Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Neuroscience ; 560: 67-76, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270770

RESUMO

The electrical activity of the brain, characterized by its frequency components, reflects a complex interplay between periodic (oscillatory) and aperiodic components. These components are associated with various neurophysiological processes, such as the excitation-inhibition balance (aperiodic activity) or interregional communication (oscillatory activity). However, we do not fully understand whether these components are truly independent or if different neuromodulators affect them in different ways. The dopaminergic system has a critical role for cognition and motivation, being a potential modulator of these power spectrum components. To improve our understanding of these questions, we investigated the differential effects of this system on these components using electrocorticogram recordings in cats, which show clear oscillations and aperiodic 1/f activity. Specifically, we focused on the effects of haloperidol (a D2 receptor antagonist) on oscillatory and aperiodic dynamics during wakefulness and sleep. By parameterizing the power spectrum into these two components, our findings reveal a robust modulation of oscillatory activity by the D2 receptor across the brain. Surprisingly, aperiodic activity was not significantly affected and exhibited inconsistent changes across the brain. This suggests a nuanced interplay between neuromodulation and the distinct components of brain oscillations, providing insights into the selective regulation of oscillatory dynamics in awake states.


Assuntos
Encéfalo , Haloperidol , Sono , Vigília , Vigília/efeitos dos fármacos , Vigília/fisiologia , Animais , Haloperidol/farmacologia , Sono/efeitos dos fármacos , Sono/fisiologia , Gatos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Masculino , Ondas Encefálicas/efeitos dos fármacos , Ondas Encefálicas/fisiologia , Eletrocorticografia/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia
2.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791229

RESUMO

Parkinson's disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey's post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient's catalepsy and gait.


Assuntos
Aminofilina , Catalepsia , Modelos Animais de Doenças , Marcha , Haloperidol , Doença de Parkinson , Animais , Catalepsia/tratamento farmacológico , Catalepsia/induzido quimicamente , Camundongos , Masculino , Aminofilina/administração & dosagem , Aminofilina/farmacologia , Aminofilina/uso terapêutico , Marcha/efeitos dos fármacos , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Doença de Parkinson/tratamento farmacológico
3.
J Neurochem ; 168(3): 238-250, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38332572

RESUMO

Deciphering the molecular pathways associated with N-methyl-D-aspartate receptor (NMDAr) hypofunction and its interaction with antipsychotics is necessary to advance our understanding of the basis of schizophrenia, as well as our capacity to treat this disease. In this regard, the development of human brain-derived models that are amenable to studying the neurobiology of schizophrenia may contribute to filling the gaps left by the widely employed animal models. Here, we assessed the proteomic changes induced by the NMDA glutamate receptor antagonist MK-801 on human brain slice cultures obtained from adult donors submitted to respective neurosurgery. Initially, we demonstrated that MK-801 diminishes NMDA glutamate receptor signaling in human brain slices in culture. Next, using mass-spectrometry-based proteomics and systems biology in silico analyses, we found that MK-801 led to alterations in proteins related to several pathways previously associated with schizophrenia pathophysiology, including ephrin, opioid, melatonin, sirtuin signaling, interleukin 8, endocannabinoid, and synaptic vesicle cycle. We also evaluated the impact of both typical and atypical antipsychotics on MK-801-induced proteome changes. Interestingly, the atypical antipsychotic clozapine showed a more significant capacity to counteract the protein alterations induced by NMDAr hypofunction than haloperidol. Finally, using our dataset, we identified potential modulators of the MK-801-induced proteome changes, which may be considered promising targets to treat NMDAr hypofunction in schizophrenia. This dataset is publicly available and may be helpful in further studies aimed at evaluating the effects of MK-801 and antipsychotics in the human brain.


