Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397433

RESUMO

A strictly aerobic, Gram-stain-negative, rod-shaped, and motile bacterium, designated strain KMM 296, isolated from the coelomic fluid of the mussel Crenomytilus grayanus, was investigated in detail due to its ability to produce a highly active alkaline phosphatase CmAP of the structural family PhoA. A previous taxonomic study allocated the strain to the species Cobetia marina, a member of the family Halomonadaceae of the class Gammaproteobacteria. However, 16S rRNA gene sequencing showed KMM 296's relatedness to Cobetia amphilecti NRIC 0815T. The isolate grew with 0.5-19% NaCl at 4-42 °C and hydrolyzed Tweens 20 and 40 and L-tyrosine. The DNA G+C content was 62.5 mol%. The prevalent fatty acids were C18:1 ω7c, C12:0 3-OH, C18:1 ω7c, C12:0, and C17:0 cyclo. The polar lipid profile was characterized by the presence of phosphatidylethanolamine, phosphatidylglycerol, phosphatidic acid, and also an unidentified aminolipid, phospholipid, and a few unidentified lipids. The major respiratory quinone was Q-8. According to phylogenomic and chemotaxonomic evidence, and the nearest neighbors, the strain KMM 296 represents a member of the species C. amphilecti. The genome-based analysis of C. amphilecti NRIC 0815T and C. litoralis NRIC 0814T showed their belonging to a single species. In addition, the high similarity between the C. pacifica NRIC 0813T and C. marina LMG 2217T genomes suggests their affiliation to one species. Based on the rules of priority, C. litoralis should be reclassified as a later heterotypic synonym of C. amphilecti, and C. pacifica is a later heterotypic synonym of C. marina. The emended descriptions of the species C. amphilecti and C. marina are also proposed.


Assuntos
Fosfatase Alcalina , Halomonadaceae , Adolescente , Criança , Humanos , Fosfatase Alcalina/genética , RNA Ribossômico 16S/genética , Halomonadaceae/genética , Ácidos Graxos/química , Corantes , Filogenia , DNA Bacteriano/genética , DNA Bacteriano/química
2.
Sci Total Environ ; 846: 157458, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863571

RESUMO

There are few biological indicators for freshwater systems subjected to high chloride levels. Freshwater systems receive many forms of chloride such as road salts (e.g., NaCl, CaCl2, MgCl2), fertilizers (e.g., KCl), and year-round water softener pollution. The goal our study was to investigate Halomonadaceae populations as prospective biological indicators of chloride-impacted freshwaters. The bacterial family Halomonadaceae are halophiles that generally require the presence of salt to survive, which make them an attractive candidate in determining chloride impaired areas. Field sediment surveys assessed how salt tolerant and halophilic bacteria abundance corresponded to chloride and conductivity measurements. Colony forming unit (CFU) counts on modified M9 6% NaCl plates (w/v) at urbanized sites compared to the rural sites had highest counts during winter and spring when chloride concentrations were also highest. Select isolates identified as Halomonadaceae through 16S rRNA sequencing were kept as active cultures to determine the NaCl concentration and temperature preference that resulted in the isolates optimal growth. Isolates tested under 5 °C (cold) grew optimally in 2 % NaCl (w/v), whereas under 18 °C (warm), isolates showed optimal growth at 6 % NaCl. The majority of isolates had maximum growth in the warmer temperature, however, select isolates grew better in the cold temperature. Culture-independent methods were used and identified Halomonadaceae were widespread and permeant members of the microbial community in a Lake Michigan drainage basin. Quantitative polymerase chain reaction (qPCR) targeting Halomonadaceae genera demonstrated that abundance varied by site, but overall were present throughout the year. However, community sequencing revealed there were a large relative proportion of specific Halomonadaceae populations present in winter versus summer. Methods targeting salt tolerant bacteria and specific members of Halomonadaceae appears to be a promising approach to assess chloride-impacted areas to better understand the long-term ecological impacts as we continue to salinize freshwater resources.


