Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(15): 3265-3271.e4, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37473762

RESUMO

Multicellular communities of contiguous cells attached to solid surfaces called biofilms represent a common microbial strategy to improve resilience in adverse environments.1,2,3 While bacterial biofilms have been under intense investigation, whether archaeal biofilms follow similar assembly rules remains unknown.4,5Haloferax volcanii is an extremely halophilic euryarchaeon that commonly colonizes salt crust surfaces. H. volcanii produces long and thin appendages called type IV pili (T4Ps). These play a role in surface attachment and biofilm formation in both archaea and bacteria. In this study, we employed biophysical experiments to identify the function of T4Ps in H. volcanii biofilm morphogenesis. H. volcanii expresses not one but six types of major pilin subunits that are predicted to compose T4Ps. Non-invasive imaging of T4Ps in live cells using interferometric scattering (iSCAT) microscopy reveals that piliation varies across mutants expressing single major pilin isoforms. T4Ps are necessary to secure attachment of single cells to surfaces, and the adhesive strength of pilin mutants correlates with their level of piliation. In flow, H. volcanii forms clonal biofilms that extend in three dimensions. Notably, the expression of PilA2, a single pilin isoform, is sufficient to maintain levels of piliation, surface attachment, and biofilm formation that are indistinguishable from the wild type. Furthermore, we discovered that fluid flow stabilizes biofilm integrity; as in the absence of flow, biofilms tend to lose cohesion and disperse in a density-dependent manner. Overall, our results demonstrate that T4P-surface and possibly T4P-T4P interactions promote biofilm formation and integrity and that flow is a key factor regulating archaeal biofilm formation.


Assuntos
Proteínas de Fímbrias , Haloferax volcanii , Proteínas de Fímbrias/metabolismo , Haloferax volcanii/fisiologia , Fímbrias Bacterianas/metabolismo , Biofilmes
2.
mBio ; 12(4): e0141621, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253062

RESUMO

Transcriptional regulators that integrate cellular and environmental signals to control cell division are well known in bacteria and eukaryotes, but their existence is poorly understood in archaea. We identified a conserved gene (cdrS) that encodes a small protein and is highly transcribed in the model archaeon Haloferax volcanii. The cdrS gene could not be deleted, but CRISPR interference (CRISPRi)-mediated repression of the cdrS gene caused slow growth and cell division defects and changed the expression of multiple genes and their products associated with cell division, protein degradation, and metabolism. Consistent with this complex regulatory network, overexpression of cdrS inhibited cell division, whereas overexpression of the operon encoding both CdrS and a tubulin-like cell division protein (FtsZ2) stimulated division. Chromatin immunoprecipitation-DNA sequencing (ChIP-Seq) identified 18 DNA-binding sites of the CdrS protein, including one upstream of the promoter for a cell division gene, ftsZ1, and another upstream of the essential gene dacZ, encoding diadenylate cyclase involved in c-di-AMP signaling, which is implicated in the regulation of cell division. These findings suggest that CdrS is a transcription factor that plays a central role in a regulatory network coordinating metabolism and cell division. IMPORTANCE Cell division is a central mechanism of life and is essential for growth and development. Members of the Bacteria and Eukarya have different mechanisms for cell division, which have been studied in detail. In contrast, cell division in members of the Archaea is still understudied, and its regulation is poorly understood. Interestingly, different cell division machineries appear in members of the Archaea, with the Euryarchaeota using a cell division apparatus based on the tubulin-like cytoskeletal protein FtsZ, as in bacteria. Here, we identify the small protein CdrS as essential for survival and a central regulator of cell division in the euryarchaeon Haloferax volcanii. CdrS also appears to coordinate other cellular pathways, including synthesis of signaling molecules and protein degradation. Our results show that CdrS plays a sophisticated role in cell division, including regulation of numerous associated genes. These findings are expected to initiate investigations into conditional regulation of division in archaea.


