Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(5): e0040824, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619241

RESUMO

In this study, we use pan-genomics to characterize the genomic variability of the widely dispersed halophilic archaeal species Halorubrum ezzemoulense (Hez). We include a multi-regional sampling of newly sequenced, high-quality draft genomes. The pan-genome graph of the species reveals 50 genomic islands that represent rare accessory genetic capabilities available to members. Most notably, we observe rearrangements that have led to the insertion/recombination/replacement of mutually exclusive genomic islands in equivalent genome positions ("homeocassettes"). These conflicting islands encode for similar functions, but homologs from islands located between the same core genes exhibit high divergence on the amino acid level, while the neighboring core genes are nearly identical. Both islands of a homeocassette often coexist in the same geographic location, suggesting that either island may be beyond the reach of selective sweeps and that these loci of divergence between Hez members are maintained and persist long term. This implies that subsections of the population have different niche preferences and rare metabolic capabilities. After an evaluation of the gene content in the homeocassettes, we speculate that these islands may play a role in the speciation, niche adaptability, and group selection dynamics in Hez. Though homeocassettes are first described in this study, similar replacements and divergence of genes on genomic islands have been previously reported in other Haloarchaea and distantly related Archaea, suggesting that homeocassettes may be a feature in a wide range of organisms outside of Hez.IMPORTANCEThis study catalogs the rare genes discovered in strains of the species Halorubrum ezzemoulense (Hez), an obligate halophilic archaeon, through the perspective of its pan-genome. These rare genes are often found to be arranged on islands that confer metabolic and transport functions and contain genes that have eluded previous studies. The discovery of divergent, but homologous islands occupying equivalent genome positions ("homeocassettes") in different genomes, reveals significant new information on genome evolution in Hez. Homeocassette pairs encode for similar functions, but their dissimilarity and distribution imply high rates of recombination, different specializations, and niche preferences in Hez. The coexistence of both islands of a homeocassette pair in multiple environments demonstrates that both islands are beyond the reach of selective sweeps and that these genome content differences between strains persist long term. The switch between islands through recombination under different environmental conditions may lead to a greater range of niche adaptability in Hez.


Assuntos
Genoma Arqueal , Ilhas Genômicas , Halorubrum , Halorubrum/genética , Halorubrum/classificação , Genômica , Evolução Molecular , Variação Genética , Filogenia
2.
Extremophiles ; 28(1): 1, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906310

RESUMO

A single extremely halophilic strain was isolated from salt brine produced when a fresh water lake flooded a large salt mine located beneath the lake. The water that entered this mine contained less than 0.34 M NaCl, but over time, this sealed brine became saturated by Cenozoic age salt (121-125 million-year BCE). The isolated strain requires at least 1.7 M NaCl for survival and grows optimally in 3.1 M NaCl. Therefore, it could not have survived or been present in the waters that flooded this salt mine. The strain grows at a pH range from 6.5 to 9.0 and has a wide tolerance to temperatures from 25 ℃ to at least 60 ℃. The comparison of 16S rRNA and rpoB' genes revealed that strain 1-13-28T is related to Halorubrum tebenquichense DSM 14210T showing 98.6% and 98.1% similarities, respectively. Phylogenetic analyses based on 16S rRNA, rpoB' genes and 122 concatenated archaeal genes show that the strain 1-13-28T consistently forms a cluster with Halorubrum tebenquichense of the genus Halorubrum. Strain 1-13-28T contained sulfated mannosyl glucosyl diether, and the polar lipid profile was identical to those of most Halorubrum species. Based on the overall combination of physiological, phylogenetic, polar lipids and phylogenomic characteristics, strain 1-13-28T (= ATCC 700083T = CGMCC 1.62627T) represents a newly identified species within the genus Halorubrum for which the name Halorubrum hochsteinianum is proposed.