Assuntos
Antipsicóticos , Clozapina , Animais , Humanos , Clozapina/farmacologia , Haloperidol/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Maleato de Dizocilpina/farmacologia , Proteoma/metabolismo , N-Metilaspartato , Ácido Glutâmico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteômica , Antipsicóticos/farmacologia , Encéfalo/metabolismo
4.
Purinergic Signal ; 20(1): 29-34, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36918462

RESUMO

Fatigue is a non-motor symptom of Parkinson's disease (PD). Adenosine 2A receptor (A2AR) and compromised dopamine neurotransmission are linked to fatigue. Studies demonstrate that A2AR antagonism potentiates dopamine transmission via dopamine receptor D2 (D2R). However, the heterodimer form of A2AR-D2R in the striatum prompted questions about the therapeutic targets for PD patients. This study investigates the effects of caffeine (A2AR non-selective antagonist) plus haloperidol (D2R selective antagonist) treatment in the fatigue induced by the reserpine model of PD. Reserpinized mice showed impaired motor control in the open field test (p < 0.05) and fatigue in the grip strength meter test (p < 0.05). L-DOPA and caffeine plus haloperidol similarly increased motor control (p < 0.05) and mitigated fatigue (p < 0.05). Our results support the A2AR-D2R heterodimer participation in the central fatigue of PD, and highlight the potential of A2AR-D2R antagonism in the management of PD.


Assuntos
Dopamina , Doença de Parkinson , Humanos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Cafeína/farmacologia , Haloperidol/farmacologia , Receptores de Dopamina D2 , Estudos Prospectivos , Modelos Teóricos , Receptor A2A de Adenosina
5.
Neurosci Lett ; 820: 137572, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38072029

RESUMO

BACKGROUND: Haloperidol (HAL) is an antipsychotic used in the treatment of schizophrenia. However, adverse effects are observed in the extrapyramidal tracts due to its systemic action. Natural compounds are among the treatment alternatives widely available in Brazilian biodiversity. Mygalin (MY), a polyamine that was synthesized from a natural molecule present in the hemolymph of the Acanthoscurria gomesian spider, may present an interesting approach. AIMS: This study aimed to evaluate the effect of MY in mice subjected to HAL-induced catalepsy. METHODS: Male Swiss mice were used. Catalepsy was induced by intraperitoneal administration of HAL (0.5 mg/kg - 1 mL/Kg) diluted in physiological saline. To assess the MY effects on catalepsy, mice were assigned to 4 groups: (1) physiological saline (NaCl 0.9 %); (2) MY at 0.002 mg/Kg; (3) MY at 0.02 mg/Kg; (4) MY at 0.2 mg/Kg. MY or saline was administered intraperitoneally (IP) 10 min b HAL before saline. Catalepsy was evaluated using the bar test at 15, 30, 60, 90, and 120 min after the IP administration of HAL. RESULTS: The latency time in the bar test 15, 30, 60, and 90 min increased (p < 0.05) after IP administration of HAL compared to the control group. Catalepsy was attenuated 15, 30, 90, and 120 min (p < 0.05) after the IP-administration of MY at 0.2 mg/Kg; while MY at 0.02 mg/Kg attenuated catalepsy 15 min after the HAL treatment. Our findings showed that MY attenuates the HAL-induced cataleptic state in mice.


Assuntos
Antipsicóticos , Aranhas , Camundongos , Masculino , Animais , Haloperidol/farmacologia , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Antipsicóticos/efeitos adversos
6.
Int J Dev Neurosci ; 83(8): 691-702, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635268

RESUMO

This study aimed to evaluate Haloperidol's (Hal) effects on the behavioral, neurotrophic factors, and epigenetic parameters in an animal model of schizophrenia (SCZ) induced by ketamine (Ket). Injections of Ket or saline were administered intraperitoneal (once a day) between the 1st and 14th days of the experiment. Water or Hal was administered via gavage between the 8th and 14th experimental days. Thirty minutes after the last injection, the animals were subjected to behavioral analysis. The activity of DNA methyltransferase (DNMT), histone deacetylase (HDAC), and histone acetyltransferase and levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and glial-derived neurotrophic factor (GDNF) were evaluated in the frontal cortex, hippocampus, and striatum. Ket increased the covered distance and time spent in the central area of the open field, and Hal did not reverse these behavioral alterations. Significant increases in the DNMT and HDAC activities were detected in the frontal cortex and striatum from rats that received Ket, Hal, or a combination thereof. Besides, Hal per se increased the activity of DNMT and HDAC in the hippocampus of rats. Hal per se or the association of Ket plus Hal decreased BDNF, NGF, NT-3, and GDNF, depending on the brain region and treatment regimen. The administration of Hal can alter the levels of neurotrophic factors and the activity of epigenetic enzymes, which can be a factor in the development of effect collateral in SCZ patients. However, the precise mechanisms involved in these alterations are still unclear.