Assuntos
Divisão Celular/genética , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , Fatores de Transcrição/genética , Transcrição Gênica , Haloferax volcanii/fisiologia , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Fatores de Transcrição/metabolismo
3.
J Bacteriol ; 203(12): e0065520, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33820797

RESUMO

Haloferax volcanii is a facultative anaerobic haloarchaeon that can grow using nitrate or dimethyl sulfoxide (DMSO) as a respiratory substrate under anaerobic conditions. Comparative transcriptome analysis of denitrifying and aerobic cells of H. volcanii indicated extensive changes in gene expression involving the activation of denitrification, suppression of DMSO respiration, and conversion of the heme biosynthetic pathway under denitrifying conditions. The anaerobic growth of H. volcanii by DMSO respiration was inhibited at nitrate concentrations of <1 mM, whereas nitrate-responsive growth inhibition was not observed in the ΔnarO mutant. A reporter assay demonstrated that the transcription of the dms operon was suppressed by nitrate. In contrast, the anaerobic growth of the ΔdmsR mutant by denitrification was little affected by the addition of DMSO. NarO has been identified as an activator of denitrification-related genes in response to anaerobic conditions, and here, we found that NarO is also involved in nitrate-responsive suppression of the dms operon. Nitrate-responsive suppression of DMSO respiration is known in several bacteria such as Escherichia coli and photosynthetic Rhodobacter species. This is the first report to show that a regulatory mechanism that suppresses DMSO respiration in response to nitrate exists not only in bacteria but also in haloarchaea. IMPORTANCE Haloferax volcanii can grow anaerobically by denitrification (nitrate respiration) or DMSO respiration. In facultative anaerobic bacteria that can grow by both nitrate respiration and DMSO respiration, nitrate respiration is preferentially induced when both nitrate and DMSO are available as the respiratory substrates. The results of transcriptome analysis, growth phenotyping, and reporter assays indicated that DMSO respiration is suppressed in response to nitrate in H. volcanii. The haloarchaeon-specific regulator NarO, which activates denitrification under anaerobic conditions, is suggested to be involved in the nitrate-responsive suppression of DMSO respiration.


Assuntos
Dimetil Sulfóxido/metabolismo , Haloferax volcanii/efeitos dos fármacos , Haloferax volcanii/fisiologia , Nitratos/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Anaerobiose , Proteínas Arqueais , Regulação da Expressão Gênica em Archaea/efeitos dos fármacos , Regulação da Expressão Gênica em Archaea/fisiologia , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Transcriptoma
4.
FEBS J ; 288(6): 2042-2062, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32905660

RESUMO

The genome of the halophilic archaeon Haloferax volcanii encodes more than 40 one-domain zinc finger µ-proteins. Only one of these, HVO_2753, contains four C(P)XCG motifs, suggesting the presence of two zinc binding pockets (ZBPs). Homologs of HVO_2753 are widespread in many euryarchaeota. An in frame deletion mutant of HVO_2753 grew indistinguishably from the wild-type in several media, but had a severe defect in swarming and in biofilm formation. For further analyses, the protein was produced homologously as well as heterologously in Escherichia coli. HVO_2753 was stable and folded in low salt, in contrast to many other haloarchaeal proteins. Only haloarchaeal HVO_2753 homologs carry a very hydrophilic N terminus, and NMR analysis showed that this region is very flexible and not part of the core structure. Surprisingly, both NMR analysis and a fluorimetric assay revealed that HVO_2753 binds only one zinc ion, despite the presence of two ZBPs. Notably, the analysis of cysteine to alanine mutant proteins by NMR as well by in vivo complementation revealed that all four C(P)XCG motifs are essential for folding and function. The NMR solution structure of the major conformation of HVO_2753 was solved. Unexpectedly, it was revealed that ZBP1 was comprised of C(P)XCG motifs 1 and 3, and ZBP2 was comprised of C(P)XCG motifs 2 and 4. There are several indications that ZBP2 is occupied by zinc, in contrast to ZBP1. To our knowledge, this study represents the first in-depth analysis of a zinc finger µ-protein in all three domains of life.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/genética , Haloferax volcanii/genética , Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Dedos de Zinco/genética , Sequência de Aminoácidos , Proteínas Arqueais/classificação , Biofilmes/crescimento & desenvolvimento , Cromatografia Líquida/métodos , Deleção de Genes , Regulação da Expressão Gênica em Archaea , Genoma Arqueal/genética , Haloferax volcanii/metabolismo , Haloferax volcanii/fisiologia , Espectrometria de Massas/métodos , Modelos Moleculares , Filogenia , Dobramento de Proteína , Homologia de Sequência de Aminoácidos
5.
Open Biol ; 10(12): 200293, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33259746

RESUMO

The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.


