Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 322: 21-28, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32653639

RESUMO

Bacteria from the genus Halomonas hold promise in biotechnology as sources of salt-tolerant enzymes, biosurfactants, biopolymers, osmolytes, and as actors in bioremediation processes. In a previous work, we have identified Halomonas socia strain CKY01 having various hydrolase activities. Here, we aimed to study the survival strategies of marine bacteria. A deep genome sequencing study of H. socia CKY01 has revealed 4627 genes reaching 4,753,299 bp with 64 % of GC content. This strain produced polyhydroxybutyrate (PHB) having one gene clusters having phaC and phasin, and it has several genes responsible for the uptake, synthesis, and transport of the osmolytes such as betaine, choline, ectoine, carnitine, and proline in the bacterial genome. The addition of 60 mM glutamate, 60 mM proline and 60 mM ectoine enhanced growth 300.8 %, 294.2 % and 235.0 %, respectively, under 10 % saline conditions. In particular, ectoine and proline increased salt resistance and allowed cells to survive in more than 15 % NaCl. By combining experimental and genome sequencing data, we have investigated the importance of osmolytes on the survival of this Halomonas strain.


Assuntos
Genoma Bacteriano/genética , Halomonas , Tolerância ao Sal , Diamino Aminoácidos/farmacologia , Halomonas/efeitos dos fármacos , Halomonas/genética , Halomonas/fisiologia , Concentração Osmolar , Prolina/farmacologia , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Sequenciamento Completo do Genoma
2.
Curr Microbiol ; 77(6): 1125-1134, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32002626

RESUMO

Two moderately halophilic strains SBS 10T and SSO 06 were isolated from the saltern crystallizer ponds of the hypersaline Sambhar Salt Lake in India. Strains were aerobic, Gram-stain-negative, and rod shaped. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that two strains belong to the genus Halomonas in the Gammaproteobacteria, with highest 16S rRNA gene sequence similarities with Halomonas gudaonensis LMG 23610T (98.2% similarity) and Halomonas campaniensis 5AGT (99.0% similarity). Strains grew optimally at 37 °C, pH 7.5-8.0 in the presence of 5-8% (w/v) NaCl. The major fatty acids of the strain SBS 10T were C18:1ω7c (54.37%), C16:0 (25.69%), C16:1 × 7c/C16:1 × 6c (13.28%), and C12:0 (1.21%). The G+C content was 63.6 mol % (Tm). Phenotypic features, fatty acids profile, and DNA G+C content supported placement of the strain SBS 10T in the genus Halomonas having distinct characteristics with related strains. Analysis of the housekeeping genes: gryB and rpoD and in silico DNA-DNA hybridization between the strain SBS 10T and its type strain Halomonas gudaonensis (LMG 23610T) further revealed the strain SBS 10T to be a distinct species. On the basis of the phenotypic, chemotaxonomic and phylogenetic analysis, the strain SBS 10T is considered to represent a novel species for which the name Halomonas sambharensis is proposed. The type strain is SBS 10T (= MTCC 12313T = LMG 30344T).


Assuntos
Halomonas/classificação , Halomonas/fisiologia , Lagoas/microbiologia , Sais/metabolismo , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos , Genes Essenciais/genética , Halomonas/química , Halomonas/citologia , Concentração de Íons de Hidrogênio , Índia , Lagos , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , Lagoas/química , RNA Ribossômico 16S/genética , Sais/análise , Análise de Sequência de DNA , Especificidade da Espécie , Temperatura
3.
Syst Appl Microbiol ; 43(1): 126040, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31784208