Assuntos
Cloretos/metabolismo , Halomonadaceae/metabolismo , Lagos/química , Biomarcadores Ambientais , Halomonadaceae/genética , Halomonadaceae/isolamento & purificação , Lagos/microbiologia , Michigan , Estudos Prospectivos , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Cloreto de Sódio/metabolismo , Temperatura
3.
Mol Ecol ; 31(9): 2611-2624, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243711

RESUMO

Horizontally transferred genes (HTGs) play a key role in animal symbiosis, and some horizontally transferred genes or proteins are highly expressed in specialized host cells (bacteriocytes). However, it is not clear how HTGs are regulated, but microRNAs (miRNAs) are prime candidates given their previously demonstrated roles in symbiosis and impacts on the expression of host genes. A horizontally acquired PanBC that is highly expressed in whitefly bacteriocytes can cooperate with an obligate symbiont Portiera for pantothenate production, facilitating whitefly performance and Portiera titre. Here, we found that a whitefly miRNA, novel-m0780-5p, was up-regulated and its target panBC was down-regulated in Portiera-eliminated whiteflies. This miRNA was located in the cytoplasmic region of whitefly bacteriocytes. Injection of novel-m0780-5p agomir reduced the expression of PanBC in whitefly bacteriocytes, while injection of novel-m0780-5p antagomir enhanced PanBC expression. Agomir injection also reduced the pantothenate level, Portiera titre and whitefly performance. Supplementation with pantothenate restored Portiera titre and the fitness of agomir-injected whiteflies. Thus, we demonstrate that a whitefly miRNA regulates panBC-mediated host-symbiont collaboration required for pantothenate synthesis, benefiting the whitefly-Portiera symbiosis. Both panBC and novel-m0780-5p are present in the genomes of six Bemisia tabaci species. The expression of a novel miRNA in multiple B. tabaci species suggests that the miRNA evolved after panBC acquisition, and allowed this gene to be more tightly regulated. Our discovery provides the first account of a HTG being regulated by a miRNA from the host genome, and suggests key roles for interactions between miRNAs and HTGs in the functioning of symbiosis.


Assuntos
Halomonadaceae , Hemípteros , MicroRNAs , Animais , Halomonadaceae/genética , Hemípteros/genética , MicroRNAs/genética , Simbiose/genética
4.
Appl Environ Microbiol ; 88(3): e0208921, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34818107

RESUMO

Nutritional symbionts are restricted to specialized host cells called bacteriocytes in various insect orders. These symbionts can provide essential nutrients to the host. However, the cellular mechanisms underlying the regulation of these insect-symbiont metabolic associations remain largely unclear. The whitefly Bemisia tabaci MEAM1 hosts "Candidatus Portiera aleyrodidarum" (here, "Ca. Portiera") and "Candidatus Hamiltonella defensa" (here, "Ca. Hamiltonella") bacteria in the same bacteriocyte. In this study, the induction of autophagy by chemical treatment and gene silencing decreased symbiont titers and essential amino acid (EAA) and B vitamin contents. In contrast, the repression of autophagy in bacteriocytes via Atg8 silencing increased symbiont titers, and amino acid and B vitamin contents. Furthermore, dietary supplementation with non-EAAs or B vitamins alleviated autophagy in whitefly bacteriocytes, elevated TOR (target of rapamycin) expression, and increased symbiont titers. TOR silencing restored symbiont titers in whiteflies after dietary supplementation with B vitamins. These data suggest that "Ca. Portiera" and "Ca. Hamiltonella" evade autophagy of the whitefly bacteriocytes by activating the TOR pathway via providing essential nutrients. Taken together, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. Therefore, this study reveals that autophagy is an important cellular basis for bacteriocyte evolution and symbiosis persistence in whiteflies. The whitefly symbiosis unravels the interactions between cellular and metabolic functions of bacteriocytes. IMPORTANCE Nutritional symbionts, which are restricted to specialized host cells called bacteriocytes, can provide essential nutrients for many hosts. However, the cellular mechanisms of regulation of animal-symbiont metabolic associations have been largely unexplored. Here, using the whitefly-"Ca. Portiera"/"Ca. Hamiltonella" endosymbiosis, we demonstrate autophagy regulates the symbiont titers and thereby alters the essential amino acid and B vitamin contents. For persistence in the whitefly bacteriocytes, "Ca. Portiera" and "Ca. Hamiltonella" alleviate autophagy by activating the TOR (target of rapamycin) pathway through providing essential nutrients. Therefore, we demonstrate that autophagy plays a critical role in regulating the metabolic interactions between the whitefly and two intracellular symbionts. This study also provides insight into the cellular basis of bacteriocyte evolution and symbiosis persistence in the whitefly. The mechanisms underlying the role of autophagy in whitefly symbiosis could be widespread in many insect nutritional symbioses. These findings provide a new avenue for whitefly control via regulating autophagy in the future.