Assuntos
Reparo do DNA , Replicação do DNA , DNA Arqueal , Haloferax volcanii/fisiologia , Biomarcadores , Regulação da Expressão Gênica em Archaea , Recombinação Genética
6.
Curr Biol ; 30(24): 4956-4972.e4, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33125862

RESUMO

MinD proteins are well studied in rod-shaped bacteria such as E. coli, where they display self-organized pole-to-pole oscillations that are important for correct positioning of the Z-ring at mid-cell for cell division. Archaea also encode proteins belonging to the MinD family, but their functions are unknown. MinD homologous proteins were found to be widespread in Euryarchaeota and form a sister group to the bacterial MinD family, distinct from the ParA and other related ATPase families. We aimed to identify the function of four archaeal MinD proteins in the model archaeon Haloferax volcanii. Deletion of the minD genes did not cause cell division or size defects, and the Z-ring was still correctly positioned. Instead, one of the deletions (ΔminD4) reduced swimming motility and hampered the correct formation of motility machinery at the cell poles. In ΔminD4 cells, there is reduced formation of the motility structure and chemosensory arrays, which are essential for signal transduction. In bacteria, several members of the ParA family can position the motility structure and chemosensory arrays via binding to a landmark protein, and consequently these proteins do not oscillate along the cell axis. However, GFP-MinD4 displayed pole-to-pole oscillation and formed polar patches or foci in H. volcanii. The MinD4 membrane-targeting sequence (MTS), homologous to the bacterial MinD MTS, was essential for the oscillation. Surprisingly, mutant MinD4 proteins failed to form polar patches. Thus, MinD4 from H. volcanii combines traits of different bacterial ParA/MinD proteins.


Assuntos
Proteínas Arqueais/metabolismo , Quimiotaxia/fisiologia , Haloferax volcanii/fisiologia , Proteínas Arqueais/genética , Membrana Celular/metabolismo , Microscopia Intravital , Imagem com Lapso de Tempo
7.
Nat Commun ; 11(1): 3145, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561711

RESUMO

While many aspects of archaeal cell biology remain relatively unexplored, systems biology approaches like mass spectrometry (MS) based proteomics offer an opportunity for rapid advances. Unfortunately, the enormous amount of MS data generated often remains incompletely analyzed due to a lack of sophisticated bioinformatic tools and field-specific biological expertise for data interpretation. Here we present the initiation of the Archaeal Proteome Project (ArcPP), a community-based effort to comprehensively analyze archaeal proteomes. Starting with the model archaeon Haloferax volcanii, we reanalyze MS datasets from various strains and culture conditions. Optimized peptide spectrum matching, with strict control of false discovery rates, facilitates identifying > 72% of the reference proteome, with a median protein sequence coverage of 51%. These analyses, together with expert knowledge in diverse aspects of cell biology, provide meaningful insights into processes such as N-terminal protein maturation, N-glycosylation, and metabolism. Altogether, ArcPP serves as an invaluable blueprint for comprehensive prokaryotic proteomics.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Conjuntos de Dados como Assunto , Glicosilação , Espectrometria de Massas
8.
Mol Microbiol ; 114(3): 468-479, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32416640

RESUMO

Cells require a sensory system and a motility structure to achieve directed movement. Bacteria and archaea possess rotating filamentous motility structures that work in concert with the sensory chemotaxis system. This allows microorganisms to move along chemical gradients. The central response regulator protein CheY can bind to the motor of the motility structure, the flagellum in bacteria, and the archaellum in archaea. Both motility structures have a fundamentally different protein composition and structural organization. Yet, both systems receive input from the chemotaxis system. So far, it was unknown how the signal is transferred from the archaeal CheY to the archaellum motor to initiate motor switching. We applied a fluorescent microscopy approach in the model euryarchaeon Haloferax volcanii and shed light on the sequence order in which signals are transferred from the chemotaxis system to the archaellum. Our findings indicate that the euryarchaeal-specific ArlCDE are part of the archaellum motor and that they directly receive input from the chemotaxis system via the adaptor protein CheF. Hence, ArlCDE are an important feature of the archaellum of euryarchaea, are essential for signal transduction during chemotaxis and represent the archaeal switch complex.


Assuntos
Proteínas Arqueais/fisiologia , Quimiotaxia , Flagelos/fisiologia , Haloferax volcanii/fisiologia , Proteínas Quimiotáticas Aceptoras de Metil/fisiologia , Polaridade Celular , Movimento , Mutação , Organelas/metabolismo , Ligação Proteica , Transdução de Sinais
9.
Genes (Basel) ; 10(5)2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083437

RESUMO

Zinc finger domains are highly structured and can mediate interactions to DNA, RNA, proteins, lipids, and small molecules. Accordingly, zinc finger proteins are very versatile and involved in many biological functions. Eukaryotes contain a wealth of zinc finger proteins, but zinc finger proteins have also been found in archaea and bacteria. Large zinc finger proteins have been well studied, however, in stark contrast, single domain zinc finger µ-proteins of less than 70 amino acids have not been studied at all, with one single exception. Therefore, 16 zinc finger µ-proteins of the haloarchaeon Haloferax volcanii were chosen and in frame deletion mutants of the cognate genes were generated. The phenotypes of mutants and wild-type were compared under eight different conditions, which were chosen to represent various pathways and involve many genes. None of the mutants differed from the wild-type under optimal or near-optimal conditions. However, 12 of the 16 mutants exhibited a phenotypic difference under at least one of the four following conditions: Growth in synthetic medium with glycerol, growth in the presence of bile acids, biofilm formation, and swarming. In total, 16 loss of function and 11 gain of function phenotypes were observed. Five mutants indicated counter-regulation of a sessile versus a motile life style in H. volcanii. In conclusion, the generation and analysis of a set of deletion mutants demonstrated the high importance of zinc finger µ-proteins for various biological functions, and it will be the basis for future mechanistic insight.


Assuntos
Proteínas Arqueais/genética , Haloferax volcanii/genética , Dedos de Zinco/genética , Adaptação Fisiológica , Ácidos e Sais Biliares/farmacologia , Biofilmes , Deleção de Genes , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/fisiologia , Estresse Fisiológico
10.
mBio ; 10(3)2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31064826

RESUMO

Bacteria and archaea exhibit tactical behavior and can move up and down chemical gradients. This tactical behavior relies on a motility structure, which is guided by a chemosensory system. Environmental signals are sensed by membrane-inserted chemosensory receptors that are organized in large ordered arrays. While the cellular positioning of the chemotaxis machinery and that of the flagellum have been studied in detail in bacteria, we have little knowledge about the localization of such macromolecular assemblies in archaea. Although the archaeal motility structure, the archaellum, is fundamentally different from the flagellum, archaea have received the chemosensory machinery from bacteria and have connected this system with the archaellum. Here, we applied a combination of time-lapse imaging and fluorescence and electron microscopy using the model euryarchaeon Haloferax volcanii and found that archaella were specifically present at the cell poles of actively dividing rod-shaped cells. The chemosensory arrays also had a polar preference, but in addition, several smaller arrays moved freely in the lateral membranes. In the stationary phase, rod-shaped cells became round and chemosensory arrays were disassembled. The positioning of archaella and that of chemosensory arrays are not interdependent and likely require an independent form of positioning machinery. This work showed that, in the rod-shaped haloarchaeal cells, the positioning of the archaellum and of the chemosensory arrays is regulated in time and in space. These insights into the cellular organization of H. volcanii suggest the presence of an active mechanism responsible for the positioning of macromolecular protein complexes in archaea.IMPORTANCE Archaea are ubiquitous single cellular microorganisms that play important ecological roles in nature. The intracellular organization of archaeal cells is among the unresolved mysteries of archaeal biology. With this work, we show that cells of haloarchaea are polarized. The cellular positioning of proteins involved in chemotaxis and motility is spatially and temporally organized in these cells. This suggests the presence of a specific mechanism responsible for the positioning of macromolecular protein complexes in archaea.


Assuntos
Proteínas Arqueais/química , Polaridade Celular , Quimiotaxia , Haloferax volcanii/fisiologia , Citoplasma/química , Flagelos/fisiologia , Haloferax volcanii/ultraestrutura , Microscopia Eletrônica , Imagem com Lapso de Tempo
11.
Trends Microbiol ; 27(1): 86-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30459094

RESUMO

In this infographic we present the main tools available for the halophilic archaeon Haloferax volcanii, which have enabled successful research on its biology, including its genetics, proteostasis, cell surface structures, metabolic pathways, and adaptation to high salt environments. Isolated from the Dead Sea in 1975, Haloferax volcanii thrives in high salt environments and has emerged as an important archaeal model system. An extensive repertoire of genetic, molecular biological, and biochemical tools has been developed for this fast-growing, easily cultivated haloarchaeon, including expression vectors and gene-deletion strategies, including CRISPR. Its low mutation rate and ability to grow on defined media allow straightforward application of methods such as metabolic labeling, and the sequenced genome laid the foundation for transcriptomics and proteomics studies. These tools have allowed examination of key pathways such as transcription, noncoding RNAs, protein synthesis and degradation, protein glycosylation, motility, and biofilm formation. With the collaborative spirit of the H. volcanii community, this model system has become invaluable not only for enhancing our understanding of archaea but also for improving the development of biotech applications.


Assuntos
Genética Microbiana/métodos , Haloferax volcanii/genética , Haloferax volcanii/fisiologia , Biologia Molecular/métodos , Genômica/métodos , Haloferax volcanii/classificação , Haloferax volcanii/isolamento & purificação , Redes e Vias Metabólicas/genética , Proteômica/métodos
12.
J Bacteriol ; 200(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463600

RESUMO

Haloarchaea in their natural environment are exposed to hypersalinity, intense solar radiation, and desiccation, all of which generate high levels of oxidative stress. Previous work has shown that haloarchaea are an order of magnitude more resistant to oxidative stress than most mesophilic organisms. Despite this resistance, the pathways haloarchaea use to respond to oxidative stress damage are similar to those of nonresistant organisms, suggesting that regulatory processes might be key to their robustness. Recently, small regulatory noncoding RNAs (sRNAs) were discovered in Archaea under a variety of environmental conditions. We report here the transcriptional landscape and functional roles of sRNAs in the regulation of the oxidative stress response of the model haloarchaeon Haloferax volcanii Thousands of sRNAs, both intergenic and antisense, were discovered using strand-specific sRNA sequencing (sRNA-seq), comprising 25 to 30% of the total transcriptome under no-challenge and oxidative stress conditions, respectively. We identified hundreds of differentially expressed sRNAs in response to hydrogen peroxide-induced oxidative stress in H. volcanii The targets of a group of antisense sRNAs decreased in expression when these sRNAs were upregulated, suggesting that sRNAs are potentially playing a negative regulatory role on mRNA targets at the transcript level. Target enrichment of these antisense sRNAs included mRNAs involved in transposon mobility, chemotaxis signaling, peptidase activity, and transcription factors.IMPORTANCE While a substantial body of experimental work has been done to uncover the functions of small regulatory noncoding RNAs (sRNAs) in gene regulation in Bacteria and Eukarya, the functional roles of sRNAs in Archaea are still poorly understood. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in the haloarchaeon Haloferax volcanii Our work demonstrates that common principles for the response to a major cellular stress exist across the 3 domains of life while uncovering pathways that might be specific to the Archaea This work also underscores the relevance of sRNAs in adaptation to extreme environmental conditions.


Assuntos
Regulação da Expressão Gênica em Archaea , Haloferax volcanii/genética , Estresse Oxidativo , RNA Mensageiro/genética , Pequeno RNA não Traduzido/genética , Transcriptoma , Quimiotaxia/genética , Haloferax volcanii/fisiologia , Peróxido de Hidrogênio/farmacologia , RNA Antissenso/genética , RNA Arqueal/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética
13.
J Bacteriol ; 198(7): 1077-86, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26787768

RESUMO

UNLABELLED: The extremely halophilic archaeon Haloferax volcanii grows anaerobically by denitrification. A putative DNA-binding protein, NarO, is encoded upstream of the respiratory nitrate reductase gene of H. volcanii. Disruption of the narO gene resulted in a loss of denitrifying growth of H. volcanii, and the expression of the recombinant NarO recovered the denitrification capacity. A novel CXnCXCX7C motif showing no remarkable similarities with known sequences was conserved in the N terminus of the NarO homologous proteins found in the haloarchaea. Restoration of the denitrifying growth was not achieved by expression of any mutant NarO in which any one of the four conserved cysteines was individually replaced by serine. A promoter assay experiment indicated that the narO gene was usually transcribed, regardless of whether it was cultivated under aerobic or anaerobic conditions. Transcription of the genes encoding the denitrifying enzymes nitrate reductase and nitrite reductase was activated under anaerobic conditions. A putative cis element was identified in the promoter sequence of haloarchaeal denitrifying genes. These results demonstrated a significant effect of NarO, probably due to its oxygen-sensing function, on the transcriptional activation of haloarchaeal denitrifying genes. IMPORTANCE: H. volcanii is an extremely halophilic archaeon capable of anaerobic growth by denitrification. The regulatory mechanism of denitrification has been well understood in bacteria but remains unknown in archaea. In this work, we show that the helix-turn-helix (HTH)-type regulator NarO activates transcription of the denitrifying genes of H. volcanii under anaerobic conditions. A novel cysteine-rich motif, which is critical for transcriptional regulation, is present in NarO. A putative cis element was also identified in the promoter sequence of the haloarchaeal denitrifying genes.


Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Haloferax volcanii/fisiologia , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Anaerobiose , Proteínas Arqueais/genética , Desnitrificação/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Plasmídeos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica
14.
Biochimie ; 117: 129-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25754521

RESUMO

Members of the Sm protein family are important for the cellular RNA metabolism in all three domains of life. The family includes archaeal and eukaryotic Lsm proteins, eukaryotic Sm proteins and archaeal and bacterial Hfq proteins. While several studies concerning the bacterial and eukaryotic family members have been published, little is known about the archaeal Lsm proteins. Although structures for several archaeal Lsm proteins have been solved already more than ten years ago, we still do not know much about their biological function, however one can confidently propose that the archaeal Lsm proteins will also be involved in RNA metabolism. Therefore, we investigated this protein in the halophilic archaeon Haloferax volcanii. The Haloferax genome encodes a single Lsm protein, the lsm gene overlaps and is co-transcribed with the gene for the ribosomal L37.eR protein. Here, we show that the reading frame of the lsm gene contains a promoter which regulates expression of the overlapping rpl37R gene. This rpl37R specific promoter ensures high expression of the rpl37R gene in exponential growth phase. To investigate the biological function of the Lsm protein we generated a lsm deletion mutant that had the coding sequence for the Sm1 motif removed but still contained the internal promoter for the downstream rpl37R gene. The transcriptome of this deletion mutant was compared to the wild type transcriptome, revealing that several genes are down-regulated and many genes are up-regulated in the deletion strain. Northern blot analyses confirmed down-regulation of two genes. In addition, the deletion strain showed a gain of function in swarming, in congruence with the up-regulation of transcripts encoding proteins required for motility.


Assuntos
Proteínas Arqueais/genética , Deleção de Genes , Haloferax volcanii/genética , Motivos de Nucleotídeos/genética , Transcriptoma/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Northern Blotting , Regulação para Baixo , Regulação da Expressão Gênica em Archaea , Genoma Arqueal/genética , Haloferax volcanii/metabolismo , Haloferax volcanii/fisiologia , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , RNA Arqueal/genética , RNA Arqueal/metabolismo , Proteínas Ribossômicas/genética , Regulação para Cima
15.
BMC Biol ; 12: 65, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25124934

RESUMO

BACKGROUND: Archaea share a similar microbial lifestyle with bacteria, and not surprisingly then, also exist within matrix-enclosed communities known as biofilms. Advances in biofilm biology have been made over decades for model bacterial species, and include characterizations of social behaviors and cellular differentiation during biofilm development. Like bacteria, archaea impact ecological and biogeochemical systems. However, the biology of archaeal biofilms is only now being explored. Here, we investigated the development, composition and dynamics of biofilms formed by the haloarchaeon Haloferax volcanii DS2. RESULTS: Biofilms were cultured in static liquid and visualized with fluorescent cell membrane dyes and by engineering cells to express green fluorescent protein (GFP). Analysis by confocal scanning laser microscopy showed that H. volcanii cells formed microcolonies within 24 h, which developed into larger clusters by 48 h and matured into flake-like towers often greater than 100 µm in height after 7 days. To visualize the extracellular matrix, biofilms formed by GFP-expressing cells were stained with concanavalin A, DAPI, Congo red and thioflavin T. Stains colocalized with larger cellular structures and indicated that the extracellular matrix may contain a combination of polysaccharides, extracellular DNA and amyloid protein. Following a switch to biofilm growth conditions, a sub-population of cells differentiated into chains of long rods sometimes exceeding 25 µm in length, compared to their planktonic disk-shaped morphology. Time-lapse photography of static liquid biofilms also revealed wave-like social motility. Finally, we quantified gene exchange between biofilm cells, and found that it was equivalent to the mating frequency of a classic filter-based experimental method. CONCLUSIONS: The developmental processes, functional properties and dynamics of H. volcanii biofilms provide insight on how haloarchaeal species might persist, interact and exchange DNA in natural communities. H. volcanii demonstrates some biofilm phenotypes similar to bacterial biofilms, but also has interesting phenotypes that may be unique to this organism or to this class of organisms, including changes in cellular morphology and an unusual form of social motility. Because H. volcanii has one of the most advanced genetic systems for any archaeon, the phenotypes reported here may promote the study of genetic and developmental processes in archaeal biofilms.


Assuntos
Biofilmes , Transferência Genética Horizontal , Haloferax volcanii/fisiologia , Interações Microbianas , Haloferax volcanii/genética , Microscopia Confocal
16.
Extremophiles ; 18(2): 283-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343376

RESUMO

In eukaryotes, the 26S proteasome degrades ubiquitinylated proteins in an ATP-dependent manner. Archaea mediate a form of post-translational modification of proteins termed sampylation that resembles ubiquitinylation. Sampylation was identified in Haloferax volcanii, a moderate halophilic archaeon that synthesizes homologs of 26S proteasome subunits including 20S core particles and regulatory particle triple-A ATPases (Rpt)-like proteasome-associated nucleotidases (PAN-A/1 and PAN-B/2). To determine whether sampylated proteins associate with the Rpt subunit homologs, PAN-A/1 was purified to homogeneity from Hfx. volcanii and analyzed for its subunit stoichiometry, nucleotide-hydrolyzing activity and binding to sampylated protein targets. PAN-A/1 was found to be associated as a dodecamer (630 kDa) with a configuration in TEM suggesting a complex of two stacked hexameric rings. PAN-A/1 had high affinity for ATP (K m of ~0.44 mM) and hydrolyzed this nucleotide with a specific activity of 0.33 ± 0.1 µmol Pi/h per mg protein and maximum at 42 °C. PAN-A1 was stabilized by 2 M salt with a decrease in activity at lower concentrations of salt that correlated with dissociation of the dodecamer into trimers to monomers. Binding of PAN-A/1 to a sampylated protein was demonstrated by modification of a far Western blotting technique (derived from the standard Western blot method to detect protein-protein interaction in vitro) for halophilic proteins. Overall, our results support a model in which sampylated proteins associate with the PAN-A/1 AAA+ ATPase in proteasome-mediated proteolysis and/or protein remodeling and provide a method for assay of halophilic protein-protein interactions.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/enzimologia , Nucleotidases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Tolerância ao Sal , Proteínas Arqueais/química , Haloferax volcanii/fisiologia , Nucleotidases/química , Concentração Osmolar , Ligação Proteica , Multimerização Proteica
17.
Extremophiles ; 17(6): 973-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24037372

RESUMO

Many members of the Halobacteriaceae were found to produce halocins, molecules that inhibit the growth of other halophilic archaea. Halocin H4 that is produced by Haloferax mediterranei and inhibits the growth of Halobacterium salinarum is one of the best studied halocins to date. The gene encoding this halocin had been previously identified as halH4, located on one of Hfx. mediterranei megaplasmids. We generated a mutant of the halH4 gene and examined the killing ability of the Haloferax mediterranei halH4 mutant with respect to both Halobacterium salinarum and Haloferax volcanii. We showed that both wild-type Hfx. mediterranei and the halH4 mutant strain efficiently inhibited the growth of both species, indicating halocin redundancy. Surprisingly, the halH4 deletion mutant exhibited faster growth in standard medium than the wild type, and is likely to have a better response to several nucleotides, which could explain this phenotype.


Assuntos
Proteínas Arqueais/toxicidade , Halobacterium salinarum/efeitos dos fármacos , Haloferax mediterranei/química , Haloferax volcanii/efeitos dos fármacos , Mutação , Peptídeos/toxicidade , Proteínas Arqueais/genética , Proliferação de Células/efeitos dos fármacos , Genes Arqueais , Halobacterium salinarum/fisiologia , Haloferax mediterranei/genética , Haloferax volcanii/fisiologia , Peptídeos/genética
18.
Microbiology (Reading) ; 159(Pt 11): 2249-2258, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23989184

RESUMO

Motility driven by rotational movement of flagella allows bacteria and archaea to seek favourable conditions and escape toxic ones. However, archaeal flagella share structural similarities with bacterial type IV pili rather than bacterial flagella. The Haloferax volcanii genome contains two flagellin genes, flgA1 and flgA2. While FlgA1 has been shown to be a major flagellin, the function of FlgA2 is elusive. In this study, it was determined that although FlgA2 by itself does not confer motility to non-motile ΔflgA1 Hfx. volcanii, a subset of these mutant cells contains a flagellum. Consistent with FlgA2 being assembled into functional flagella, FlgA1 expressed from a plasmid can only complement a ΔflgA1 strain when co-expressed with chromosomal or plasmid-encoded FlgA2. Surprisingly, a mutant strain lacking FlgA2, but expressing chromosomally encoded FlgA1, is hypermotile, a phenotype that is accompanied by an increased number of flagella per cell, as well as an increased flagellum length. Site-directed mutagenesis resulting in early translational termination of flgA2 suggests that the hypermotility of the ΔflgA2 strain is not due to transcriptional regulation. This, and the fact that plasmid-encoded FlgA2 expression in a ΔflgA2 strain does not reduce its hypermotility, suggests a possible regulatory role for FlgA2 that depends on the relative abundance of FlgA1. Taken together, our results indicate that FlgA2 plays both structural and regulatory roles in Hfx. volcanii flagella-dependent motility. Future studies will build upon the data presented here to elucidate the significance of the hypermotility of this ΔflgA2 mutant, and will illuminate the regulation and function of archaeal flagella.


Assuntos
Flagelos/fisiologia , Flagelina/genética , Flagelina/metabolismo , Haloferax volcanii/fisiologia , Locomoção , Análise Mutacional de DNA , Flagelos/genética , Haloferax volcanii/genética , Mutagênese Sítio-Dirigida
19.
J Bacteriol ; 195(17): 3808-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23794623

RESUMO

Type IV pili play important roles in a wide array of processes, including surface adhesion and twitching motility. Although archaeal genomes encode a diverse set of type IV pilus subunits, the functions for most remain unknown. We have now characterized six Haloferax volcanii pilins, PilA[1-6], each containing an identical 30-amino-acid N-terminal hydrophobic motif that is part of a larger highly conserved domain of unknown function (Duf1628). Deletion mutants lacking up to five of the six pilin genes display no significant adhesion defects; however, H. volcanii lacking all six pilins (ΔpilA[1-6]) does not adhere to glass or plastic. Consistent with these results, the expression of any one of these pilins in trans is sufficient to produce functional pili in the ΔpilA[1-6] strain. PilA1His and PilA2His only partially rescue this phenotype, whereas ΔpilA[1-6] strains expressing PilA3His or PilA4His adhere even more strongly than the parental strain. Most surprisingly, expressing either PilA5His or PilA6His in the ΔpilA[1-6] strain results in microcolony formation. A hybrid protein in which the conserved N terminus of the mature PilA1His is replaced with the corresponding N domain of FlgA1 is processed by the prepilin peptidase, but it does not assemble functional pili, leading us to conclude that Duf1628 can be annotated as the N terminus of archaeal PilA adhesion pilins. Finally, the pilin prediction program, FlaFind, which was trained primarily on archaeal flagellin sequences, was successfully refined to more accurately predict pilins based on the in vivo verification of PilA[1-6].


Assuntos
Proteínas Arqueais/genética , Sequência Conservada , Proteínas de Fímbrias/genética , Haloferax volcanii/genética , Motivos de Aminoácidos , Adesão Celular , Deleção de Genes , Haloferax volcanii/crescimento & desenvolvimento , Haloferax volcanii/fisiologia , Estrutura Terciária de Proteína
20.
Mol Microbiol ; 88(6): 1164-75, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23651326

RESUMO

Cell surfaces are decorated by a variety of proteins that facilitate interactions with their environments and support cell stability. These secreted proteins are anchored to the cell by mechanisms that are diverse, and, in archaea, poorly understood. Recently published in silico data suggest that in some species a subset of secreted euryarchaeal proteins, which includes the S-layer glycoprotein, is processed and covalently linked to the cell membrane by enzymes referred to as archaeosortases. In silico work led to the proposal that an independent, sortase-like system for proteolysis-coupled, carboxy-terminal lipid modification exists in bacteria (exosortase) and archaea (archaeosortase). Here, we provide the first in vivo characterization of an archaeosortase in the haloarchaeal model organism Haloferax volcanii. Deletion of the artA gene (HVO_0915) resulted in multiple biological phenotypes: (a) poor growth, especially under low-salt conditions, (b) alterations in cell shape and the S-layer, (c) impaired motility, suppressors of which still exhibit poor growth, and (d) impaired conjugation. We studied one of the ArtA substrates, the S-layer glycoprotein, using detailed proteomic analysis. While the carboxy-terminal region of S-layer glycoproteins, consisting of a putative threonine-rich O-glycosylated region followed by a hydrophobic transmembrane helix, has been notoriously resistant to any proteomic peptide identification, we were able to identify two overlapping peptides from the transmembrane domain present in the ΔartA strain but not in the wild-type strain. This clearly shows that ArtA is involved in carboxy-terminal post-translational processing of the S-layer glycoprotein. As it is known from previous studies that a lipid is covalently attached to the carboxy-terminal region of the S-layer glycoprotein, our data strongly support the conclusion that archaeosortase functions analogously to sortase, mediating proteolysis-coupled, covalent cell surface attachment.


Assuntos
Conjugação Genética , Endopeptidases/metabolismo , Haloferax volcanii/enzimologia , Haloferax volcanii/fisiologia , Locomoção , Glicoproteínas de Membrana/metabolismo , Endopeptidases/genética , Deleção de Genes , Haloferax volcanii/genética , Haloferax volcanii/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...