RESUMO

Two Gram-negative strains obtained from tank water in a scallop hatchery in Norway, were phenotypically and genotypically characterized in order to clarify their taxonomic position. On the basis of 16S rRNA gene sequence analysis, these isolates, ATF 5.2T and ATF 5.4T, were included in the genus Halomonas, being their closest relatives H. smyrnensis and H. taeanensis, with similarities of 98.9% and 97.7%, respectively. Sequence analysis of the housekeeping genes atpA, ftsZ, gyrA, gyrB, mreB, rpoB, rpoD, rpoE, rpoH, rpoN and rpoS clearly differentiated the isolates from the currently described Halomonas species, and the phylogenetic analysis using concatenated sequences of these genes located them in two robust and independent branches. DNA-DNA hybridization (eDDH) percentage, together with average nucleotide identity (ANI), were calculated using the complete genome sequences of the strains, and demonstrate that the isolates constitute two new species of Halomonas, for which the names of Halomonas borealis sp. nov. and Halomonas niordiana sp. nov. are proposed, with type strains ATF 5.2T (=CECT 9780T=LMG 31367T) and ATF 5.4T (=CECT 9779T=LMG 31227T), respectively.


Assuntos
Halomonas/classificação , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Essenciais/genética , Genoma Bacteriano/genética , Halomonas/química , Halomonas/citologia , Halomonas/fisiologia , Noruega , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Ubiquinona/química
4.
Int J Biol Macromol ; 138: 658-666, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344416

RESUMO

Ten Halomonas strains were screened from different Tunisian hypersaline environments for the production of exopolysaccharides (EPS), characterized and identified basing on 16S rRNA gene sequencing. EPS production was therefore studied using two different culture media M1 (complex medium) and M2 (semi-complex medium). Selected isolates produced different EPS amounts ranging from 86 to 170 mg L-1 and 26 to 105 mg L-1 when grown on M1 and M2, respectively. The use of M1 encouraged stronger bacterial growth associated with greater EPS production compared to M2. Nevertheless, the highest EPS yield (YEPS/X) was observed for strains grown on M2. When cultivated on M1, all isolates produced EPS exhibiting almost the same monosaccharide profile with mannose, glucose and arabinose being the main monomers. However, the produced EPS on M2 were characterized by heterogeneous monosaccharide profiles among the different species, mostly consisting of glucomannan that could be a versatile material used for many further applications.


Assuntos
Meio Ambiente , Halomonas/fisiologia , Polissacarídeos Bacterianos/biossíntese , Solução Salina Hipertônica , Fenômenos Químicos , Meios de Cultura , Geografia , Halomonas/classificação , Monossacarídeos , Filogenia , Tunísia
5.
Mol Biol Rep ; 46(5): 4779-4786, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31230183

RESUMO

The study aims to find out osmoadaptive mechanism used to overcome the salinity stress by Halomonas sp SBS 10 isolated from the saltern crystallizer ponds of the Sambhar Salt Lake and its taxonomic position using neighbor-joining algorithm. The strain SBS 10 was tested for accumulation of two major compatable solutes betaine and ectoine and was observed that osmoprotection in the strain SBS 10 is achieved by the accumulation of betaine or by the de-novo synthesis of betaine or ectoine. Amount of endogenous content of the betaine and ectoine per milligram of cell biomass was estimated to be 581 µg, 587 µg, 588 µg, 617 µg, and 761 µg for betaine and 1.52 µg, 2.74 µg, 3.14 µg, 3.50 µg, and 52.67 µg for ectoine, when exposed to 5, 10, 15, 20 and 25% of NaCl concentration. Results obtained from HPLC analysis showed that the betaine accumulation suppresses the de-novo synthesis of ectoine partially at low NaCl concentration in the growth medium. However, at a high NaCl concentration, the ectoine concentration increases abruptly as compared to the betaine. This indicates that the ectoine accumulation is transcriptionally up-regulated by the salinity stress. Phylogenetic analysis based on the neighbor-joining algorithm included the strain SBS 10 in the genus Halomonas of the family Halomonadaceae belonging to the class Gammaproteobacteria. Most closely related type strain was found to be Halomonas gudaonensis SL014B-69T (98.2% similarity). Ultrastructure characteristics showed the strain to be non-spore forming rod, 0.3-0.4 × 0.75-1.65 µm in size and motile with the help of peritrichous flagella.


Assuntos
Diamino Aminoácidos/biossíntese , Betaína/metabolismo , Halomonas/fisiologia , Pressão Osmótica , Tolerância ao Sal , Carbono/metabolismo , Halomonas/classificação , Halomonas/ultraestrutura , Concentração de Íons de Hidrogênio , Filogenia , Salinidade , Temperatura
6.
Sci Total Environ ; 669: 631-636, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30889450

RESUMO

Chemotaxis can play an important role in bioremediation and substrate bioavailability. The bioremediation of hydrocarbons in saline environments can be carried out by technologies using halophilic bacteria. The aim of this study is to analyse chemotactic responses of the halophilic bacterium Halomonas anticariensis FP35T to environmental pollutants, as well as its catabolic potential for biotechnological use in bioremediation processes under saline conditions. Chemotaxis was detected and quantified using a modified Adler capillary assay. PCR amplification with degenerate primers for genes encoding ring-cleaving enzymes was used to characterize the catabolic versatility of FP35T. The results indicate that phenol (100-1,000 ppm) and naphthalene (100-500 ppm) are chemoattractants for H. anticariensis FP35T in a dose-dependent manner. These hydrocarbons were observed to act as chemoattractants for FP35T grown in a wide range of sea salt solutions (5-12.5% (w/v). However, the 7.5% (w/v) saline concentration was found to have the strongest chemotactic response. We also detected genes encoding ring-cleaving enzymes in the ß-ketoadipate pathway for aromatic catabolism. These results suggest that H. anticariensis FP35T has the potential to catabolize aromatic compounds and to be used in bioremediation processes under saline conditions.


Assuntos
Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Halomonas/fisiologia , Naftalenos/metabolismo , Fenol/metabolismo , Quimiotaxia , Salinidade , Tolerância ao Sal
7.
Mar Drugs ; 17(3)2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30832239

RESUMO

Glutathione S-transferases are one of the most important antioxidant enzymes to protect against oxidative damage induced by reactive oxygen species. In this study, a novel gst gene, designated as hsgst, was derived from Antarctic sea ice bacterium Halomonas sp. ANT108 and expressed in Escherichia coli (E. coli) BL21. The hsgst gene was 603 bp in length and encoded a protein of 200 amino acids. Compared with the mesophilic EcGST, homology modeling indicated HsGST had some structural characteristics of cold-adapted enzymes, such as higher frequency of glycine residues, lower frequency of proline and arginine residues, and reduced electrostatic interactions, which might be in relation to the high catalytic efficiency at low temperature. The recombinant HsGST (rHsGST) was purified to apparent homogeneity with Ni-affinity chromatography and its biochemical properties were investigated. The specific activity of the purified rHsGST was 254.20 nmol/min/mg. The optimum temperature and pH of enzyme were 25 °C and 7.5, respectively. Most importantly, rHsGST retained 41.67% of its maximal activity at 0 °C. 2.0 M NaCl and 0.2% H2O2 had no effect on the enzyme activity. Moreover, rHsGST exhibited its protective effects against oxidative stresses in E. coli cells. Due to its high catalytic efficiency and oxidative resistance at low temperature, rHsGST may be a potential candidate as antioxidant in low temperature health foods.


Assuntos
Antioxidantes/química , Organismos Aquáticos/fisiologia , Proteínas de Bactérias/química , Glutationa Transferase/química , Halomonas/fisiologia , Sequência de Aminoácidos , Regiões Antárticas , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Temperatura Baixa/efeitos adversos , Conservação de Alimentos/métodos , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Glutationa Transferase/farmacologia , Concentração de Íons de Hidrogênio , Camada de Gelo/microbiologia , Simulação de Dinâmica Molecular , Estresse Oxidativo/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Termotolerância/fisiologia
8.
Microbiology (Reading) ; 165(4): 411-418, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30777817

RESUMO

In most halophiles, K+ generally acts as a major osmotic solute for osmotic adjustment and pH homeostasis. However, strains also need to extrude excessive intracellular K+ to avoid its toxicity. In the halotolerant and alkaliphilic Halomonas sp. Y2, an Na+-induced K+ extrusion process was observed when the cells were confronted with high extracellular K+ pressure and supplementation by millimolar Na+ ions. Among three mechanosensitive channels (KefA) and two K+/H+ antiporters founded in the genome of the strain, ke1 displayed around 3-5-fold upregulation to ion stress at pH 8.0, while much higher upregulation of Ha-mrp was observed at pH 10.0. Compared to the growth of wild-type Halomonas sp. Y2, deletion of these genes from the strain resulted in different growth phenotypes in response to the osmotic pressure of potassium. In combination with the transcriptional response of these genes, we proposed that the KefA channel of Ke1 is the main contributor to the K+-extrusion process under weak alkalinity, while the Mrp system plays critical roles in alleviating K+ contents at high pH. The combination of these strategies allows Halomonas sp. Y2 to grow over a range of extracellular pH and ion concentrations, and thus protect cells under high osmotic stress conditions.


Assuntos
Halomonas/fisiologia , Potássio/metabolismo , Sódio/metabolismo , Proteínas de Bactérias/genética , Meios de Cultura/química , Perfilação da Expressão Gênica , Halomonas/efeitos dos fármacos , Halomonas/genética , Halomonas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Pressão Osmótica , Potássio/farmacologia , Canais de Potássio/genética , Antiportadores de Potássio-Hidrogênio/genética , Deleção de Sequência , Sódio/análise , Trocadores de Sódio-Hidrogênio/genética
9.
Water Sci Technol ; 78(7): 1535-1544, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30427794

RESUMO

Algicidal bacteria play an important role in mitigating harmful algal blooms (HABs). In the study, five bacterial strains were isolated from the East China Sea. One strain of algicidal bacterium, named DH-e, was found to selectively inhibit the motor ability of Prorocentrum donghaiense, Alexandrium tamarense (ATDH-47) and Karenia mikimotoi Hansen. Both 16S rDNA sequence analysis and morphological characteristics revealed that the algicidal DH-e bacterium belonged to Halomonas. Furthermore, results showed that the metabolites in the DH-e cell-free filtrate could kill algae directly, and the minimum inhibitory concentrations (MICs) of the bacterial metabolites on the cells of the three dinoflagellate species ranged from 35.0-70.0 µg/mL. Following short-term inhibitory tests, the dinoflagellates in mixed crude extract solution (0.7 mg/mL) ceased movement after 5 min. The algicidal mechanism of the metabolites was investigated through enzyme activities, including that of catalase (CAT), alkaline phosphatase (AKP), acetone peroxide (T-ATP) synthetase and nitrite reductase (NR). Results indicated that metabolites did not disrupt the energy or nutrient routes of the algae (P > 0.05), but did initiate an increase in free radicals in the algal cells, which might explain the subsequent death of sensitive algae. Thus, the metabolites of the DH-e bacterium showed promising potential for controlling HABs.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Halomonas/fisiologia , Proliferação Nociva de Algas/fisiologia , Bactérias , Biodegradação Ambiental , China , Dinoflagellida/microbiologia
10.
PLoS One ; 13(8): e0201346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30091990

RESUMO

We previously used whole-genome sequencing and Tn5 transposon mutagenesis to identify 16 critical genes involved in the halotolerance of Halomonas beimenensis, a species in the phylum Proteobacteria. In this present study, we sought to determine if orthologous genes in another phylum are also critical for halotolerance. Virgibacillus spp. are halotolerant species that can survive in high-saline environments. Some Virgibacillus species are used in different aspects of food processing, compatible solute synthesis, proteinase production, and wastewater treatment. However, genomic information on Virgibacillus chiguensis is incomplete. We assembled a draft V. chiguensis strain NTU-102 genome based on high-throughput next-generation sequencing (NGS) and used transcriptomic profiling to examine the high-saline response in V. chiguensis. The V. chiguensis draft genome is approximately 4.09 Mbp long and contains 4,166 genes. The expression profiles of bacteria grown in 5% and 20% NaCl conditions and the corresponding Gene Ontology (GO) and clusters of orthologous groups (COG) categories were also analyzed in this study. We compared the expression levels of these 16 orthologs of halotolerance-related genes in V. chiguensis and H. beimenensis. Interestingly, the expression of 7 of the 16 genes, including trkA2, smpB, nadA, mtnN2, rfbP, lon, and atpC, was consistent with that in H. beimenensis, suggesting that these genes have conserved functions in different phyla. The omics data were helpful in exploring the mechanism of saline adaptation in V. chiguensis, and our results indicate that these 7 orthologs may serve as biomarkers for future screening of halotolerant species in the future.


Assuntos
DNA Bacteriano/genética , Genes Bacterianos/fisiologia , Halomonas/genética , Tolerância ao Sal/fisiologia , Virgibacillus/genética , Técnicas de Tipagem Bacteriana/métodos , Perfilação da Expressão Gênica/métodos , Halomonas/fisiologia , Filogenia , Análise de Sequência de DNA/métodos , Virgibacillus/fisiologia
11.
Sci Rep ; 7(1): 15438, 2017 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-29133866

RESUMO

The gastric microbiome is suspected to have a role in the causation of diseases by Helicobacter pylori. Reports on their relative abundance vis-à-vis H. pylori are available from various ethnic and geographic groups, but little is known about their interaction patterns. Endoscopic mucosal biopsy samples from the gastric antrum and corpus of 39 patients with suspected H. pylori infection were collected and microbiomes were analyzed by 16S rDNA profiling. Four groups of samples were identified, which harbored Helicobacter as well as a diverse group of bacteria including Lactobacillus, Halomonas and Prevotella. There was a negative association between the microbiome diversity and Helicobacter abundance. Network analyses showed that Helicobacter had negative interactions with members of the gastric microbiome, while other microbes interacted positively with each other, showing a higher tendency towards intra-cluster co-occurrence/co-operation. Cross-geographic comparisons suggested the presence of region-specific microbial abundance profiles. We report the microbial diversity, abundance variation and interaction patterns of the gastric microbiota of Indian patients with H. pylori infection and present a comparison of the same with the gastric microbial ecology in samples from different geographic regions. Such microbial abundance profiles and microbial interactions can help in understanding the pathophysiology of gastric ailments and can thus help in development of new strategies to curb it.


Assuntos
Mucosa Gástrica/microbiologia , Microbioma Gastrointestinal/fisiologia , Infecções por Helicobacter/microbiologia , Interações Microbianas , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA Bacteriano/isolamento & purificação , Feminino , Halomonas/isolamento & purificação , Halomonas/fisiologia , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/fisiologia , Humanos , Índia , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Masculino , Pessoa de Meia-Idade , Prevotella/isolamento & purificação , Prevotella/fisiologia , RNA Ribossômico 16S/genética , Adulto Jovem
12.
Sci Rep ; 7(1): 13037, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026163

RESUMO

Studies on the halotolerance of bacteria are attractive to the fermentation industry. However, a lack of sufficient genomic information has precluded an investigation of the halotolerance of Halomonas beimenensis. Here, we describe the molecular mechanisms of saline adaptation in H. beimenensis based on high-throughput omics and Tn5 transposon mutagenesis. The H. beimenensis genome is 4.05 Mbp and contains 3,807 genes, which were sequenced using short and long reads obtained via deep sequencing. Sixteen Tn5 mutants with a loss of halotolerance were identified. Orthologs of the mutated genes, such as nqrA, trkA, atpC, nadA, and gdhB, have significant biological functions in sodium efflux, potassium uptake, hydrogen ion transport for energy conversion, and compatible solute synthesis, which are known to control halotolerance. Other genes, such as spoT, prkA, mtnN, rsbV, lon, smpB, rfbC, rfbP, tatB, acrR1, and lacA, function in cellular signaling, quorum sensing, transcription/translation, and cell motility also shown critical functions for promoting a halotolerance. In addition, KCl application increased halotolerance and potassium-dependent cell motility in a high-salinity environment. Our results demonstrated that a combination of omics and mutagenesis could be used to facilitate the mechanistic exploitation of saline adaptation in H. beimenensis, which can be applied for biotechnological purposes.


Assuntos
Adaptação Fisiológica , Elementos de DNA Transponíveis/genética , Genômica/métodos , Halomonas/genética , Halomonas/fisiologia , Mutagênese/genética , Salinidade , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma Bacteriano , Halomonas/citologia , Halomonas/crescimento & desenvolvimento , Mutação/genética , Fenótipo , Filogenia , Potássio/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
13.
J R Soc Interface ; 14(126)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123098

RESUMO

Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/fisiologia , Ecossistema , Halomonas/fisiologia , Salinidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Exobiologia
14.
Metab Eng ; 39: 128-140, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889295

RESUMO

To engineer non-model organisms, suitable genetic parts must be available. However, biological parts are often host strain sensitive. It is therefore necessary to develop genetic parts that are functional regardless of host strains. Here we report several novel phage-derived expression systems used for transcriptional control in non-model bacteria. Novel T7-like RNA polymerase-promoter pairs were obtained by mining phage genomes, followed by in vivo characterization in non-model strains Halomonas spp TD01 and Pseudomonas entomophila. Three expression systems, namely, MmP1, VP4, and K1F, were developed displaying orthogonality (crosstalk<0.7%), tight regulation (3085-fold induction), and high efficiency (2.5-fold of Ptac) in Halomonas sp. TD01, a chassis strain with a high industrial value. The expression under the corresponding T7-like promoter libraries persisted with striking correlations (R2 >0.94) between Escherichia coli and Halomonas sp. TD01, implying suitability of broad-host range. Three Halomonas TD strains were then constructed based upon these expression systems that enabled interchangeable and controllable gene expression. One of the strains termed Halomonas TD-MmP1 was used to express the cell-elongation cassette (minCD genes) and polyhydroxybutyrate (PHB) biosynthetic pathway, resulting in a 100-fold increase in cell lengths and high levels of PHB production (up to 92% of cell dry weight), respectively. We envision these T7-like expression systems to benefit metabolic engineering in other non-model organisms.


Assuntos
Bacteriófago T7/genética , Vetores Genéticos/genética , Halomonas/fisiologia , Hidroxibutiratos/metabolismo , Engenharia Metabólica/métodos , Transdução Genética/métodos , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Halomonas/metabolismo , Redes e Vias Metabólicas/genética
15.
Colloids Surf B Biointerfaces ; 148: 392-401, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639489

RESUMO

Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.


Assuntos
Anti-Infecciosos/farmacologia , Incrustação Biológica/prevenção & controle , Grafite/química , Química Verde/métodos , Nanopartículas Metálicas/química , Prata/química , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos , Halomonas/efeitos dos fármacos , Halomonas/fisiologia , Nanopartículas Metálicas/ultraestrutura , Microalgas/efeitos dos fármacos , Microalgas/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Reprodutibilidade dos Testes , Água do Mar/microbiologia , Análise Espectral Raman , Difração de Raios X
16.
Artigo em Inglês | MEDLINE | ID: mdl-26888715

RESUMO

Biogenic amines are identified as toxicological substances in foods and may have detrimental effects on consumers' health. In recent years, the application of microorganisms that can degrade biogenic amines has become an emerging method for their reduction. The degradation characteristics and application potential of a salt-tolerant bacterium Halomonas shantousis SWA25 were investigated in this study. H. shantousis SWA25 exhibited degradation activity against eight biogenic amines at 10­40°C (optimum, 30­40°C) and pH 3.0­9.0 (optimum, 6.0­7.0) in the presence of 0­20% (w/v) NaCl (optimum, 0%). Specifically, H. shantousis SWA25 degraded all tryptamine (TRY) and tyramine (TYR) in 6 h, all phenethylamine (PHE) in 9 h, 66.7% of histamine (HIM), 52.4% of cadaverine (CAD), 48.0% of spermidine (SPD), 42.9% of putrescine (PUT) and 42.0% of spermine (SPM) in 20 h at 30°C and pH 7.0 with shaking at 120 r min−1. The enzymes from H. shantousis SWA25 responsible for degradation of biogenic amines were mainly amine oxidases located on the cell membrane. Further studies showed that H. shantousis SWA25 effectively degraded TRY, PHE, PUT, CAD, HIM and TYR in commercial fish sauce and soy sauce samples. Nevertheless, significant SPD and SPM degradation were not observed due to low initial concentrations. Therefore, H. shantousis SWA25 can be applied as a potential biogenic amines degradation bacterium in foods.


Assuntos
Adaptação Fisiológica , Aminas Biogênicas/metabolismo , Halomonas/metabolismo , Halomonas/fisiologia , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Cloreto de Sódio/análise , Temperatura
17.
Extremophiles ; 20(1): 101-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26626363

RESUMO

Although Halomonas phages belonging to the families Myoviridae and Siphoviridae have been reported, no virulent Halomonas siphoviruses are known. In this study, a virulent bacteriophage, QHHSV-1, of the family Siphoviridae that specifically infects H. ventosae QH52-2 was isolated from the Qiaohou salt mine. Restriction analysis indicated that QHHSV-1 is a dsDNA virus with a genome size of 33.5-39.5 kb. Transmission electron microscopy showed that QHHSV-1 is a typical representative of the Siphoviridae, with an icosahedral head (47 nm in diameter) and a non-contractile tail (75 nm in length). We also assessed the adsorption rate of QHHSV-1 for the host bacterium and found significant inhibition after the addition of 10 mM CaCl2. Based on a one-step growth curve, we determined a latent period of 30 min and a burst size of 73 PFU/infected cell. At the optimal pH of 8.0, 25.9 and 15.2 % of the phages survived after a 60-min incubation at 50 and 60 °C, respectively. Phage replication was possible at a wide range of salt concentrations, from 2.0 to 20 % (w/v), with an optimum concentration of 5 %. The survival of QHHSV-1 at different salt concentrations decreased with time and 25 % survival after 25 days at 30 % salt concentration.


Assuntos
Halomonas/virologia , Siphoviridae/isolamento & purificação , Halomonas/fisiologia , Especificidade de Hospedeiro , Tolerância ao Sal , Siphoviridae/patogenicidade , Siphoviridae/fisiologia , Replicação Viral
18.
Huan Jing Ke Xue ; 37(9): 3438-3446, 2016 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964778

RESUMO

Algae-bacteria consortia may be potentially applied in wastewater treatment and environment remediation. In this study, in order to investigate effects of a symbiotic bacterium on the accumulation and transformation of arsenate[As(Ⅴ)] by Chlorella salina, we used batch cultures to determine the uptake, adsorption and transformation of As by axenic and non-axenic C. salina exposed to 0-750 µg·L-1 As(Ⅴ) for 7 d. The symbiotic bacterium of C. salina was confirmed to be Halomonas sp. after isolation, cultivation and 16S rRNA identification. The bacterial presence markedly increased the adsorption of As in C. salina, but it markedly reduced the absorption and the toxic effect of As(Ⅴ). Arsenate was the major arsenic species in the cells of axenic and non-axenic C. salina. The proportion of arsenite[As(Ⅲ)] was 8.99%-11.52% in the axenic microalga whereas a small quantity of monomethylarsonous acid (MMA) and dimethylarsinous acid (DMA) (0.02%-0.04%) were detected in the non-axenic counterpart. As(Ⅲ) dominated the As speciation in the bacterial culture and the percentage of As(Ⅴ) was 7.59%-26.80%, indicating that this symbiotic bacterium had a strong As(Ⅴ) reducing ability. The As removal rate (19.81%-41.08%) by non-axenic C. salina was higher than the bacterium alone (5.14%-14.62%) and axenic C. salina (14.98%-21.08%) after 7 d As(Ⅴ) exposure. The symbiotic Halomonas sp. promoted the accumulation of As by C. salina, indicating that algae-bacteria consortia might enhance the bioremediation of As contaminated water.


Assuntos
Arseniatos/metabolismo , Chlorella/metabolismo , Chlorella/microbiologia , Halomonas/fisiologia , Simbiose , Arsênio , Biodegradação Ambiental , Halomonas/classificação , RNA Ribossômico 16S
19.
Antonie Van Leeuwenhoek ; 108(2): 403-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036672

RESUMO

A moderately halophilic bacterium, designated strain 9-2(T), was isolated from saline and alkaline soil collected in Lindian county, Heilongjiang province, China. The strain was observed to be strictly aerobic, Gram-negative, rod-shaped, oxidase-positive, catalase-positive and motile. It was found to require NaCl for growth and to grow at NaCl concentrations of 0.5-14 % (w/v) (optimum, 7-10 %, w/v), at temperatures of 10-45 °C (optimum 25-30 °C) and at pH 5.0-10.0 (optimum pH 8.0). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 9-2(T) is a member of the genus Halomonas and is closely related to Halomonas desiderata DSM 9502(T) (96.68 %), Halomonas campaniensis DSM 1293(T) (96.46 %), Halomonas ventosae DSM 15911(T) (96.27 %) and Halomonas kenyensis DSM 17331(T) (96.27 %). The DNA-DNA hybridization value was 38.9 ± 0.66 % between the novel isolate 9-2(T) and H. desiderata DSM 9502(T). The predominant ubiquinones were identified as Q9 (75.1 %) and Q8 (24.9 %). The major fatty acids were identified as C16:0 (22.0 %), Summed feature 8 (C18:1 ω6c/C18:1 ω7c, 19.6 %), Summed feature 3 (C16:1 ω6c/C16:1 ω7c, 12.6 %), C12:0 3-OH (12.0 %) and C10:0 (11.7 %). The DNA G+C content was determined to be 69.7 mol%. On the basis of the evidence presented in this study, strain 9-2(T) is considered to represent a novel species of the genus Halomonas, for which the name Halomonas heilongjiangensis sp. nov. is proposed. The type strain is 9-2(T) (=DSM 26881(T) = CGMCC 1.12467(T)).


Assuntos
Halomonas/classificação , Halomonas/isolamento & purificação , Microbiologia do Solo , Aerobiose , Composição de Bases , China , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Halomonas/genética , Halomonas/fisiologia , Concentração de Íons de Hidrogênio , Locomoção , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura
20.
Appl Environ Microbiol ; 81(6): 1988-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576606

RESUMO

Lake Vanda is a perennially ice-covered and stratified lake in the McMurdo Dry Valleys, Antarctica. The lake develops a distinct chemocline at about a 50-m depth, where the waters transition from cool, oxic, and fresh to warm, sulfidic, and hypersaline. The bottom water brine is unique, as the highly chaotropic salts CaCl2 and MgCl2 predominate, and CaCl2 levels are the highest of those in any known microbial habitat. Enrichment techniques were used to isolate 15 strains of heterotrophic bacteria from the Lake Vanda brine. Despite direct supplementation of the brine samples with different organic substrates in primary enrichments, the same organism, a relative of the halophilic bacterium Halomonas (Gammaproteobacteria), was isolated from all depths sampled. The Lake Vanda (VAN) strains were obligate aerobes and showed broad pH, salinity, and temperature ranges for growth, consistent with the physicochemical properties of the brine. VAN strains were halophilic and quite CaCl2 tolerant but did not require CaCl2 for growth. The fact that only VAN strain-like organisms appeared in our enrichments hints that the highly chaotropic nature of the Lake Vanda brine may place unusual physiological constraints on the bacterial community that inhabits it.


Assuntos
Halomonas/classificação , Halomonas/isolamento & purificação , Lagos/microbiologia , Sais , Aerobiose , Regiões Antárticas , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Halomonas/genética , Halomonas/fisiologia , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...