Assuntos
Halorubrum , Cloreto de Sódio , Fosfolipídeos , Halorubrum/genética , RNA Ribossômico 16S/genética , Filogenia , Composição de Bases , DNA Arqueal/genética , China , Análise de Sequência de DNA
3.
J Microbiol ; 60(10): 1007-1020, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029458

RESUMO

A novel haloarchaeal species designated as MBLA0099T was isolated from seawater near Yeongheung Island. Cells were Gram-negative, non-motile, red-pigmented, and rod-shaped. They grew at 10-45°C, within pH 5.5-9.0, and between 7.5% and 30% NaCl concentrations. Cells were able to grow without Mg2+ and were lysed in distilled water. The size of the whole-genome and G + C content of DNA was 3.02 Mb and 68.9 mol%, respectively. Phylogenetic analysis shows that the strain MBLA0099T belongs to the genus Halorubrum. The average nucleotide and amino acid identity, and in silico DNA-DNA hybridization values were below the species delineation threshold. Pan-genomic analysis revealed that 3.2% of all genes present in strain MBLA0099T were unique to the strain. The red carotenoid produced by strain MBLA0099T was subjected to spectrometric and chromatographic analyses and confirmed to be bacterioruberin as C50 carotenoid. Mevalonic acid, terpenoid backbone, and carotenoid biosynthesis pathway were annotated for strain MBLA0099T. The C50 carotenoid production by strain MBLA0099T was also enhanced under various stress conditions including relatively netural pH, high oxidative and salinity conditions. Additionally, the strain MBLA0099T-derived bacterioruberin showed the antioxidant activity with EC50 value of 12.29 µg/ml, based on the evaluation of DPPH free radical scavenging activity. The present study would be the first report on the identification of C50 carotenoid from the strain MBLA0099T representing a novel species of the genus Halorubrum, for which the name Halorubrum ruber sp. nov. is proposed. The typestrain used was MBLA0099T (= KCTC 4296T = JCM 34701T).


Assuntos
Halorubrum , Aminoácidos/genética , Antioxidantes/análise , Técnicas de Tipagem Bacteriana , Carotenoides , DNA Arqueal/genética , DNA Bacteriano , Ácidos Graxos/análise , Radicais Livres , Genômica , Halorubrum/genética , Ácido Mevalônico , Hibridização de Ácido Nucleico , Nucleotídeos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Água
4.
Gene ; 841: 146766, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35908623

RESUMO

Relatively few viruses infecting haloarchaea (haloviruses) have been reported. In this study, the genome sequence of VOLN27B, a recently described archaeal tailed virus (arTV) with a myovirus morphotype was described, along with the sequence of its host, Halorubrum spp. LN27. Halovirus VOLN27B contains a linear, dsDNA genome of 76,891 bp which is predicted to encode 109 proteins and four tRNAs (tRNAThr, tRNAArg, tRNAGly and tRNAAsn). The DNA G + C content of VOLN27B genome is 56.1 mol%, nearly 10% lower than that of its host strain. A 315 bp LTR (long terminal repeat) was detected in the genome. The genome of its host strain LN27 was 3,301,211 bp (chromosome and 1 plasmid) with a DNA G + C content of 68.3 mol% and 3142 annotated protein coding genes. At least two hypothetical proviruses were detected in the genome. It lacked a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) locus. Sequence similarity and phylogenetic tree reconstructions placed it within the genus Halorubrum as a potential new species. VOLN27B exhibits a distinct difference in the frequency of codon usage against its host strain Halorubrum sp. LN27. The organization of VOLN27B genome shows remarkable synteny and amino acid sequence similarity to the genomes and predicted proteins of HF1-like haloviruses (genus Haloferacalesvirus) and a provirus in the genome of Halorubrum depositum Y78. VOLN27B and its host Halorubrum sp. LN27 comprise a new virus-host system from a hypersaline ecosystem and can be used to further understand the novel biology at extreme salt concentration.


Assuntos
Vírus de Archaea , Halorubrum , Vírus , Vírus de Archaea/genética , DNA , Ecossistema , Genômica , Halorubrum/genética , Filogenia , Análise de Sequência de DNA , Vírus/genética
5.
Arch Microbiol ; 204(1): 103, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34967930