Assuntos
Ketamina , Esquizofrenia , Humanos , Ratos , Animais , Haloperidol/farmacologia , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Ketamina/toxicidade , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator de Crescimento Neural/genética , Modelos Animais de Doenças , Epigênese Genética
7.
Neurotox Res ; 40(6): 1653-1663, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342586

RESUMO

Excessive levels of dopamine in the synaptic cleft, induced by cocaine for example, activates dopaminergic receptors, mainly D1R, D2R, and D3R subtypes, contributing to neurotoxic effects. New synthetic 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine derivatives (the LINS01 compounds), designed as histaminergic receptor (H3R) ligands, are also dopaminergic receptor ligands, mainly D2R and D3R. This study aims to evaluate the neurotoxicity of these new synthetic LINS01 compounds (LINS01003, LINS01004, LINS01011, and LINS01018), as well as to investigate their protective potential on a cocaine model of dopamine-induced neurotoxicity using SH-SY5Y cell line culture. Neurotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and automated cell counting with fluorescent dyes (acridyl orange and propidium iodide) assays. Concentration-response curves (CRCs) were performed for all LINS compounds and cocaine using MTT assay. The results show that LINS series did not decrease cell viability after 48h of exposure-except for 100 µM LINS01018, which was discontinued from the study. Likewise, MTT, LDH, and fluorescent dyes staining showed no difference is cell viability for LINS compounds at 10 µM. When incubated with 2.5 mM cocaine (lethal concentration 50) for 48h, 10 µM of each LINS compound, metoclopramide (D2R antagonist) and haloperidol (D2R/D3R antagonist), ameliorated cocaine-induced neurotoxicity. However, only metoclopramide, haloperidol, and LINS01011 compound significantly decreased LDH released in the culture medium, suggesting that this new synthetic compound presents a more robust effect. This preliminary in vitro neurotoxicity study suggests that LINS01 compounds are not neurotoxic, and that they play a promising role in preventing cocaine-induced neurotoxicity.


Assuntos
Cocaína , Neuroblastoma , Humanos , Cocaína/toxicidade , Dopamina , Haloperidol/farmacologia , Metoclopramida , Piperazina , Corantes Fluorescentes , Técnicas de Cultura de Células
8.
Pharmacol Biochem Behav ; 211: 173296, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34752797

RESUMO

Animal models are important tools for studying neuropsychological disorders. Considering their limitations, a more extensive translational research must encompass data that are generated from several models. Therefore, a comprehensive characterization of these models is needed in terms of behavior and neurophysiology. The present study evaluated the behavioral responses of Carioca Low-conditioned Freezing (CLF) rats to haloperidol and methylphenidate. The CLF breeding line is characterized by low freezing defensive responses to contextual cues that are associated with aversive stimuli. CLF rats exhibited a delayed response to haloperidol at lower doses, needing higher doses to reach similar levels of catatonia as control randomly bred animals. Methylphenidate increased freezing responses to conditioned fear and induced motor effects in the open field. Thus, CLF rats differ from controls in their responses to both haloperidol and methylphenidate. Because of the dopamine-related molecular targets of these drugs, we hypothesize that dopaminergic alterations related to those of animal models of hyperactivity and attention disorders might underlie the observed phenotypes of the CLF line of rats.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Haloperidol/farmacologia , Metilfenidato/farmacologia , Animais , Ansiedade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hipercinese/tratamento farmacológico , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar
9.
Mol Neurobiol ; 58(1): 304-316, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32935232

RESUMO

Haloperidol is a typical antipsychotic drug commonly used to treat a broad range of psychiatric disorders related to dysregulations in the neurotransmitter dopamine (DA). DA modulates important physiologic functions and perturbations in Caenorhabditis elegans (C. elegans) and, its signaling have been associated with alterations in behavioral, molecular, and morphologic properties in C. elegans. Here, we evaluated the possible involvement of dopaminergic receptors in the onset of these alterations followed by haloperidol exposure. Haloperidol increased lifespan and decreased locomotor behavior (basal slowing response, BSR, and locomotion speed via forward speed) of the worms. Moreover, locomotion speed recovered to basal conditions upon haloperidol withdrawal. Haloperidol also decreased DA levels, but it did not alter neither dop-1, dop-2, and dop-3 gene expression, nor CEP dopaminergic neurons' morphology. These effects are likely due to haloperidol's antagonism of the D2-type DA receptor, dop-3. Furthermore, this antagonism appears to affect mechanistic pathways involved in the modulation and signaling of neurotransmitters such as octopamine, acetylcholine, and GABA, which may underlie at least in part haloperidol's effects. These pathways are conserved in vertebrates and have been implicated in a range of disorders. Our novel findings demonstrate that the dop-3 receptor plays an important role in the effects of haloperidol.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Haloperidol/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Haloperidol/farmacologia , Locomoção/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Degeneração Neural/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Sci Rep ; 10(1): 18513, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116174