Assuntos
Halomonadaceae , Hemípteros , Complexo Vitamínico B , Animais , Autofagia , Halomonadaceae/genética , Hemípteros/microbiologia , Simbiose/genética , Complexo Vitamínico B/metabolismo
5.
Microb Cell Fact ; 20(1): 225, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930259

RESUMO

BACKGROUND: Several members of the bacterial Halomonadacea family are natural producers of polyhydroxyalkanoates (PHA), which are promising materials for use as biodegradable bioplastics. Type-strain species of Cobetia are designated PHA positive, and recent studies have demonstrated relatively high PHA production for a few strains within this genus. Industrially relevant PHA producers may therefore be present among uncharacterized or less explored members. In this study, we characterized PHA production in two marine Cobetia strains. We further analyzed their genomes to elucidate pha genes and metabolic pathways which may facilitate future optimization of PHA production in these strains. RESULTS: Cobetia sp. MC34 and Cobetia marina DSM 4741T were mesophilic, halotolerant, and produced PHA from four pure substrates. Sodium acetate with- and without co-supplementation of sodium valerate resulted in high PHA production titers, with production of up to 2.5 g poly(3-hydroxybutyrate) (PHB)/L and 2.1 g poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/L in Cobetia sp. MC34, while C. marina DSM 4741T produced 2.4 g PHB/L and 3.7 g PHBV/L. Cobetia marina DSM 4741T also showed production of 2.5 g PHB/L from glycerol. The genome of Cobetia sp. MC34 was sequenced and phylogenetic analyses revealed closest relationship to Cobetia amphilecti. PHA biosynthesis genes were located at separate loci similar to the arrangement in other Halomonadacea. Further genome analyses revealed some differences in acetate- and propanoate metabolism genes between the two strains. Interestingly, only a single PHA polymerase gene (phaC2) was found in Cobetia sp. MC34, in contrast to two copies (phaC1 and phaC2) in C. marina DSM 4741T. In silico analyses based on phaC genes show that the PhaC2 variant is conserved in Cobetia and contains an extended C-terminus with a high isoelectric point and putative DNA-binding domains. CONCLUSIONS: Cobetia sp. MC34 and C. marina DSM 4741T are natural producers of PHB and PHBV from industrially relevant pure substrates including acetate. However, further scale up, optimization of growth conditions, or use of metabolic engineering is required to obtain industrially relevant PHA production titers. The putative role of the Cobetia PhaC2 variant in DNA-binding and the potential implications remains to be addressed by in vitro- or in vivo methods.


Assuntos
Halomonadaceae/genética , Halomonadaceae/metabolismo , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/biossíntese , Acetatos/metabolismo , Proteínas de Bactérias/metabolismo , Filogenia , Poli-Hidroxialcanoatos/análise
6.
Sci Rep ; 11(1): 6943, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767228

RESUMO

We report the isolation a halophilic bacterium that degrades both aromatic and aliphatic hydrocarbons as the sole sources of carbon at high salinity from produced water. Phylogenetic analysis of 16S rRNA-gene sequences shows the isolate is a close relative of Modicisalibacter tunisiensis isolated from an oil-field water in Tunisia. We designate our isolate as Modicisalibacter sp. strain Wilcox. Genome analysis of strain Wilcox revealed the presence of a repertoire of genes involved in the metabolism of aliphatic and aromatic hydrocarbons. Laboratory culture studies corroborated the predicted hydrocarbon degradation potential. The strain degraded benzene, toluene, ethylbenzene, and xylenes at salinities ranging from 0.016 to 4.0 M NaCl, with optimal degradation at 1 M NaCl. Also, the strain degraded phenol, benzoate, biphenyl and phenylacetate as the sole sources of carbon at 2.5 M NaCl. Among aliphatic compounds, the strain degraded n-decane and n-hexadecane as the sole sources of carbon at 2.5 M NaCl. Genome analysis also predicted the presence of many heavy metal resistance genes including genes for metal efflux pumps, transport proteins, and enzymatic detoxification. Overall, due to its ability to degrade many hydrocarbons and withstand high salt and heavy metals, strain Wilcox may prove useful for remediation of produced waters.


Assuntos
Halomonadaceae/isolamento & purificação , Hidrocarbonetos/metabolismo , Campos de Petróleo e Gás/microbiologia , Biodegradação Ambiental , Genoma Bacteriano , Halomonadaceae/genética , Halomonadaceae/metabolismo , Resíduos Industriais , Poluição por Petróleo
7.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525723

RESUMO

Marine bacteria of the genus Cobetia, which are promising sources of unique enzymes and secondary metabolites, were found to be complicatedly identified both by phenotypic indicators due to their ecophysiology diversity and 16S rRNA sequences because of their high homology. Therefore, searching for the additional methods for the species identification of Cobetia isolates is significant. The species-specific coding sequences for the enzymes of each functional category and different structural families were applied as additional molecular markers. The 13 closely related Cobetia isolates, collected in the Pacific Ocean from various habitats, were differentiated by the species-specific PCR patterns. An alkaline phosphatase PhoA seems to be a highly specific marker for C. amphilecti. However, the issue of C. amphilecti and C. litoralis, as well as C. marina and C. pacifica, belonging to the same or different species remains open.


Assuntos
Bactérias/genética , Halomonadaceae/classificação , Halomonadaceae/genética , Fosfatase Alcalina/genética , DNA Bacteriano/genética , Ecossistema , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
8.
Genome Biol Evol ; 12(11): 2107-2124, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33049039

RESUMO

Whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) are a superfamily of small phloem-feeding insects. They rely on their primary endosymbionts "Candidatus Portiera aleyrodidarum" to produce essential amino acids not present in their diet. Portiera has been codiverging with whiteflies since their origin and therefore reflects its host's evolutionary history. Like in most primary endosymbionts, the genome of Portiera stays stable across the Aleyrodidae superfamily after millions of years of codivergence. However, Portiera of the whitefly Bemisia tabaci has lost the ancestral genome order, reflecting a rare event in the endosymbiont evolution: the appearance of genome instability. To gain a better understanding of Portiera genome evolution, identify the time point in which genome instability appeared and contribute to the reconstruction of whitefly phylogeny, we developed a new phylogenetic framework. It targeted five Portiera genes and determined the presence of the DNA polymerase proofreading subunit (dnaQ) gene, previously associated with genome instability, and two alternative gene rearrangements. Our results indicated that Portiera gene sequences provide a robust tool for studying intergenera phylogenetic relationships in whiteflies. Using these new framework, we found that whitefly species from the Singhiella, Aleurolobus, and Bemisia genera form a monophyletic tribe, the Aleurolobini, and that their Portiera exhibit genome instability. This instability likely arose once in the common ancestor of the Aleurolobini tribe (at least 70 Ma), drawing a link between the appearance of genome instability in Portiera and the switch from multibacteriocyte to a single-bacteriocyte mode of inheritance in this tribe.


Assuntos
Evolução Biológica , DNA Polimerase III/genética , Instabilidade Genômica , Halomonadaceae/genética , Hemípteros/microbiologia , Acidose , Animais , Genoma Bacteriano , Halomonadaceae/metabolismo , Simbiose
9.
Sci Rep ; 10(1): 10920, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616809

RESUMO

Alginate-degrading bacteria or alginate lyases can be used to oligomerize alginate. In this study, an alginate-degrading bacterium with high alginolytic activity was successfully screened by using Sargassum fusiforme sludge. When the strain was grown on a plate containing sodium alginate, the transparent ring diameter (D) was 2.2 cm and the ratio (D/d) of transparent ring diameter to colony diameter (d) was 8.8. After 36 h in culture at a temperature of 28 °C shaken at 150 r/min, the enzymatic activity of the fermentation supernatant reached 160 U/mL, and the enzymatic activity of the bacterial precipitate harvested was 2,645 U/mL. The strain was named Cobetia sp. cqz5-12. Its genome is circular in shape, 4,209,007 bp in size, with a 62.36% GC content. It contains 3,498 predicted coding genes, 72 tRNA genes, and 21 rRNA genes. The functional annotations for the coding genes demonstrated that there were 181 coding genes in the genome related to carbohydrate transport and metabolism and 699 coding genes with unknown functions. Three putative coding genes, alg2107, alg2108 and alg2112, related to alginate degradation were identified by analyzing the carbohydrate active enzyme (CAZy) database. Moreover, proteins Alg2107 and Alg2112 were successfully expressed and exhibited alginate lyase activity.


Assuntos
Genoma Bacteriano , Halomonadaceae/genética , Alginatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , DNA Circular/genética , Ontologia Genética , Halomonadaceae/enzimologia , Halomonadaceae/crescimento & desenvolvimento , Halomonadaceae/isolamento & purificação , Filogenia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/isolamento & purificação , Sargassum/microbiologia , Sequenciamento Completo do Genoma
10.
Arch Microbiol ; 202(1): 143-151, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31535159