RESUMO

A novel extremely halophilic archaeon, designated WN019T, was isolated from the natural saline-alkali wetland soil of Binhai new district, Tianjin, China. Cells of WN019T were aerobic, motile, and pleomorphic rod-shaped, 0.5-0.8 µm in width and 2.0-2.5 µm in length, and the growth occurred optimally at 33-37 °C, pH 7.5-8.0, and in the presence of 15.0-20.0% (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequence comparison showed that the isolate belonged to the genus Halorubrum and exhibited moderate sequence similarity of 97.8% to Halorubrum saccharovorum JCM 8865T. The major respiratory quinones of strain WN019T were MK-8 and MK-8 (H2), and the major polar lipids were glycolipid (GL), phospholipid (PL), phosphatidylglycerol-sulphate (PGS), phosphatidylglycerol (PG) and phosphatidylglycerol-phosphate-methyl ester (Me-PGP). The DNA G + C content of the strain was 67.4 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) value based on whole genome sequences of strain WN019T and Halorubrum saccharovorum JCM 8865T were 87.5% and 35.4%, respectively. Phenotypic, chemotaxonomic, phylogenetic, and genomic analyses suggested that strain WN019T represents a novel species of the genus Halorubrum, for which the name Halorubrum salipaludis sp. nov. is proposed. The type strain is WN019T (= KCTC 4269T = ACCC 19977T).


Assuntos
Halorubrum , China , Halorubrum/genética , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
6.
Archaea ; 2021: 8271899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992502

RESUMO

A novel halovirus, VOLN27B, was isolated from a drill core sample taken at a depth of approximately 430 m, from a layer formed during the Cretaceous period (Anhui, China). VOLN27B infects the halophilic archaeon Halorubrum sp. LN27 and has a head-tailed morphotype with a contractile tail, typical of myoviruses. The average head diameter is 64 ± 2.0 nm, and uncontracted tails are 15 ± 1.0 × 65 ± 2.0 nm. The latent period is about 10 h. The maturing time of VOLN27B in cells of Halorubrum sp. LN27 was nearly 8 h. The adsorption time of VOLN27B on cells of Halorubrum sp. LN27 was less than 1 min. Virus particles are unstable at pH values less than 5 or when the NaCl concentration is below 12% (w/v). VOLN27B and Halorubrum sp. LN27 were recovered from the same hypersaline environment and provide a new virus-host system in haloarchaea.


Assuntos
Halorubrum , Composição de Bases , DNA Arqueal/química , Halorubrum/genética , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Cloreto de Sódio , Cloreto de Sódio na Dieta
7.
Arch Microbiol ; 203(1): 261-268, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32918097

RESUMO

Extremely halophilic archaea (haloarchaea) belonging to the phylum Euryarchaeota have been found in high-salinity environments. In this study, Halarchaeum sp. CBA1220, Halorubrum sp. CBA1229, and Halolamina sp. CBA1230, which are facultatively oligotrophic haloarchaea, were isolated from solar salt by culture under oligotrophic culture conditions. The complete genomes of strains CBA1220, CBA1229, and CBA1230 were sequenced and were found to contain 3,175,875, 3,582,278, and 3,465,332 bp, with a G + C content of 68.25, 67.66, and 66.75 mol %, respectively. In total, 60, 36, and 33 carbohydrate-active enzyme genes were determined in the respective strains. The strains harbored various genes encoding stress-tolerance proteins, including universal stress proteins, cold-shock proteins, and rubrerythrin and rubrerythrin-related proteins. The genome data produced in this study will facilitate further research to improve our understanding of other halophilic strains and promote their industrial application.


Assuntos
Euryarchaeota/genética , Genoma Arqueal/genética , Composição de Bases , Genômica , Halobacteriaceae/classificação , Halobacteriaceae/genética , Halorubrum/classificação , Halorubrum/genética , Salinidade , Estresse Fisiológico/genética
8.
Microbiologyopen ; 9(7): e1047, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32352651

RESUMO

Halophilic archaea from the genus Halorubrum possess two extraordinarily diverged archaellin genes, flaB1 and flaB2. To clarify roles for each archaellin, we compared two natural Halorubrum lacusprofundi strains: One of them contains both archaellin genes, and the other has the flaB2 gene only. Both strains synthesize functional archaella; however, the strain, where both archaellins are present, is more motile. In addition, we expressed these archaellins in a Haloferax volcanii strain from which the endogenous archaellin genes were deleted. Three Hfx. volcanii strains expressing Hrr. lacusprofundi archaellins produced functional filaments consisting of only one (FlaB1 or FlaB2) or both (FlaB1/FlaB2) archaellins. All three strains were motile, although there were profound differences in the efficiency of motility. Both native and recombinant FlaB1/FlaB2 filaments have greater thermal stability and resistance to low salinity stress than single-component filaments. Functional supercoiled Hrr. lacusprofundi archaella can be composed of either single archaellin: FlaB2 or FlaB1; however, the two divergent archaellin subunits provide additional stabilization to the archaellum structure and thus adaptation to a wider range of external conditions. Comparative genomic analysis suggests that the described combination of divergent archaellins is not restricted to Hrr. lacusprofundi, but is occurring also in organisms from other haloarchaeal genera.


Assuntos
Proteínas Arqueais/genética , Flagelina/genética , Halorubrum/genética , Halorubrum/metabolismo , Locomoção/genética , Sequência de Bases , DNA Arqueal/genética , Halorubrum/classificação , Reação em Cadeia da Polimerase
9.
Antonie Van Leeuwenhoek ; 112(12): 1849-1861, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31401696

RESUMO

A pleomorphic and non-motile halophilic archaeon forming light-red pigmented colonies, strain ZC67T, was isolated from the Yuanyongjing Salt Mine, Yunnan, China. Based on similarity search and phylogenetic analysis of the 16S rRNA gene sequence, strain ZC67T belongs to the genus Halorubrum and is closely related to the species of Halorubrum (Hrr.) saccharovorum JCM 8865T, Hrr. persicum C49T, Hrr. halophilum B8T, Hrr. lipolyticum 9-3T, Hrr. salsamenti Y69T and Hrr. depositum Y78T with 16S rRNA gene sequence similarities of 99.0%, 98.7%, 98.5%, 98.4%, 98.1% and 97.7%, respectively. The values of average nucleotide identity (ANI) and average amino-acid identity (AAI) between strain ZC67T and its close relatives were less than 90.5% and 89.3%, respectively. In silico DNA-DNA hybridization (DDH) analysis showed that DNA-DNA relatedness between strain ZC67T and its relatives is less than 45%. Values of ANI, AAI and in silico DDH were clearly below the thresholds used for the delineation of a new species. The major polar lipids of strain ZC67T were similar to other neutrophilic members in the genus Halorubrum containing phosphatidylglycerol, phosphatidylglycerolphosphate methyl ester, phosphatidylglycerol sulfate and sulfated mannosyl-glucosyl-glycerol diether-1. The DNA G+C content was determined to be 66.3 mol% (based on the draft genome). Combined with other diagnostic characteristics, e.g. phenotypic and chemotaxonomic differences, strain ZC67T is concluded to represent a novel species in the genus Halorubrum, for which the name Halorubrum amylolyticum sp. nov. is proposed. The type strain is ZC67T (=CGMCC 1.15718T = JCM 31850T).


Assuntos
Halorubrum/classificação , Halorubrum/isolamento & purificação , Microbiologia do Solo , Composição de Bases , China , Análise por Conglomerados , Citosol/química , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Halorubrum/genética , Locomoção , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , Pigmentos Biológicos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Curr Microbiol ; 76(1): 52-56, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30317405

RESUMO

An extremely halophilic archaeon, strain ZY8T, was isolated from a rock salt of Yunnan salt mine. It was able to grow at 12-30% (w/v) NaCl (optimum, 15-20%), pH 7.0-9.0 (optimum, pH 8.5), and 20-45 °C (optimum, 42 °C). Sequence similarity search of its 16S rRNA gene showed that strain ZY8T belonged to the genus Halorubrum, and it is closely related to species of H. aethiopicum SAH-A6T (98.6%), H. aquaticum EN-2T (98.6%), and H. halodurans Cb34T (98.5%), respectively. Strain ZY8T contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate as its major phospholipids, and a sulfated diglycosyl diether as its major glycolipid. The DNA G+C content was 66.7 mol%. DNA-DNA relatedness between strains ZY8T and closely related species were far below 70%. Based on the phenotypic and phylogenetic analyses, it is proposed that strain ZY8T represents a novel species of the genus Halorubrum, for which the name Halorubrum glutamatedens sp. nov. is proposed. The type strain is ZY8T (=CGMCC 1.16026T=NBRC 112866T).


Assuntos
Halorubrum , Cloreto de Sódio/análise , Composição de Bases/genética , DNA Arqueal/genética , Halorubrum/classificação , Halorubrum/genética , Halorubrum/crescimento & desenvolvimento , Halorubrum/isolamento & purificação , Mineração , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Vopr Virusol ; 63(5): 197-201, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30550095

RESUMO

Тhе kingdom Archaea, as well as Bacteria, belongs to the overkingdom Prokaryota. Halophilic archaea (Halorubrum lacusprofundi) isolated from Antarctic saline lakes contain plasmids (pR1SE) that code proteins taking part in the formation of membranes of archaea vesicles. The molecular and biological properties of pR1SE and the peculiarity of its interaction with sensitive cells are considered in this article. The role of structural proteins coded by pR1S in the process of formation of vesicle membrane complex is paid special attention. Plasmid-containing archaea vesicles model some properties of viruses. Archaea plasmids can be viewed as possible ancestors of DNA-containing viruses.


Assuntos
DNA Viral/genética , Halobacteriales/genética , Halorubrum/genética , Vírus/genética , Regiões Antárticas , Archaea/genética , Archaea/virologia , Halorubrum/virologia , Lagos/microbiologia , Plasmídeos/genética , Tolerância ao Sal/genética
12.
Microbiome ; 6(1): 113, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925429

RESUMO

BACKGROUND: The genomes of halophilic archaea (haloarchaea) often comprise multiple replicons. Genomic variation in haloarchaea has been linked to viral infection pressure and, in the case of Antarctic communities, can be caused by intergenera gene exchange. To expand understanding of genome variation and biogeography of Antarctic haloarchaea, here we assessed genomic variation between two strains of Halorubrum lacusprofundi that were isolated from Antarctic hypersaline lakes from different regions (Vestfold Hills and Rauer Islands). To assess variation in haloarchaeal populations, including the presence of genomic islands, metagenomes from six hypersaline Antarctic lakes were characterised. RESULTS: The sequence of the largest replicon of each Hrr. lacusprofundi strain (primary replicon) was highly conserved, while each of the strains' two smaller replicons (secondary replicons) were highly variable. Intergenera gene exchange was identified, including the sharing of a type I-B CRISPR system. Evaluation of infectivity of an Antarctic halovirus provided experimental evidence for the differential susceptibility of the strains, bolstering inferences that strain variation is important for modulating interactions with viruses. A relationship was found between genomic structuring and the location of variation within replicons and genomic islands, demonstrating that the way in which haloarchaea accommodate genomic variability relates to replicon structuring. Metagenome read and contig mapping and clustering and scaling analyses demonstrated biogeographical patterning of variation consistent with environment and distance effects. The metagenome data also demonstrated that specific haloarchaeal species dominated the hypersaline systems indicating they are endemic to Antarctica. CONCLUSION: The study describes how genomic variation manifests in Antarctic-lake haloarchaeal communities and provides the basis for future assessments of Antarctic regional and global biogeography of haloarchaea.


Assuntos
Vírus de Archaea/genética , Genoma Arqueal/genética , Halorubrum/genética , Microbiota/genética , Regiões Antárticas , Vírus de Archaea/isolamento & purificação , Sequência de Bases , Variação Genética/genética , Ilhas Genômicas/genética , Geografia , Halorubrum/classificação , Halorubrum/isolamento & purificação , Lagos/microbiologia , Metagenoma/genética , Análise de Sequência de DNA
13.
Cell Mol Biol (Noisy-le-grand) ; 64(4): 83-91, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29631688

RESUMO

In Algeria, many salt lakes are to be found spread from southern Tunisia up to the Atlas Mountains in northern Algeria. Oum Eraneb and Ain El beida sebkhas (salt lakes), are located in the Algerian Sahara. The aim of this study was to explore the diversity of the halobacteria in this type of habitats. The physicochemical properties of these shallow saline environments were examined and compared with other hypersaline and marine ecosystems. Both sites were relatively alkaline with a pH around 8.57- 8.74 and rich in salt at 13% and 16% (w/v) salinity for Oum Eraneb and Ain El beida, respectively, with dominant ions of sodium and chloride. The microbial approach revealed the presence of two halophilic archaea, strains JCM13561 and A33T in both explored sebkhas. Growth occurred between 10 and 25% (w/v) NaCl and the isolates grow optimally at 20% (w/v) NaCl. The pH range for growth was 6 to 9.5 with an optimum at pH 7.5 for the first strain and 7 to 9.5 with an optimum pH at 8.5-9 for the second strain. On the basis of 16S rRNA gene sequence analysis, strains JCM13561 and A33T were most closely related to Halorubrum litoreum and Natronorubrum bangense (99% and 96% similarity, respectively).


Assuntos
DNA Arqueal/genética , Halobacteriaceae/isolamento & purificação , Halorubrum/isolamento & purificação , Lagos/microbiologia , RNA Ribossômico 16S/genética , África do Norte , Argélia , Halobacteriaceae/classificação , Halobacteriaceae/efeitos dos fármacos , Halobacteriaceae/genética , Halorubrum/classificação , Halorubrum/efeitos dos fármacos , Halorubrum/genética , Concentração de Íons de Hidrogênio , Salinidade , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia
14.
Curr Microbiol ; 75(6): 677-683, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29322241

RESUMO

A non-motile, pleomorphic rod-shaped or oval, red-pigmented (nearly scarlet), extremely halophilic archaeon, strain Y78T, was isolated from a salt deposit of Yunnan salt mine, China. Analysis of the 16S rRNA gene sequence showed that it was phylogenetically related to species of the genus Halorubrum, with a close relationship to Halorubrum rutilum YJ-18-S1T (98.6%), Halorubrum yunnanense Q85T (98.3%), and Halorubrum lipolyticum 9-3T (98.1%). The temperature, NaCl, and pH ranges for growth were 25-50 °C, 12-30% (w/v), and 6.5-9.0, respectively. Mg2+ was required for growth. The polar lipids of strain Y78T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, and a sulfated diglycosyl diether. The DNA G+C content was 66.6 mol%. DNA-DNA hybridization values between strain Y78T and two closely related species of the genus Halorubrum were far below 70%. Based on the data presented in this study, strain Y78T represents a novel species for which the name Halorubrum depositum sp. nov. is proposed; the type strain is Y78T (= CGMCC 1.15456T = JCM 31272T).


Assuntos
Halorubrum/isolamento & purificação , Halorubrum/metabolismo , Composição de Bases/genética , DNA Arqueal/genética , Halorubrum/genética , Concentração de Íons de Hidrogênio , Fosfatidilgliceróis/metabolismo , RNA Ribossômico 16S/genética , Temperatura
15.
Int J Syst Evol Microbiol ; 68(1): 416-422, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29227219

RESUMO

A novel extremely halophilic archaeon, designated SAH-A6T, was isolated from a sample of commercial rock salt in Ethiopia. Cells of SAH-A6T were aerobic and pleomorphic. The strain was able to grow at concentrations of 15-30 % (w/v) NaCl (optimum 20-25 % NaCl), at pH 6.0-9.0 (optimum pH 7.0) and in a temperature range of 30-55 °C (optimum 37-45 °C). Mg2+ was not required for growth of SAH-A6T cells. On the basis of 16S rRNA gene sequence analysis, strain SAH-A6T was closely related to Halorubrum halodurans Cb34T (99.1 %), Halorubrum rubrum YC87T (98.9 %), Halorubrum aquaticum EN-2T (98.7 %), Halorubrum cibi JCM 15757T (98.4 %), Halorubrum luteum CGSA15T (97.3 %), Halorubrum lipolyticum 9-3T (97.1 %), Halorubrum tibetense 8W8T (97.1 %), Halorubrum kocurii JCM 1478T (97.1 %), Halorubrum halophilum B8T (97.0 %) and Halorubrum persicum C49T (97.0 %). Phylogenetic analysis based on the rpoB' gene sequences showed that strain SAH-A6T was closely related to Hrr. halodurans Cb34T (99.7 %), Hrr. aquaticum JCM 14031T (99.3 %) and other members of the genus Halorubrum (<99.0 %). The DNA G+C content of the strain was 68.0 mol%. DNA-DNA hybridization between strain SAH-A6T and the most closely related members of the genus Halorubrum were below 55 %, suggesting that the new isolate constitutes a different genospecies. On the bases of chemotaxonomic, phenotypic and genotypic data, strain SAH-A6T (=KCCM 43215T=JCM 31519T) represents a novel species of the genus Halorubrum, for which the name Halorubrumaethiopicum sp. nov. is proposed.


Assuntos
Halorubrum/classificação , Filogenia , Cloreto de Sódio , Composição de Bases , DNA Arqueal/genética , Etiópia , Halorubrum/genética , Halorubrum/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
Proc Natl Acad Sci U S A ; 114(47): 12530-12535, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109294

RESUMO

The Antarctic microorganism Halorubrum lacusprofundi harbors a model polyextremophilic ß-galactosidase that functions in cold, hypersaline conditions. Six amino acid residues potentially important for cold activity were identified by comparative genomics and substituted with evolutionarily conserved residues (N251D, A263S, I299L, F387L, I476V, and V482L) in closely related homologs from mesophilic haloarchaea. Using a homology model, four residues (N251, A263, I299, and F387) were located in the TIM barrel around the active site in domain A, and two residues (I476 and V482) were within coiled or ß-sheet regions in domain B distant to the active site. Site-directed mutagenesis was performed by partial gene synthesis, and enzymes were overproduced from the cold-inducible cspD2 promoter in the genetically tractable Haloarchaeon, Halobacterium sp. NRC-1. Purified enzymes were characterized by steady-state kinetic analysis at temperatures from 0 to 25 °C using the chromogenic substrate o-nitrophenyl-ß-galactoside. All substitutions resulted in altered temperature activity profiles compared with wild type, with five of the six clearly exhibiting reduced catalytic efficiency (kcat/Km) at colder temperatures and/or higher efficiency at warmer temperatures. These results could be accounted for by temperature-dependent changes in both Km and kcat (three substitutions) or either Km or kcat (one substitution each). The effects were correlated with perturbation of charge, hydrogen bonding, or packing, likely affecting the temperature-dependent flexibility and function of the enzyme. Our interdisciplinary approach, incorporating comparative genomics, mutagenesis, enzyme kinetics, and modeling, has shown that divergence of a very small number of amino acid residues can account for the cold temperature function of a polyextremophilic enzyme.


Assuntos
Proteínas Arqueais/química , Halorubrum/enzimologia , Nitrofenilgalactosídeos/química , beta-Galactosidase/química , Substituição de Aminoácidos , Regiões Antárticas , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Clonagem Molecular , Temperatura Baixa , Cristalografia por Raios X , Expressão Gênica , Halobacterium/enzimologia , Halobacterium/genética , Halorubrum/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Nitrofenilgalactosídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
17.
Nat Microbiol ; 2(10): 1446-1455, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28827601

RESUMO

The major difference between viruses and plasmids is the mechanism of transferring their genomic information between host cells. Here, we describe the archaeal plasmid pR1SE from an Antarctic species of haloarchaea that transfers via a mechanism similar to a virus. pR1SE encodes proteins that are found in regularly shaped membrane vesicles, and the vesicles enclose the plasmid DNA. The released vesicles are capable of infecting a plasmid-free strain, which then gains the ability to produce plasmid-containing vesicles. pR1SE can integrate and replicate as part of the host genome, resolve out with fragments of host DNA incorporated or portions of the plasmid left behind, form vesicles and transfer to new hosts. The pR1SE mechanism of transfer of DNA could represent the predecessor of a strategy used by viruses to pass on their genomic DNA and fulfil roles in gene exchange, supporting a strong evolutionary connection between plasmids and viruses.


Assuntos
Archaea/genética , Vírus de Archaea/genética , Halorubrum/genética , Plasmídeos/genética , Vírus/genética , Regiões Antárticas , Replicação do DNA , DNA Arqueal/genética , DNA Arqueal/metabolismo , Evolução Molecular , Genoma Viral , Halorubrum/isolamento & purificação , Halorubrum/ultraestrutura , Interações Hospedeiro-Patógeno/genética , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Vesículas Transportadoras , Proteínas Virais/genética
18.
Curr Microbiol ; 74(11): 1358-1364, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28819743

RESUMO

A non-motile, spherical or oval extremely halophilic archaeon, strain Y69T, was isolated from a brine of the Yunnan salt mine, China. Colonies on JCM 168 agar plate were round (1-2 mm in diameter), moist, and orange-pigmented. Phylogenetic analysis of the almost-complete 16S rRNA gene sequence showed that the isolate belonged to the species of the genus Halorubrum, with a close relationship to Halorubrum aidingense 31-hongT (98.5%), Halorubrum lacusprofundi ATCC 49239T (98.2%), and Halorubrum kocurii BG-1T (98.0%). The major polar lipids of strain Y69T were phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a sulfated diglycosyl diether. Strain Y69T grew in 15-30% (w/v) NaCl. The temperature and pH ranges for growth were 25-50 °C and 6.5-9.0, respectively. Optimal growth occurred at 20% (w/v) NaCl, 42 °C, and pH 8.0. Mg2+ was required for growth. The DNA G+C content was determined to be 65.1 mol% by the thermal denaturation method. DNA-DNA hybridization values between strain Y69T and the closely related species were lower than 70%. Based on the data presented in this study, strain Y69T represents a novel species for which the name Halorubrum salsamenti sp. nov. is proposed. The type of the strain is Y69T (=CGMCC 1.15455T = JCM 31270T).


Assuntos
Halorubrum/classificação , Sais , Composição de Bases , DNA Arqueal , Halorubrum/química , Halorubrum/genética , Halorubrum/isolamento & purificação , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
19.
Environ Microbiol ; 19(6): 2210-2227, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28217912

RESUMO

Halohasta litchfieldiae represents ∼ 44% and Halorubrum lacusprofundi ∼ 10% of the hypersaline, perennially cold (≥ -20°C) Deep Lake community in Antarctica. We used proteomics and microscopy to define physiological responses of these haloarchaea to growth at high (30°C) and low (10 and 4°C) temperatures. The proteomic data indicate that both species responded to low temperature by modifying their cell envelope including protein N-glycosylation, maintaining osmotic balance and translation initiation, and modifying RNA turnover and tRNA modification. Distinctions between the two species included DNA protection and repair strategies (e.g. roles of UspA and Rad50), and metabolism of glycerol and pyruvate. For Hrr. lacusprofundi, low temperature led to the formation of polyhydroxyalkanoate-like granules, with granule formation occurring by an unknown mechanism. Hrr. lacusprofundi also formed biofilms and synthesized high levels of Hsp20 chaperones. Hht. litchfieldiae was characterized by an active CRISPR system, and elevated levels of the core gene expression machinery, which contrasted markedly to the decreased levels of Hrr. lacusprofundi. These findings greatly expand the understanding of cellular mechanisms of cold adaptation in psychrophilic archaea, and provide insight into how Hht. litchfieldiae gains dominance in Deep Lake.


Assuntos
Adaptação Fisiológica/fisiologia , Biofilmes/crescimento & desenvolvimento , Membrana Celular/química , Temperatura Baixa , Halorubrum/fisiologia , Proteínas de Membrana/metabolismo , Regiões Antárticas , Reparo do DNA/genética , Glicosilação , Proteínas de Choque Térmico HSP20/metabolismo , Halorubrum/genética , Halorubrum/metabolismo , Lagos , Poli-Hidroxialcanoatos/metabolismo , Proteômica , RNA/biossíntese
20.
Int J Syst Evol Microbiol ; 67(5): 1564-1570, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28032536

RESUMO

A novel, extremely halophilic archaeon, strain Y73T, was isolated from a salt mine in Yunnan, China. Colonies formed on solid medium were circular (2-3 mm in diameter), smooth, orange, glistening and convex (~1 mm in elevation). Cells were Gram-stain-negative, non-motile and pleomorphic. Mg2+ was required for growth (optimum at 0.05 M). Optimal growth was observed at 20 % (w/v) NaCl, 42-45 °C and pH 7.5-8.5 under aerobic conditions. 16S rRNA gene sequence comparison showed that strain Y73T was closely related to Halorubrum halophilum B8T (similarity: 98.1 %), Halorubrum lipolyticum 9-3T (97.9 %) and Halorubrum saccharovorum JCM 8865T (97.6 %). Levels of rpoB' gene sequence similarity between strain Y73T and H. halophilum B8T, H. lipolyticum 9-3T and H. saccharovorum JCM 8865T were 93.6, 93.8 and 94.7 %, respectively. DNA-DNA relatedness between strain Y73T and H. halophilum B8T was 38.7±0.5 %, while that between strain Y73T and H. saccharovorum JCM 8865T was 31.0±0.9 % . The DNA G+C content of strain Y73T was 61.9 mol%. The major polar lipids of strain Y73T were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate as phospholipids, and sulfated diglycosyl diether-1 as glycolipid. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain Y73T represents a novel species, for which the name Halorubrum trueperi sp. nov is proposed. The type strain is Y73T (=CGMCC 1.15503T=JCM 31271T).


Assuntos
Halorubrum/classificação , Mineração , Filogenia , Composição de Bases , China , DNA Arqueal/genética , Glicolipídeos/química , Halorubrum/genética , Halorubrum/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...