RESUMO

Nuclear distribution element-like 1 (NDEL1) enzyme activity is important for neuritogenesis, neuronal migration, and neurodevelopment. We reported previously lower NDEL1 enzyme activity in blood of treated first episode psychosis and chronic schizophrenia (SCZ) compared to healthy control subjects, with even lower activity in treatment resistant chronic SCZ patients, implicating NDEL1 activity in SCZ. Herein, higher NDEL1 activity was observed in the blood and several brain regions of a validated animal model for SCZ at baseline. In addition, long-term treatment with typical or atypical antipsychotics, under conditions in which SCZ-like phenotypes were reported to be reversed in this animal model for SCZ, showed a significant NDEL1 activity reduction in blood and brain regions which is in line with clinical data. Importantly, these results support measuring NDEL1 enzyme activity in the peripheral blood to predict changes in NDEL1 activity in the CNS. Also, acute administration of psychostimulants, at levels reported to induce SCZ-like phenotype in normal rat strains, increased NDEL1 enzyme activity in blood. Therefore, alterations in NDEL1 activity after treatment with antipsychotics or psychostimulants may suggest a possible modulation of NDEL1 activity secondary to neurotransmission homeostasis and provide new insights into the role of NDEL1 in SCZ pathophysiology.


Assuntos
Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/fisiologia , Esquizofrenia/metabolismo , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/uso terapêutico , Clozapina/farmacologia , Cisteína Endopeptidases/sangue , Haloperidol/farmacologia , Hipocampo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Esquizofrenia/fisiopatologia
11.
Behav Brain Res ; 395: 112858, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810468

RESUMO

Activation of midbrain dopamine neurons in response to positive prediction errors and reward predictive cues is proposed to "energize" reward seeking behaviors and approach responses to places where the reward is expected. In the present study, we tested the effect of the D2-dopamine receptor antagonist haloperidol on response latencies to enter two arms of a Y-maze with different reward probabilities. Adult male Wistar rats were trained to explore the Y-maze with sucrose pellets placed 30% of times at the end of one arm and 70% of times at the opposite arm. Therefore, the reward expectation was different among arms, and was updated in the trials when the reward was omitted. After training, rats received 0.05, 0.10, 0.15 mg/kg haloperidol, or saline 30 min before the test session. In the last, but not in the first trials, haloperidol caused a dose-dependent increase in arm choice latency and response latency. Saline, but not haloperidol, treated rats presented significantly longer response latencies for the 30% compared to the 70% reward probability arm. Haloperidol also caused a dose-dependent decrease in the number of entries in the 70% reward probability arm, increased the number of non-responses, and caused a dose-dependent increase in the number of re-entries in the 30% reward probability arm after non-rewarded trials. Control experiments suggested that haloperidol did not cause motor impairment or satiation, but rather impaired learning and motivation scores by reducing the reward expectation.


Assuntos
Haloperidol/efeitos adversos , Aprendizagem/efeitos dos fármacos , Motivação/efeitos dos fármacos , Animais , Sinais (Psicologia) , Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Haloperidol/farmacologia , Aprendizagem/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Estatísticos , Motivação/fisiologia , Aprendizagem por Probabilidade , Ratos , Ratos Wistar , Recompensa
12.
Sci Rep ; 10(1): 12655, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724114

RESUMO

Schizophrenia is a chronic, severe and disabling psychiatric disorder, whose treatment is based on psychosocial interventions and the use of antipsychotic drugs. While the effects of these drugs are well elucidated in neuronal cells, they are still not so clear in oligodendrocytes, which play a vital role in schizophrenia. Thus, we aimed to characterize biochemical profiles by proteomic analyses of human oligodendrocytes (MO3.13) which were matured using a protocol we developed and treated with either haloperidol (a typical antipsychotic), clozapine (an atypical antipsychotic) or a clozapine + D-serine co-treatment, which has emerged lately as an alternative type of treatment. This was accomplished by employing shotgun proteomics, using nanoESI-LC-MS/MS label-free quantitation. Proteomic analysis revealed biochemical pathways commonly affected by all tested antipsychotics were mainly associated to ubiquitination, proteasome degradation, lipid metabolism and DNA damage repair. Clozapine and haloperidol treatments also affected proteins involved with the actin cytoskeleton and with EIF2 signaling. In turn, metabolic processes, especially the metabolism of nitrogenous compounds, were a predominant target of modulation of clozapine + D-serine treatment. In this context, we seek to contribute to the understanding of the biochemical and molecular mechanisms involved in the action of antipsychotics on oligodendrocytes, along with their possible implications in schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Dano ao DNA , Metabolismo dos Lipídeos/efeitos dos fármacos , Oligodendroglia/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteoma/metabolismo , Esquizofrenia/metabolismo , Células Cultivadas , Clozapina/farmacologia , Reparo do DNA , Haloperidol/farmacologia , Humanos , Oligodendroglia/efeitos dos fármacos , Proteoma/análise , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia
13.
Behav Brain Res ; 374: 112119, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31374223

RESUMO

Haloperidol (Hal) is an antipsychotic related to movement disorders. Magnesium (Mg) showed benefits on orofacial dyskinesia (OD), suggesting its involvement with N-methyl-D-aspartate receptors (NMDAR) since it acts blocking calcium channels. Comparisons between nifedipine (NIF; a calcium channel blocker) and Mg were performed to establish the Mg mechanism. Male rats concomitantly received Hal and Mg or NIF for 28 days, and OD behaviors were weekly assessed. Both Mg and NIF decreased Hal-induced OD. Hal increased Ca2+-ATPase activity in the striatum, and Mg reversed it. In the cortex, both Mg and NIF decreased such activity. Dopaminergic and glutamatergic immunoreactivity were modified by Hal and treatments: i) in the cortex: Hal reduced D1R and D2R, increasing NMDAR immunoreactivity. Mg and NIF reversed this Hal influence on D1R and NMDAR, while only Mg reversed Hal effects on D2R levels; ii) in the striatum: Hal decreased D2R and increased NMDAR while Mg and NIF decreased D1R and reversed the Hal-induced decreasing D2R levels. Only Mg reversed the Hal-induced increasing NMDAR levels; iii) in the substantia nigra (SN): while Hal increased D1R, D2R, and NMDAR, both Mg and NIF reversed this influence on D2R, but only Mg reversed the Hal-influence on D1R levels. Only NIF reversed the Hal effects on NMDAR immunoreactivity. These findings allow us to propose that Mg may be useful to minimize Hal-induced movement disturbances. Mg molecular mechanism seems to be involved with a calcium channel blocker because the NIF group showed less expressive effects than the Mg group.


Assuntos
Discinesias/tratamento farmacológico , Haloperidol/farmacologia , Magnésio/farmacologia , Animais , Antipsicóticos/farmacologia , Encéfalo/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Corpo Estriado/metabolismo , Haloperidol/efeitos adversos , Magnésio/metabolismo , Masculino , Movimento/efeitos dos fármacos , Transtornos dos Movimentos/tratamento farmacológico , Neostriado/metabolismo , Nifedipino/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Substância Negra/metabolismo
14.
ACS Chem Neurosci ; 10(7): 3173-3182, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30695640

RESUMO

Calcitonin gene-related peptide (α-CGRP) released from perivascular sensory nerves induces decreases in diastolic blood pressure (DBP). Experimentally, this can be shown by spinal thoracic (T9-T12) electrical stimulation of these afferent fibers. Because ergotamine inhibits these neurogenic vascular responses and displays affinity for monoaminergic receptors that inhibit neurotransmitter release, we investigated whether this ergotamine-induced inhibition results from activation of serotonin 5-HT1B/1D, dopamine D2-like, and α2-adrenergic receptors. Wistar rats were pithed and, under autonomic ganglion blockade, received intravenous infusions of methoxamine followed by ergotamine (0.1-3.1 µg kg-1 min-1). Thoracic T9-T12 electrical stimulation or an intravenous bolus of α-CGRP resulted in decreases in DBP. Ergotamine inhibited the electrically induced, but not α-CGRP-induced, responses. The vasodilator sensory inhibition by 3.1 µg of ergotamine kg-1 min-1 was resistant to simultaneous blockade of 5-HT1B/1D, D2-like, and α2-adrenergic receptors upon addition of antagonists GR127935, haloperidol, and rauwolscine. Moreover, the inhibition by 0.31 µg of ergotamine kg-1 min-1 was unaltered by GR127935 and haloperidol, partly blocked by GR127935 and rauwolscine or rauwolscine and haloperidol, and abolished by GR127935, haloperidol, and rauwolscine. These findings imply that prejunctional 5-HT1B/1D, D2-like, and α2-adrenergic receptors mediate the sensory inhibition induced by 0.31 µg of ergotamine kg-1 min-1, whereas larger doses may involve other receptors. Thus, ergotamine's ability to inhibit the perivascular sensory peptidergic drive may result in facilitation of its systemic vasoconstrictor properties.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Sistema Nervoso Autônomo/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Ergotamina/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 2/farmacologia , Animais , Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Antagonistas de Dopamina , Estimulação Elétrica , Haloperidol/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Masculino , Oxidiazóis/farmacologia , Piperazinas/farmacologia , Ratos , Ratos Wistar , Antagonistas da Serotonina , Ioimbina/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-30593828

RESUMO

Triadimefon (TDF) is a triazole fungicide extensively used in agriculture that has been found as a pollutant in numerous water sources. In mammals, it inhibits monoamine uptake through binding to the dopamine transporter, with a mechanism of action similar to cocaine, resulting in higher levels of dopamine at the synapse. Dopamine is a neurotransmitter involved in a broad spectrum of processes such as locomotion, cognition, reward, and mental disorders. In this work we have studied, for the first time, the effects of TDF on behavior of both larval and adult zebrafish and its connection with changes in the dopaminergic and serotonergic systems. We evaluated the acute exposure of 5 dpf larvae to different concentrations of TDF, ranging from 5 mg/L to 35 mg/L. The lowest concentration does not alter neither locomotor activity nor dopamine levels but produced changes in the expression of two genes, tyrosine hydroxylase 1 (th1) and dopamine transporter (dat). Besides, it induced a reduction in extracellular serotonin and had an anxiolytic-like effect, supported by a decrease in cortisol production. On the other hand, a high concentration of TDF produced a dose-dependent reduction in locomotion, which was reversed or enhanced by D1 (SCH-23390) or D2 (Haloperidol) dopamine receptor antagonists, respectively. Using in vivo electrochemistry, we show that these changes could be associated with higher levels of dopamine in the brain. Thus, in adult zebrafish, though not in larvae, TDF exposure increases locomotor activity, anxiety and aggressiveness, which coincides with the behaviors observed in mammals.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Serotonina/metabolismo , Triazóis/toxicidade , Agressão/efeitos dos fármacos , Agressão/fisiologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Comportamento Animal/fisiologia , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica/efeitos dos fármacos , Haloperidol/farmacologia , Hidrocortisona/metabolismo , Larva , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Poluentes da Água/toxicidade , Peixe-Zebra
16.
Artigo em Inglês | MEDLINE | ID: mdl-30578843

RESUMO

The nuclear distribution element genes are conserved from fungus to humans. The nematode Caenorhabditis elegans expresses two isoforms of nuclear distribution element genes, namely nud-1 and nud-2. While nud-1 was functionally demonstrated to be the worm nudC ortholog, bioinformatic analysis revealed that the nud-2 gene encodes the worm ortholog of the mammalian NDE1 (Nuclear Distribution Element 1 or NudE) and NDEL1 (NDE-Like 1 or NudEL) genes, which share overlapping roles in brain development in mammals and also mediate the axon guidance in mammalian and C. elegans neurons. A significantly higher NDEL1 enzyme activity was shown in treatment non-resistant compared to treatment resistant SCZ patients, who essentially present response to the therapy with atypical clozapine but not with typical antipsychotics. Using C. elegans as a model, we tested the consequence of nud genes suppression in the effects of typical and atypical antipsychotics. To assess the role of nud genes and antipsychotic drugs over C. elegans behavior, we measured body bend frequency, egg laying and pharyngeal pumping, which traits are controlled by specific neurons and neurotransmitters known to be involved in SCZ, as dopamine and serotonin. Evaluation of metabolic and behavioral response to the pharmacotherapy with these antipsychotics demonstrates an important unbalance in serotonin pathway in both nud-1 and nud-2 knockout worms, with more significant effects for nud-2 knockout. The present data also show an interesting trend of mutant knockout worm strains to present a metabolic profile closer to that observed for the wild-type animals after the treatment with the typical antipsychotic haloperidol, but which was not observed for the treatment with the atypical antipsychotic clozapine. Paradoxically, behavioral assays showed more evident effects for clozapine than for haloperidol, which is in line with previous studies with rodent animal models and clinical evaluations with SCZ patients. In addition, the validity and reliability of using this experimental animal model to further explore the convergence between the dopamine/serotonin pathways and neurodevelopmental processes was demonstrated here, and the potential usefulness of this model for evaluating the metabolic consequences of treatments with antipsychotics is also suggested.


Assuntos
Antipsicóticos/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Caenorhabditis elegans , Clozapina/farmacologia , Modelos Animais de Doenças , Haloperidol/farmacologia , Movimento/efeitos dos fármacos , Movimento/fisiologia , Neurotransmissores/farmacologia , Faringe/efeitos dos fármacos , Faringe/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes , Reprodução/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Serotonina/farmacologia
17.
Braz. J. Pharm. Sci. (Online) ; 55: e17351, 2019. tab
Artigo em Inglês | LILACS | ID: biblio-1019534

RESUMO

This study was done to determine the time while the binary admixtures with midazolam and haloperidol drugs are administered by perfusion to the patients in the clinical routine. Samples with different concentrations of both drugs were prepared following the usual clinical practice. Solvents used were 0.9 % sodium chloride solution and 5% dextrose, and viaflo plastic bags were used as the containers of the admixtures. Samples were not protected from light and were stored at 20 ºC or at 4 ºC. Compatibility and physicochemical stability were studied by visual inspection, turbidity measurement, pH determination and ultraviolet detection high performance liquid chromatography (UV-HPLC) was used to determine midazolam and haloperidol concentrations. The assay was validated following the FDA and EMA guidelines. Darunavir was used as internal standard (IS). For the studied admixtures, turbidity measurements and pH determinations showed little changes in function of the time. Haloperidol and midazolam concentrations determined by HPLC are within the acceptable range of drug concentrations, which are considered stable for four days in case of admixtures stored at 20 ºC and for seven days for refrigerated admixtures. Taking into account the microbiological risk matrix, the compatibility and the chemical and microbiological stability of the midazolam and haloperidol in the co-administered admixtures in viaflo plastic bags with 0.9 % sodium chloride solution and 5% dextrose can be set as 48 hours when samples are stored at 20 ºC and one week if they are refrigerated.


Assuntos
Midazolam/farmacologia , Haloperidol/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Hipnóticos e Sedativos/administração & dosagem
18.
Physiol Behav ; 188: 134-139, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29408305

RESUMO

Pups have greater incentive value than males for rats during the postpartum estrus (PPE); a period when females are both maternally and sexually motivated. Mesolimbic dopaminergic system has been proposed as a general motivational circuit; however in the literature it has been more related to the control of the motivational aspects of maternal than sexual motivation of females. Therefore, we aimed to assess the effect of antagonizing dopaminergic neurotransmission of PPE females on their preference for pups over a male. To achieve this objective we tested PPE rats in a Y-maze with three-choice chambers (one containing eight pups, the other a male and the last one no stimulus) after the systemic administration of the dopaminergic antagonist haloperidol (0.0; 0.025 or 0.05 mg/kg). Furthermore, to determine if this dopaminergic antagonist differentially affects maternal and sexual motivations when pups and male are not competing, we evaluated the effect of haloperidol in the preference of females for pups vs. a non-receptive female and for a male vs. a non-receptive female. In the preference test for pups vs. male, both doses of haloperidol decreased the time that females spent in pups' chamber while increased the time that they spent in male's chamber, resulting in a lack of preference between both incentives. Besides, haloperidol reduced the effort -attempts to get access to the stimuli- made by the females to obtain the pups. Conversely, 0.05 mg/kg of haloperidol did not affect the preference for both incentives when they were confronted to a non-receptive female. Together, these results indicate that the dopaminergic activity mediates pups' preference over male during the PPE and point toward a more relevant role of this system in females' behavioral output when incentives are competing.


Assuntos
Comportamento de Escolha/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Dopamina/farmacologia , Estro/fisiologia , Comportamento Materno/fisiologia , Período Pós-Parto/metabolismo , Animais , Animais Recém-Nascidos , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Estro/efeitos dos fármacos , Estro/metabolismo , Feminino , Haloperidol/farmacologia , Masculino , Comportamento Materno/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Motivação , Período Pós-Parto/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Fatores Sexuais , Comportamento Sexual Animal/fisiologia , Estatísticas não Paramétricas
19.
Neurochem Res ; 43(2): 477-487, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29209877

RESUMO

Haloperidol is a widely used antipsychotic, despite the severe motor side effects associated with its chronic use. This study was carried out to compare oral dyskinesia induced by different formulations of haloperidol-loaded nanocapsules containing caprylic/capric triglycerides, fish oil or grape seed oil (GSO) as core, as well as free haloperidol. Haloperidol-loaded lipid-core nanocapsules formulations were prepared, physicochemical characterized and administered (0.5 mg kg-1-ip) to rats for 28 days. Oral dyskinesia was evaluated acutely and subchronically and after that cell viability and free radical generation in cortex and substantia nigra. All formulations presented satisfactory physicochemical parameters. Acutely, all formulations were able to prevent oral dyskinesia development in comparison to free haloperidol, except haloperidol-loaded nanocapsules containing GSO, whose effect was only partial. After subchronic treatment, all haloperidol-loaded nanocapsules formulations prevented oral dyskinesia in relation to free drug. Also, haloperidol-loaded nanocapsules containing fish oil and GSO were more effective than caprylic/capric triglycerides nanocapsules and free haloperidol in cell viability preservation and control of free radical generation. Our findings showed that fish oil formulation may be considered as the best formulation of haloperidol-loaded lipid-core nanocapsules, being able to prevent motor side effects associated with chronic use of antipsychotic drugs, as haloperidol.


Assuntos
Antidiscinéticos/farmacologia , Discinesias/tratamento farmacológico , Óleos de Peixe/química , Haloperidol/farmacologia , Nanocápsulas/uso terapêutico , Óleos de Plantas/química , Vitis/química , Animais , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Discinesias/metabolismo , Peixes , Masculino , Ratos Wistar
20.
Behav Genet ; 47(5): 552-563, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28822047

RESUMO

The SHR and SLA16 inbred strains present behavioral differences in anxiety/emotionality that could be under the influence of dopaminergic neurotransmission. In order to investigate the role of D2 receptors in modulating such differences, an agonist (quinpirole) and an antagonist (haloperidol) of this receptor were administered, either via systemic injection (IP), or microinjected into the ventral area of the hippocampus (vHIP). Quinpirole and haloperidol IP decreased locomotor activity, only in SLA16 rats in the open-field (OF), and in both strains in the elevated plus-maze (EPM). Quinpirole also increased the preference for the aversive areas of the EPM. Quinpirole vHIP decreased locomotor activity in both strains. Haloperidol vHIP did not elicit behavioural changes and no differences in the levels of D2 receptors and of dopamine transporter in the hippocampus were found. Results indicate that systemic activation/blocking of D2 receptors caused a strain-dependent hypolocomotion, whereas activation of D2 receptors in the vHIP, but not D2 receptor antagonism, regardless of dose, decreased general locomotor activity in the two strains. Therefore, we suggest that genomic differences in the chromosome 4 can influence the locomotor activity regulated by the D2 dopaminergic receptor, especially in the vHIP.


Assuntos
Comportamento Animal/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Ratos Mutantes/metabolismo , Animais , Ansiedade , Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2/metabolismo , Vias de Administração de Medicamentos , Haloperidol/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Atividade Motora/fisiologia , Quimpirol/metabolismo , Quimpirol/farmacologia , Ratos , Ratos Endogâmicos SHR/genética , Ratos Endogâmicos SHR/metabolismo , Ratos Mutantes/genética , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA