation of 30 days. After 4-week incubation at 40 °C under light/dark cycles, a 24 % of abiotic degradation was observed in untreated brines. The stimulation of native brines community with LOM addition allowed an additional 12.8 % oil attenuation due to biodegradation processes. Successional changes in the active microbial community structure due to the oil contamination (16S rRNA DGGE approach) showed the selection of one phylotype affiliated to Salinibacter and the disappearance of Haloquadratum walsbyi in untreated brines. In LOM-amended microcosms, phylotypes related to Salinibacter, Haloarcula, Haloterrigena and Halorhabdus were selected. An effect of hydrocarbon contamination was only observed in the bacterial community with the inhibition of two dominant proteobacterial phylotypes. This study further confirms that short-term and moderate oil biodegradation is possible in LOM-stimulated brines. Biodegradation should be much more reduced under in situ conditions. Self-cleaning capacities of close to saturation hypersaline lakes appears, therefore very limited compared to non-extreme haline environments.


Assuntos
Recuperação e Remediação Ambiental , Lagos/microbiologia , Microbiota , Petróleo/microbiologia , Salinidade , Halobacteriales/genética , Halobacteriales/isolamento & purificação , Halobacteriales/metabolismo , Lagos/química , Petróleo/metabolismo , Poluição por Petróleo , Sais
14.
Appl Environ Microbiol ; 81(13): 4432-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911472

RESUMO

We examined the diversity and community structure of members of the halophilic Archaea (class Halobacteria) in samples from central and southern Tunisian endorheic salt lakes and sebkhet (also known as sebkha) systems using targeted 16S rRNA gene diversity survey and quantitative PCR (qPCR) approaches. Twenty-three different samples from four distinct locations exhibiting a wide range of salinities (2% to 37%) and physical characteristics (water, salt crust, sediment, and biofilm) were examined. A total of 4,759 operational taxonomic units at the 0.03 (species-level) cutoff (OTU0.03s) belonging to 45 currently recognized genera were identified, with 8 to 43 genera (average, 30) identified per sample. In spite of the large number of genera detected per sample, only a limited number (i.e., 2 to 16) usually constituted the majority (≥80%) of encountered sequences. Halobacteria diversity showed a strong negative correlation to salinity (Pearson correlation coefficient = -0.92), and community structure analysis identified salinity, rather than the location or physical characteristics of the sample, as the most important factor shaping the Halobacteria community structure. The relative abundance of genera capable of biosynthesis of the compatible solute(s) trehalose or 2-sulfotrehalose decreased with increasing salinities (Pearson correlation coefficient = -0.80). Indeed, qPCR analysis demonstrated that the Halobacteria otsB (trehalose-6-phosphatase)/16S rRNA gene ratio decreases with increasing salinities (Pearson correlation coefficient = -0.87). The results highlight patterns and determinants of Halobacteria diversity at a previously unexplored ecosystem and indicate that genera lacking trehalose biosynthetic capabilities are more adapted to growth in and colonization of hypersaline (>25% salt) ecosystems than trehalose producers.


Assuntos
Biodiversidade , Halobacteriales/classificação , Halobacteriales/isolamento & purificação , Lagos/microbiologia , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Halobacteriales/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tunísia
15.
Braz. j. microbiol ; 43(4): 1595-1603, Oct.-Dec. 2012. graf, tab
Artigo em Inglês | LILACS | ID: lil-665847