RESUMO

A gram-stain-negative, aerobic, non-spore-forming, rod-shaped, non-motile bacterium strain R4HLG17T was isolated from Tamarix ramosissima roots growing in Kumtag desert. The strain grew at salinities of 0-16% (w/v) NaCl (optimum 5-6%), pH 5-9 (optimum 7) and at 16-45 °C. Based on 16S rRNA gene sequence similarity, strain R4HLG17T belonged to the family Halomonadaceae and was most closely related to Halomonas lutea DSM 23508T(95.1%), followed by Halotalea alkalilenta AW-7T(94.8%), Salinicola acroporae S4-41T(94.8%), Salinicola halophilus CG4.1T(94.6%), and Larsenimonas salina M1-18T(94.4%). Multilocus sequence analysis (MLSA) based on the partial sequences of 16S rRNA, atpA, gyrB, rpoD, and secA genes indicated that the strain R4HLG17T formed an independent and monophyletic branch related to other genera of Halomonadaceae, supporting its placement as a new genus in this family. The draft genome of strain R4HLG17T was 3.6 Mb with a total G + C content of 55.1%. The average nucleotide identity to Halomonas lutea DSM 23508T was 83.5%. Q-9 was detected as the major respiratory quinone and summed feature 8 (C18:1ω7c/C18:1ω6c), summed feature 3 (C16:1ω7c/C16:1ω6c), and C16:0 as predominant cellular fatty acids. On the basis of chemotaxonomic, phylogenetic, and phenotypic evidence, strain R4HLG17T is concluded to represent a novel species of a new genus within Halomonadaceae, for which the name Phytohalomonas tamaricis gen. nov., sp. nov., is proposed. The type strain is R4HLG17T (=ACCC 19929T=KCTC 52415T).


Assuntos
Halomonadaceae/classificação , Raízes de Plantas/microbiologia , Tamaricaceae/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Clima Desértico , Ácidos Graxos/análise , Halomonadaceae/química , Halomonadaceae/genética , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
11.
Mar Drugs ; 17(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766749

RESUMO

A novel extracellular alkaline phosphatase/phosphodiesterase from the structural protein family PhoD that encoded by the genome sequence of the marine bacterium Cobetia amphilecti KMM 296 (CamPhoD) has been expressed in Escherichia coli cells. The calculated molecular weight, the number of amino acids, and the isoelectric point (pI) of the mature protein's subunit are equal to 54832.98 Da, 492, and 5.08, respectively. The salt-tolerant, bimetal-dependent enzyme CamPhoD has a molecular weight of approximately 110 kDa in its native state. CamPhoD is activated by Co2+, Mg2+, Ca2+, or Fe3+ at a concentration of 2 mM and exhibits maximum activity in the presence of both Co2+ and Fe3+ ions in the incubation medium at pH 9.2. The exogenous ions, such as Zn2+, Cu2+, and Mn2+, as well as chelating agents EDTA and EGTA, do not have an appreciable effect on the CamPhoD activity. The temperature optimum for the CamPhoD activity is 45 °C. The enzyme catalyzes the cleavage of phosphate mono- and diester bonds in nucleotides, releasing inorganic phosphorus from p-nitrophenyl phosphate (pNPP) and guanosine 5'-triphosphate (GTP), as determined by the Chen method, with rate approximately 150- and 250-fold higher than those of bis-pNPP and 5'-pNP-TMP, respectively. The Michaelis-Menten constant (Km), Vmax, and efficiency (kcat/Km) of CamPhoD were 4.2 mM, 0.203 mM/min, and 7988.6 S-1/mM; and 6.71 mM, 0.023 mM/min, and 1133.0 S-1/mM for pNPP and bis-pNPP as the chromogenic substrates, respectively. Among the 3D structures currently available, in this study we found only the low identical structure of the Bacillus subtilis enzyme as a homologous template for modeling CamPhoD, with a new architecture of the phosphatase active site containing Fe3+ and two Ca2+ ions. It is evident that the marine bacterial phosphatase/phosphidiesterase CamPhoD is a new structural member of the PhoD family.


Assuntos
Fosfatase Alcalina/química , Organismos Aquáticos/enzimologia , Halomonadaceae/enzimologia , Fosfodiesterase I/química , Fosfatase Alcalina/genética , Fosfatase Alcalina/isolamento & purificação , Fosfatase Alcalina/metabolismo , Organismos Aquáticos/genética , Ensaios Enzimáticos , Halomonadaceae/genética , Fosfodiesterase I/genética , Fosfodiesterase I/isolamento & purificação , Fosfodiesterase I/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
12.
Int J Syst Evol Microbiol ; 68(9): 2800-2806, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30010522

RESUMO

Two endophytic bacteria (EAod3T and EAod7T) were isolated from the aerial part of plants of Arthrocnemum macrostachyum growing in the Odiel marshes (Huelva, Spain). Phylogenetic analysis based on 16S rRNA gene sequences indicated their affiliation to the genus Kushneria. 16S rRNA gene sequences of strains EAod3T and EAod7T showed the highest similarity to Kushneria marisflavi DSM 15357T (99.0 and 97.6 %, respectively). Digital DNA-DNA hybridization studies between the draft genomes of strain EAod3T and K. marisflavi DSM 15357T corresponded to 28.5 % confirming the novel lineage of strain EAod3T in the genus Kushneria. Cells of both strains were Gram-staining-negative, aerobic and motile rods able to grow at 4-37 °C, at pH 5.0-8.0 and tolerate 0.5-25 % NaCl (w/v). They presented ubiquinone Q9 and C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c as the major fatty acids. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on the phenotypic and phylogenetic results, strains EAod3T (=CECT 9073T=LMG 29856T) and EAod7T (=CECT 9075T=LMG 29858T) are proposed as new representatives of the genus Kushneria, and the proposed names are Kushneria phyllosphaerae sp. nov. and Kushneria endophytica sp. nov., respectively. The whole genome sequence of strain EAod3T has a total length of 3.8 Mbp and a G+C content of 59.3 mol%.


Assuntos
Chenopodiaceae/microbiologia , Halomonadaceae/classificação , Filogenia , Plantas Tolerantes a Sal/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Halomonadaceae/genética , Halomonadaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 67(9): 3576-3582, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28866997

RESUMO

A halophilic bacterial strain, X49T, was isolated from the Korean traditional salt-fermented seafood Daemi-jeot. X49T was an obligately aerobic, Gram-stain-negative, motile, oval or rod-shaped (0.5-1.0×1.2-3.2 µm) bacterium. After 2 days of growth, colonies on Marine agar medium were orange and circular with entire margins. X49T growth was detected at 10-37 °C and pH 4.5-8.5 in the presence of 0-26 % (w/v) NaCl. The 16S rRNA gene sequence of strain X49T was most similar to that of the type strain of Kushneria marisflavi SW32T and shared a sequence similarity of 94.7-98.6 % with type strains of species of the genus Kushneria. The predominant fatty acids were C16 : 0, C18 : 1ω7c and C12 : 0 3OH. The major isoprenoid quinone was Q9 (93 %), and minor quinones were Q8 (4 %) and Q10 (3 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylserine, two unidentified aminolipids, two unidentified phospholipids and two unidentified lipids. The genomic DNA G+C content was 59.1 mol%. The level of the ANI value between strain X49T and K. marisflavi SW32T, the most closely related species of the genus Kushneria, was 89.32 %. Based on the low ANI value, strain X49T and its reference strains represent genotypically distinct species. Based on this polyphasic taxonomic analysis, strain X49T represents a novel species of the genus Kushneria. The name Kushneria konosiri sp. nov. is proposed and the type strain is X49T (=KACC 14623T=JCM 16805T).


Assuntos
Microbiologia de Alimentos , Halomonadaceae/classificação , Filogenia , Alimentos Marinhos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fermentação , Halomonadaceae/genética , Halomonadaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Syst Evol Microbiol ; 67(6): 1813-1819, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28604335

RESUMO

A Gram-stain-negative, rod-shaped bacterium, strain F01T, was isolated from leaves of Tamarix chinensis Lour. The isolate grew optimally at 30 °C, at pH 7.0 and with 5.0 % (w/v) NaCl, and showed a high tolerance to manganese, lead, nickel, ferrous ions and copper ions. The major fatty acids were C18 : 1ω7c and C16 : 0, and the predominant respiratory quinone was Q-9. Polar lipids were dominated by diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, unidentified aminoglycolipids and phospholipids. The DNA G+C content was 65.8 %. Based on multilocus phylogenetic analysis, strain F01T belonged to the genus Salinicola, with highest 16S rRNA gene sequence similarity to Salinicola peritrichatus CGMCC 1.12381T (97.7 %). The level of DNA-DNA hybridization between strain F01T and closely related Salinicola strains was well below 70 %. According to the phenotypic, genetic and chemotaxonomic data, strain F01T is considered to represent a novel species in the genus Salinicola, for which the name Salinicola tamaricis sp. nov. is proposed. The type strain is F01T (=CCTCC AB 2015304T=KCTC 42855T).


Assuntos
Halomonadaceae/classificação , Filogenia , Plantas Tolerantes a Sal/microbiologia , Tamaricaceae/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Halomonadaceae/genética , Halomonadaceae/isolamento & purificação , Metais , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Environ Microbiol ; 19(9): 3439-3449, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28618183

RESUMO

The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field-collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3-5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host-symbionts interactions between D. citri and its associated endosymbionts.


Assuntos
Citrus/parasitologia , Halomonadaceae/crescimento & desenvolvimento , Hemípteros/microbiologia , Simbiose/fisiologia , Wolbachia/crescimento & desenvolvimento , Animais , China , Halomonadaceae/genética , Temperatura Alta , Reação em Cadeia da Polimerase em Tempo Real , Wolbachia/genética
16.
FEMS Microbiol Ecol ; 93(6)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431082

RESUMO

All cockroach species, except one, harbor the endosymbiont Blattabacterium, transmitted from females to embryos. Adult cockroaches acquire non-Blattabacterium bacteria as part of their gut microbiota over time, but our knowledge of the possible transmission of these non-Blattabacterium bacteria from females to embryos is rudimentary. We characterized the gut microbiota of gravid viviparous Diploptera punctata females and the non-Blattabacterium microbiota of associated developing embryos, as well as the gut microbiota of non-gravid females, and the microbiota of orphan embryos (females not included), following high-throughput sequencing of the 16S rRNA gene to assess bacterial transference. We determined significant differences in community composition between gravid females and associated embryos and overall greater similarity in community composition among embryos than adult females. Results suggest various routes of transference of bacteria from females or the environment to embryos. The bacterial families Halomonadaceae and Shewanellaceae were more abundant in embryos than in gravid females. The functional relevance of these families remains to be elucidated, but provisioning of amino acids deficient in the brood sac secretion is a possibility. Overall, our results highlight the need for further studies investigating the uptake and selective screening of microbes by D. punctata embryos, as well as their functions.


Assuntos
Infecções Bacterianas/transmissão , Bacteroidetes/genética , Baratas/microbiologia , Microbioma Gastrointestinal/genética , Animais , Bacteroidetes/isolamento & purificação , Feminino , Halomonadaceae/genética , Halomonadaceae/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Shewanella/genética , Shewanella/isolamento & purificação
17.
Pest Manag Sci ; 73(10): 2090-2099, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28374537

RESUMO

BACKGROUND: Diaphorina citri is the vector of 'Candidatus Liberibacter asiaticus', the most widespread pathogen associated huanglongbing, the most serious disease of citrus. To enhance our understanding of the distribution and origin of the psyllid, we investigated the genetic diversity and population structures of 24 populations in Asia and one from Florida based on the mtCOI gene. Simultaneously, genetic diversity and population structures of the primary endosymbiont (P-endosymbiont) 'Candidatus Carsonella ruddii' and secondary endosymbiont (S-endosymbiont) 'Candidatus Profftella armatura' of D. citri were determined with the housekeeping genes. RESULT: AMOVA analysis indicated that populations of D. citri and its endosymbionts in east and south-east Asia were genetically distinct from populations in Pakistan and Florida. Furthermore, P-endosymbiont populations displayed a strong geographical structure across east and south-east Asia, while low genetic diversity indicated the absence of genetic structure among the populations of D. citri and its S-endosymbiont across these regions. CONCLUSION: The 'Ca. C. ruddii' is more diverse and structured than the D. citri and the 'Ca. P. armatura' across east and south-east Asia. Multiple introductions of the psyllid have occurred in China. Management application for controlling the pest is proposed based on the genetic information of D. citri and its endosymbionts. © 2017 Society of Chemical Industry.


Assuntos
Betaproteobacteria/genética , Variação Genética , Halomonadaceae/genética , Hemípteros/genética , Simbiose , Animais , Sudeste Asiático , Proteínas de Bactérias/genética , Betaproteobacteria/fisiologia , China , Complexo IV da Cadeia de Transporte de Elétrons/genética , Florida , Halomonadaceae/fisiologia , Hemípteros/microbiologia , Proteínas de Insetos/genética , Proteínas Mitocondriais/genética , Paquistão
18.
FEMS Microbiol Ecol ; 92(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27702765

RESUMO

While obligate primary (P-) endosymbionts usually cospeciate with their insect hosts, less is known about codiversification of secondary (S-) endosymbionts that are generally considered facultative. Typically, insects of the superfamily Psylloidea harbour one P- (Carsonella) and at least one S-endosymbiont, thought to compensate for Carsonella genome reduction. Most codiversification studies have used phylogenies of psyllids and their endosymbionts across and within host families or genera, but few have explored patterns within species. We focussed on P- and S-endosymbionts of three Mycopsylla (Homotomidae) species to explore whether they have congruent phylogenies and within-species geographic structures. The P-endosymbiont Carsonella, a S-endosymbiont and Wolbachia all had 100% prevalence, while Arsenophonus was only found in one species at low prevalence. Congruent phylogenies of Mycopsylla and P-endosymbionts across populations and species support strict cospeciation. S-endosymbiont phylogenies were also congruent across host species but low genetic variation in the S-endosymbiont was not correlated with host phylogeography, possibly due to a shorter evolutionary association. Between species, Wolbachia and Mycopsylla phylogenies were incongruent, probably due to horizontal transmission events. Our study is the first to explore endosymbionts of Mycopsylla and further supports the codivergence of Psylloidea hosts and P-endosymbionts, with obligate host interactions for both P- and S-endosymbionts.


Assuntos
Halomonadaceae/isolamento & purificação , Hemípteros/microbiologia , Simbiose/genética , Wolbachia/isolamento & purificação , Animais , Composição de Bases/genética , Evolução Biológica , DNA Mitocondrial/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Evolução Molecular , Ficus , Halomonadaceae/genética , Filogenia , Filogeografia , Wolbachia/genética
19.
Antonie Van Leeuwenhoek ; 109(12): 1593-1603, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27566710

RESUMO

A novel Gram-stain negative, non-motile, moderately halophilic, facultatively anaerobic and spherical bacterium designated strain SS9T was isolated from the gill homogenate of a shark. Cells of SS9T were observed to be 0.8-1.2 µm in diameter. The strain was found to grow optimally at 33 °C, pH 7.0-8.0 and in the presence of 6.0 % (w/v) NaCl. On the basis of 16S rRNA gene phylogeny, strain SS9T can be affiliated with the family Halomonadaceae and is closely related to Chromohalobacter marismortui NBRC 103155T (95.6 % sequence similarity), Halomonas ilicicola SP8T (95.6 %) and Chromohalobacter salexigens DSM 3043T (95.5 %). Multilocus sequence analysis of strain SS9T using the housekeeping genes 16S rRNA, 23S rRNA, gyrB, rpoD and secA revealed the strain's distinct phylogenetic position, separate from other known genera of the family Halomonadaceae. Strain SS9T was found to contain ubiquinone-9 (Q-9) as the predominant ubiquinone and C18:1 ω7c, C16:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) as the major fatty acids. The major polar lipids of strain SS9T were identified as phosphatidylglycerol and phosphatidylethanolamine. The DNA G + C content of strain SS9T was determined to be 60.4 mol%. It is evident from phylogenetic, genotypic, phenotypic and chemotaxonomic results that strain SS9T represents a novel species in a new genus, for which the name Pistricoccus aurantiacus gen. nov., sp. nov. is proposed. The type strain is SS9T (=KCTC 42586T = MCCC 1H00111T).


Assuntos
Halomonadaceae/isolamento & purificação , Tubarões/microbiologia , Animais , China , Halomonadaceae/classificação , Halomonadaceae/genética , Tipagem Molecular , Filogenia , RNA Bacteriano , RNA Ribossômico 16S/genética
20.
J Theor Biol ; 407: 303-317, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27473768

RESUMO

Reductive genome evolution is a universal phenomenon observed in endosymbiotic bacteria in insects. As the genome reduces its size and irreversibly losses coding genes, the functionalities of the cell system, including the energetics processes, are more restricted. Several energetic pathways can also be lost. How do these reduced metabolic networks sustain the energy needs of the system? Among the bacteria with reduced genomes Candidatus Portiera aleyrodidarum, obligate endosymbiont of whiteflies, represents an extreme case since lacks several key mechanisms for ATP generation. Thus, to analyze the cell energetics in this system, a genome-scale metabolic model of this endosymbiont was constructed, and its energy production capabilities dissected using stoichiometric analysis. Our results suggest that energy generation is coupled to the synthesis of essential amino acids and carotenoids, crucial metabolites in the symbiotic association. A deeper insight showed that ATP production via carotenoid synthesis is also connected with amino acid production. This unusual association of energy production with anabolism suggests that, although minimized, endosymbiont metabolic networks maintain a remarkable biosynthetic potential.


Assuntos
Aminoácidos/metabolismo , Metabolismo Energético , Halomonadaceae/metabolismo , Hemípteros/microbiologia , Simbiose , Animais , Genoma Bacteriano , Halomonadaceae/genética , Análise do Fluxo Metabólico , Redes e Vias Metabólicas , Modelos Biológicos , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...