RESUMO

Halophiles are excellent sources of enzymes that are not only salt stable but also can withstand and carry out reactions efficiently under extreme conditions. The aim of the study was to isolate and study the diversity among halophilic bacteria producing enzymes of industrial value. Screening of halophiles from various saline habitats of India led to isolation of 108 halophilic bacteria producing industrially important hydrolases (amylases, lipases and proteases). Characterization of 21 potential isolates by morphological, biochemical and 16S rRNA gene analysis found them related to Marinobacter, Virgibacillus, Halobacillus, Geomicrobium, Chromohalobacter, Oceanobacillus, Bacillus, Halomonas and Staphylococcus genera. They belonged to moderately halophilic group of bacteria exhibiting salt requirement in the range of 3-20%. There is significant diversity among halophiles from saline habitats of India. Preliminary characterization of crude hydrolases established them to be active and stable under more than one extreme condition of high salt, pH, temperature and presence of organic solvents. It is concluded that these halophilic isolates are not only diverse in phylogeny but also in their enzyme characteristics. Their enzymes may be potentially useful for catalysis under harsh operational conditions encountered in industrial processes. The solvent stability among halophilic enzymes seems a generic novel feature making them potentially useful in non-aqueous enzymology.


Assuntos
Ativadores de Enzimas/análise , Biodiversidade , Halobacteriales/isolamento & purificação , Hidrolases/análise , Hidrolases/isolamento & purificação , Solventes/análise , Catálise , Microbiologia Ambiental , Métodos
16.
Pol J Microbiol ; 61(2): 111-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23163210

RESUMO

The haloarchaeal diversity of a salt mine, a natural cave in central Anatolia, was investigated using convential microbiological and molecular biology methods. Eight halophilic archaeal isolates selected based on their colony morphology and whole cell protein profiles were taxonomically classified on the basis of their morphological, physiological, biochemical properties, polar lipid and protein profiles and 16S rDNA sequences. From the 16S rDNA sequences comparisons it was established that the isolates CH2, CH3 and CHC resembled Halorubrum saccharovorum by 98.8%, 98.9% and 99.5%, respectively. There was a 99.7% similarity between the isolate CH11 and Halobacterium noricense and 99.2% between the isolate CHA1 and Haloarcula argentinensis. The isolate CH8K and CH8B revealed a similarity rate of 99.8% and 99.3% to Halococcus dombrowskii, respectively. It was concluded that the isolates named CH2, CH3 and CHC were clustered in the genus Halorubrum and that CHA1 and CH7 in the genus Haloarcula, CH8K and CH8B in the genus Halococcus and CH11 in the genus Halobacterium.


Assuntos
Halobacteriales/classificação , Halobacteriales/isolamento & purificação , Filogenia , Cloreto de Sódio/metabolismo , DNA Ribossômico/genética , Halobacteriales/genética , Halobacteriales/metabolismo , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Turquia , Microbiologia da Água
17.
Braz. j. microbiol ; 43(3): 865-872, July-Sept. 2012. tab
Artigo em Inglês | LILACS | ID: lil-656646

RESUMO

Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.


Assuntos
Microbiologia Ambiental , Halobacteriales/isolamento & purificação , Hidrocarbonetos/análise , Hidrocarbonetos/isolamento & purificação , Petróleo/análise , Solos Salitrosos , Metodologia como Assunto
18.
Appl Environ Microbiol ; 78(5): 1332-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22179255

RESUMO

We investigated the phylogenetic diversity and community structure of members of the halophilic Archaea (order Halobacteriales) in five distinct sediment habitats that experience various levels of salinity and salinity fluctuations (sediments from Great Salt Plains and Zodletone Spring in Oklahoma, mangrove tree sediments in Puerto Rico, sediment underneath salt heaps in a salt-processing plant, and sediments from the Great Salt Lake northern arm) using Halobacteriales-specific 16S rRNA gene primers. Extremely diverse Halobacteriales communities were encountered in all habitats, with 27 (Zodletone) to 37 (mangrove) different genera identified per sample, out of the currently described 38 Halobacteriales genera. With the exception of Zodletone Spring, where the prevalent geochemical conditions are extremely inhospitable to Halobacteriales survival, habitats with fluctuating salinity levels were more diverse than permanently saline habitats. Sequences affiliated with the recently described genera Halogranum, Halolamina, Haloplanus, Halosarcina, and Halorientalis, in addition to the genera Halorubrum, Haloferax, and Halobacterium, were among the most abundant and ubiquitous genera, suggesting a wide distribution of these poorly studied genera in saline sediments. The Halobacteriales sediment communities analyzed in this study were more diverse than and completely distinct from communities from typical hypersaline water bodies. Finally, sequences unaffiliated with currently described genera represented a small fraction of the total Halobacteriales communities, ranging between 2.5% (Zodletone) to 7.0% (mangrove and Great Salt Lake). However, these novel sequences were characterized by remarkably high levels of alpha and beta diversities, suggesting the presence of an enormous, yet-untapped supply of novel Halobacteriales genera within the rare biosphere of various saline ecosystems.


Assuntos
Biota , Sedimentos Geológicos/microbiologia , Halobacteriales/classificação , Halobacteriales/isolamento & purificação , Filogenia , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ecossistema , Porto Rico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Estados Unidos
19.
Mikrobiologiia ; 80(4): 477-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073547

RESUMO

Lipases are an important class of enzymes which catalyze the hydrolysis of long chain triglycerides and constitute the most prominent group ofbiocatalysts for biotechnological applications. There are a number of lipases, produced by some halophilic microorganisms. In this study, some lipase producing bacteria from Maharlu salt lake located in south of Iran were isolated. All isolates were screened for true lipase activity on plates containing olive oil. The lipase activity was measured using titrimetric methods. Among thirty three isolates, thirteen strains demonstrating orange zone around colonies under UV light, were selected for identification using the molecular methods and some morphological characteristics. The bacterium Bacillus vallismortis BCCS 007 with 3.41 +/- 0.14 U/mL lipase activity was selected as the highest lipase producing isolate. This is the first report of isolation and molecular identification of lipase producing bacteria from Maharlu lake.


Assuntos
Bacillus/enzimologia , Halobacteriales/enzimologia , Halobacteriales/isolamento & purificação , Lipase/metabolismo , Bacillus/classificação , Irã (Geográfico) , Lagos/microbiologia
20.
Int J Syst Evol Microbiol ; 61(Pt 12): 2984-2995, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21296924

RESUMO

Members of the order Halobacteriales are obligate extreme halophiles that belong to the domain Archaea. The classification of the Halobacteriales currently relies on a polyphasic approach, which integrates phenotypic, genotypic and chemotaxonomic characterization. However, the most utilized genetic marker for phylogeny, the 16S rRNA gene, has multiple drawbacks for use with the Halobacteriales: the species of many genera exhibit large intragenic differences between multiple ribosomal RNA operons, the gene is too conserved to discriminate reliably at the species level and it appears to be the most frequently recombined gene between closely related species. Moreover, the Halobacteriales is a rapidly expanding group due to recent successes at cultivating novel strains from a diverse set of hypersaline environments; a fast, reliable, inexpensive, portable molecular method for discriminating species is required for their investigation. Recently, multilocus sequence analysis (MLSA) has been shown to be an effective tool for strain identification and taxonomic designation, even for those taxa that experience frequent lateral gene transfer and homologous recombination. In this study, MLSA was utilized for evolutionary and taxonomic investigation of the Halobacteriales. Efficacy of the MLSA approach was tested across a hierarchical gradient using 52 halobacterial strains, representing 33 species (including names without standing in nomenclature) and 14 genera. A subset of 21 strains from the genus Haloarcula was analysed separately to test the sensitivity and relevance of the MLSA approach among closely related strains and species. The results demonstrated that MLSA differentiated individual strains, reliably grouped strains into species and species into genera and identified potential novel species and also family-like relationships. This study demonstrates that MLSA is a rapid and informative molecular method that will probably accommodate strain analysis at any taxonomic level within the Halobacteriales.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Halobacteriales/classificação , Halobacteriales/isolamento & purificação , Tipagem de Sequências Multilocus/métodos , Filogenia , DNA Bacteriano/genética , DNA Ribossômico/genética , Halobacteriales/genética , Halobacteriales/metabolismo , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA