Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
DNA Cell Biol ; 42(10): 608-616, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37695843

RESUMO

We have shown in the past decade, for the first time in a bivalve mollusc, detection, isolation, and purification of ß-1,3 glucan binding protein (ß-GBP) in the plasma of the marine mussel Perna viridis and demonstrated its role in a nonself-induced activation of plasma prophenoloxidase system. In this study, we present evidence for its ability to function as an opsonin during phagocytosis of trypsinized yeast cells by the hemocytes of P. viridis. The in vitro pretreatment of target cells (trypsinized yeast cells) with ß-GBP enhanced the phagocytic response of hemocytes. Such ß-GBP-mediated enhanced phagocytic response appeared to be dose dependent. This opsono-phagocytic response could be inhibited by the presence of laminarin (a polymer of ß-1,3 glucans), glucose, as well as polyclonal antibodies raised against ß-GBP. These observations clearly indicate that the plasma ß-GBP can possibly recognize and bind to ß-1,3 glucans on the surface of targets and facilitate hemocyte recognition processes possibly by forming a bridge between the hemocytes and the target, consequently leading to opsono-phagocytosis. These observations together with our earlier annotations indicate the multifunctional potential of plasma ß-GBP in the marine mussel P. viridis.


Assuntos
Hemócitos , Perna (Organismo) , Animais , Hemócitos/fisiologia , Saccharomyces cerevisiae , Glucanos , Fagocitose
2.
Fish Shellfish Immunol ; 141: 109032, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37640119

RESUMO

Benzo[a]pyrene (B[a]P), a ubiquitous contamination in the marine environments, has the potential to impact the immune response of bivalves by affecting the hemocyte parameters, especially total hemocyte count (THC). THC is mainly determined by haematopoietic mechanisms and apoptosis of hemocytes. Many studies have found that B[a]P can influence the proliferation and differentiation of hemocytes. However, the link between the toxic mechanisms of haematopoietic and environmental pollutants is not explicitly stated. This study is to investigate the toxic effects of B[a]P on haematopoietic mechanisms in C. farreri. Through the tissue expression distribution experiment and EDU assay, gill is identified as a potential haematopoietic tissue in C. farreri. Subsequently, the scallops were exposed to B[a]P (0.05, 0.5, 5 µg/L) for 1d, 3d, 6d, 10d and 15d. Then BPDE content, DNA damage, gene expression of haematopoietic factors and haematopoietic related pathways were determined in gill and hemocytes. The results showed that the expression of CDK2 was significantly decreased under B[a]P exposure through three pathways: RYR/IP3-calcium, BPDE-CHK1 and Notch pathway, resulting in cell cycle arrest. In addition, B[a]P also significantly reduced the number of proliferating hemocytes by affecting the Wnt pathway. Meanwhile, B[a]P can significantly increase the content of ROS, causing a downregulation of FOXO gene expression. The gene expression of Notch pathway and ERK pathway was also detected. The present study suggested that B[a]P disturbed differentiation by multiple pathways. Furthermore, the expression of SOX11 and CD9 were significantly decreased, which directly indicated that differentiation of hemocytes was disturbed. In addition, phagocytosis, phenoloxidase activity and THC were also significant decreased. In summary, the impairment of haematopoietic activity in C. farreri further causes immunotoxicity under B[a]P exposure. This study will improve our understanding of the immunotoxicity mechanism of bivalve under B[a]P exposure.


Assuntos
Benzo(a)pireno , Pectinidae , Animais , Benzo(a)pireno/toxicidade , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Hemócitos/fisiologia
3.
Fish Shellfish Immunol ; 138: 108806, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169107

RESUMO

Haemocytes of Mytilus galloprovincialis represent the main component of the internal self-defence system. Although haemocytes from haemolymph are usually studied to analyse these animals' immune response, the presence of haemocytes in the intervalvar liquid, which is essentially sea water, led us to characterize them. Several functional (ROS production, phagocytosis, gene expression, travel velocity and distance) and morphological (area, size and granularity) assays were performed by applying different stimuli to the mussels (waterborne infection, shell injury and their combination). Our results revealed that intervalvar liquid haemocytes share common characteristics with haemolymph haemocytes (for instance, the cell morphology and the cell population structure divided in three main groups) but also show significant differences in size (usually smaller in the intervalvar liquid), mobility (commonly faster in the intervalvar liquid), ROS production (higher in non-stimulated intervalvar liquid cells) and gene expression (IL17, Myd88 and CathL are over expressed in liquid intervalvar cells compared to haemolymph cells). Moreover, differences were observed when mussels were subjected to the mentioned treatments. These free intervalvar haemocytes could constitute the first line of defence as external sentinels extending the immunological alert system outside of the mussel body.


Assuntos
Mytilus , Animais , Mytilus/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Alimentos Marinhos , Hemócitos/fisiologia
4.
Fish Shellfish Immunol ; 138: 108829, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201731

RESUMO

Mannose-binding lectin-associated serine protease (MASP) is a type of central serine protease in the complement lectin pathway. In the present study, a MASP-like was identified from the Pacific oyster Crassostrea gigas, defined as CgMASPL-2. The cDNA sequence of CgMASPL-2 was of 3399 bp with an open reading frame of 2757 bp and encoded a polypeptide of 918 amino acids containing three CUB domains, an EGF domain, two IG domains, and a Tryp_SPC domain. In the phylogenetic tree, CgMASPL-2 was firstly clustered with Mytilus californianus McMASP-2-like, and then assigned into the invertebrate branch. CgMASPL-2 shared similar domains with M. californianus McMASP-2-like and Littorina littorea LlMReM1. CgMASPL-2 mRNA was expressed in all the tested tissues with the highest expression in haemolymph. CgMASPL-2 protein was mainly distributed in the cytoplasm of haemocytes. The mRNA expression of CgMASPL-2 increased significantly in haemocytes after Vibrio splendidus stimulation. The recombinant 3 × CUB-EGF domains of CgMASPL-2 displayed binding activities to diverse polysaccharides (lipopolysaccharide, peptidoglycan and mannose) and microbes (Staphylococcus aureus, Micrococcus luteus, Pichia pastoris, Vibrio anguillarum, V. splendidus and Escherichia coli). In anti-CgMASPL-2 treated oysters, the mRNA expressions of CgIL17-1 and CgIL17-2 in haemocytes decreased significantly after V. splendidus stimulation. The results indicated that CgMASPL-2 could directly sense microbes and regulate the mRNA expressions of inflammatory factors.


Assuntos
Crassostrea , Serina Proteases Associadas a Proteína de Ligação a Manose , Animais , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Crassostrea/genética , Filogenia , Fator de Crescimento Epidérmico/genética , RNA Mensageiro/genética , Hemócitos/fisiologia , Imunidade Inata/genética
5.
Front Immunol ; 13: 914899, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865522

RESUMO

Immunocyte migration to infection sites is important for host cellular defense, but the main types of migrating hemocytes and their mechanisms against pathogen invasions are unclear in invertebrates. In the present study, a population of hemocytes in the Pacific oyster Crassostrea gigas labeled with a fluorescein isothiocyanate (FITC)-conjugated Arg-Gly-Asp (RGD)-containing peptide was sorted. RGD+ hemocytes were characterized by a smaller cell size and cytoplasmic-nucleo ratio, fewer cytoplasmic granules, and higher levels of myeloperoxidase, reactive oxygen species, and intracellular free calcium concentration. RGD+ hemocytes exhibited a high level of migration activity, which was further induced after V. splendidus infection. Transcriptome analysis revealed that RGD+ hemocytes highly expressed a series of migration-related genes, which together with migration-promoting genes were significantly upregulated after V. splendidus infection. The neuroendocrine system was also proven to regulate the migration activity of RGD+ hemocytes, especially with the excitatory neuroendocrine factor dopamine, which promoted migration activity as confirmed by receptor blocking assays. Meanwhile, RGD+ hemocytes could highly express immunomodulatory factor interleukin (IL)-17s and their receptor genes, which was positively related to the production of antimicrobial peptides in whole hemocytes after V. splendidus infection. Collectively, this study identified a specific hemocyte population, i.e., RGD+ hemocytes, that shows high migration activity in response to pathogen infection and exerts a potential immunomodulatory role by highly expressing IL-17s that might enhance the hemocytes' antimicrobial peptide production in oysters.


Assuntos
Crassostrea , Vibrio , Animais , Crassostrea/genética , Hemócitos/fisiologia , Oligopeptídeos , Fagocitose/genética
6.
Dev Comp Immunol ; 135: 104479, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35764163

RESUMO

Hematopoiesis is the biological process to generate new blood cells in the living body and reactive oxygen species (ROS) contribute significantly to the regulation of haematopoietic cell homeostasis. In the present study, the involvement of ROS in the proliferation of haemocytes was examined in Pacific oyster Crassostrea gigas. The ROS content in haemocytes increased significantly after lipopolysaccharide (LPS) treatment, but decreased after the treatment with antioxidant N-Acetyl-L-cysteine (NAC, a scavenger of ROS). The percentage of 5-ethynyl-2'-deoxyuridine labeled (EdU+) granulocytes in total haemocytes significantly increased at 12 h (4.12-fold, p < 0.001) and 24 h (2.36-fold, p < 0.001) after LPS treatment, while decreased at 12 h (0.26-fold, p < 0.001) and 24 h (0.61-fold, p < 0.05) after NAC treatment, respectively. Meanwhile, the percentage of haemocytes with autophagosome positive signals significantly increased at 12 h (1.17-fold, p < 0.01) and 24 h (1.19-fold, p < 0.05) after LPS treatment, but significantly reduced at 12 h (0.41-fold, p < 0.001) and 24 h (0.28-fold, p < 0.001) after the NAC treatment, respectively. After ammonium chloride (NH4Cl) treatment, the percentage of haemocytes with autophagosome and EdU+ granulocytes significantly increased at 12 h, which was 1.27-fold (p < 0.01) and 1.70-fold (p < 0.01) of control group, respectively. These results collectively suggested that ROS produced after LPS treatment could act as an inducer for autophagy and involved in regulating the proliferation of some granulocytes in C. gigas.


Assuntos
Crassostrea , Animais , Autofagia , Proliferação de Células , Granulócitos , Hemócitos/fisiologia , Imunidade Inata , Lipopolissacarídeos , Espécies Reativas de Oxigênio
7.
Insect Sci ; 29(6): 1659-1671, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35420711

RESUMO

Insect hemocytes play important biological roles at developmental stages, metamorphosis, and innate immunity. As one of the most abundant cell types, plasmatocytes can participate in various innate immune responses, especially in encapsulation and node formation. Here, 2 molecular markers of plasmatocytes, consisting of integrin ß2 and ß3, were identified and used to understand the development of plasmatocytes. Plasmatocytes are widely distributed in the hematopoietic system, including circulating hemolymph and hematopoietic organs (HPOs). HPOs constantly release plasmatocytes with high proliferative activity in vitro; removal of HPOs leads to a dramatic reduction in the circulating plasmatocytes, and the remaining plasmatocytes gradually lose their ability to proliferate in vivo. Our results demonstrated that the release of plasmatocytes from HPOs is regulated by insulin-mediated signals and their downstream pathways, including PI3K/Akt and MAPK/Erk signals. The insulin/PI3K/Akt signaling pathway can significantly irritate the hematopoiesis, and its inhibitor LY294002 could inhibit the hemocytes discharged from HPOs. While the insulin/MAPK/Erk signaling pathway plays a negative regulatory role, inhibiting its activity with U0126 can markedly promote the discharge of plasmatocytes from HPOs. Our results indicate that the circulating plasmatocytes are mainly generated and discharged by HPOs. This process is co-regulated by the PI3K/Akt and MAPK/Erk signals in an antagonistic manner to adjust the dynamic balance of the hemocytes. These findings can enhance our understanding of insect hematopoiesis.


Assuntos
Bombyx , Insulinas , Animais , Antígenos CD18/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Larva/metabolismo , Hemócitos/fisiologia , Insulinas/metabolismo
8.
Mol Cells ; 45(3): 101-108, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35253654

RESUMO

Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Hemócitos/fisiologia , Larva
9.
Mar Drugs ; 20(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35323456

RESUMO

Crustin are a family of antimicrobial peptides that play an important role in protecting against pathogens infection in the innate immune system of crustaceans. Previously, we identified several novel types of crustins, including type VI and type VII crustins. However, their immune functions were still unclear. In the present study, the immune function of type VII crustin LvCrustinVII were investigated in Litopenaeus vannamei. LvCrustinVII was wildly expressed in all tested tissues, with relatively high expression levels in hepatopancreas, epidermis and lymphoid organ. Upon Vibrio parahaemolyticus infection, LvCrustinVII was significantly upregulated in hepatopancreas. Recombinant LvCrustinVII (rLvCrustinVII) showed strong inhibitory activities against Gram-negative bacteria Vibrio harveyi and V. parahaemolyticus, while weak activities against the Gram-positive bacteria Staphylococcus aureus. Binding assay showed that rLvCrustinVII could bind strongly to V. harveyi and V. parahaemolyticus, as well as the cell wall components Glu, LPS and PGN. In the presence of Ca2+, rLvCrustinVII could agglutinate V. parahaemolyticus and enhance hemocyte phagocytosis. The present data partially illustrate the immune function of LvCrustinVII, which enrich our understanding on the functional mechanisms of crustins and provide useful information for application of this kind of antimicrobial peptides.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Proteínas de Artrópodes , Proteínas Opsonizantes , Penaeidae/imunologia , Aglutinação , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/farmacologia , Bactérias/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Epiderme/imunologia , Hemócitos/fisiologia , Hepatopâncreas/imunologia , Proteínas Opsonizantes/química , Proteínas Opsonizantes/genética , Proteínas Opsonizantes/imunologia , Proteínas Opsonizantes/farmacologia , Fagocitose , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
10.
PLoS One ; 17(1): e0263256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100296

RESUMO

Metamorphosis in the insect larva is associated with disintegration, engulf and digestion of larval tissues. These processes are accompanied by a significant shift in physiological parameters like high activity of hydrolytic enzymes and decrease of pH. In the way, the metamorphosing larva resembles the processes occurring in the wound at the stage of inflammation. Based on this thesis, we put forward the idea of the possibility of using insect phagocytes in the wound treatment. The search for a suitable insect cell line and the study of its properties were the purpose of the work. The abilities of insect phagocytes to retain viability and functional activity under conditions physiological for humans were also investigated. We found that blue blowfly Calliphora vicina larvae had histolysocytes, a specialized population of professional phagocytes involved in the histolysis. In vitro, histolysocytes possess high phagocytic activity to fragments of vertebrate soft tissues and debris. These cells retain viability and functional activity for a long time under conditions that are physiological for vertebrate cells. Moreover histolysocytes can realize the humoral control over the bacteria through the synthesis of antimicrobial peptides. So histolysocytes have the potential to be used as xenogeneic phagocytes in the wound treatment. The data obtained allow proceeding to experiments on laboratory animals for studying the effect of such therapy on the wound healing process.


Assuntos
Fagócitos/fisiologia , Cicatrização , Animais , Anti-Infecciosos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Galinhas , Dípteros , Hemócitos/efeitos dos fármacos , Hemócitos/fisiologia , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/ultraestrutura , Modelos Biológicos , Fagócitos/ultraestrutura , Fagocitose/efeitos dos fármacos , Pupa/efeitos dos fármacos , Pupa/fisiologia , Suínos , Cicatrização/efeitos dos fármacos
11.
Front Immunol ; 13: 1088149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591234

RESUMO

Background: Lysine-specific demethylase 1 (LSD1) is an essential epigenetic regulator of hematopoietic differentiation, which can specifically mono-methylate H3K4 (H3K4me1) and di-methylate H3K4 (H3K4me2) as a transcriptional corepressor. Previous reports have been suggested that it participated in hematopoiesis and embryonic development process. Here, a conserved LSD1 (CgLSD1) with a SWIRM domain and an amino oxidase (AO) domain was identified from the Pacific oyster Crassostrea gigas. Methods: We conducted a comprehensive analysis by various means to verify the function of CgLSD1 in hematopoietic process, including quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, immunofluorescence assay, RNA interference (RNAi) and flow cytometry. Results: The qRT-PCR analysis revealed that the transcripts of CgLSD1 were widely expressed in oyster tissues with the highest level in the mantle. And the transcripts of CgLSD1 were ubiquitously expressed during larval development with the highest expression level at the early D-veliger larvae stage. In hemocytes after Vibrio splendidus stimulation, the transcripts of CgLSD1 were significantly downregulated at 3, 6, 24, and 48 h with the lowest level at 3 h compared to that in the Seawater group (SW group). Immunocytochemical analysis showed that CgLSD1 was mainly distributed in the nucleus of hemocytes. After the CgLSD1 was knocked down by RNAi, the H3K4me1 and H3K4me2 methylation level significantly increased in hemocyte protein. Besides, the percentage of hemocytes with EdU-positive signals in the total circulating hemocytes significantly increased after V. splendidus stimulation. After RNAi of CgLSD1, the expression of potential granulocyte markers CgSOX11 and CgAATase as well as oyster cytokine-like factor CgAstakine were increased significantly in mRNA level, while the transcripts of potential agranulocyte marker CgCD9 was decreased significantly after V. splendidus stimulation. Conclusion: The above results demonstrated that CgLSD1 was a conserved member of lysine demethylate enzymes that regulate hemocyte proliferation during the hematopoietic process.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Histonas , Hemócitos/fisiologia , Lisina , Proliferação de Células , Histona Desmetilases/genética
12.
Emerg Microbes Infect ; 11(1): 136-146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34890523

RESUMO

Candida auris has globally emerged as a multidrug-resistant fungus linked to healthcare-associated outbreaks. There is still limited evidence on its virulence, pathogenicity determinants, and complex host-pathogen interactions. This study analyzes the in vivo fungal behaviour, immune response, and host-pathogen interactions upon C. auris infection compared to C. albicans and C. parapsilosis in G. mellonella. This was performed by immunolabelling fungal structures and larval plasmatocytes and using a quantitative approach incorporating bioinformatic morphometric techniques into the study of microbial pathogenesis. C. auris presents a remarkably higher immunogenic activity than expected at its moderate degree of tissue invasion. It induces a greater inflammatory response than C. albicans and C. parapsilosis at the expense of plasmatocyte nodule formation, especially in non-aggregative strains. It specifically invades the larval respiratory system, in a pattern not previously observed in other Candida species, and presents inter-phenotypic tissue tropism differences. C. auris filaments in vivo less frequently than C. albicans or C. parapsilosis mostly through pseudohyphal growth. Filamentation might not be a major pathogenic determinant in C. auris, as less virulent aggregative phenotypes form pseudohyphae to a greater extent. C. auris has important both interspecific and intraspecific virulence and phenotype heterogeneity, with aggregative phenotypes of C. auris sharing characteristics with low pathogenic species such as C. parapsilosis. Our work suggests that C. auris owns an important morphogenetic plasticity that distinguishes it from other yeasts of the genus. Routine phenotypic identification of aggregative or non-aggregative phenotypes should be performed in the clinical setting as it may impact patient management.


Assuntos
Candida auris/fisiologia , Interações Hospedeiro-Patógeno , Mariposas/imunologia , Mariposas/microbiologia , Animais , Candida albicans/imunologia , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candida auris/citologia , Candida auris/imunologia , Candida auris/patogenicidade , Candida parapsilosis/imunologia , Candida parapsilosis/patogenicidade , Candida parapsilosis/fisiologia , Hemócitos/imunologia , Hemócitos/fisiologia , Hemolinfa/microbiologia , Imunidade , Larva/microbiologia , Mariposas/fisiologia , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Virulência
13.
Nutrients ; 13(11)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34836222

RESUMO

Cruciferous vegetables, widely present in daily diets, are a rich source of organosulfur compounds with proven health benefits, especially chemopreventive or antioxidative effects. Isothiocyanate derivatives (ITCs) exhibit a broad spectrum of biological and pharmacological activity and recently, their antibacterial properties have been of particular importance. Here, we have focused on the anti-shigellosis activity of sulforaphane (SFN) and phenethyl ITC (PEITC). The genus Shigella causes gastroenteritis in humans, which constitutes a threat to public health. Production of a potent Stx toxin by S. dysenteriae type 1 results not only in more severe symptoms but also in serious sequela, including the hemolytic uremic syndrome. Here, we present evidence that two aliphatic and aromatic ITCs derivatives, SFN and PEITC, have an effective antibacterial potency against S. dysenteriae, also negatively regulating the stx gene expression. The molecular mechanism of this effect involves induction of the global stress-induced stringent response. ITCs also inhibit bacterial virulence against the Vero and HeLa cells. We present evidence for the therapeutic effect of sulforaphane and phenethyl ITC against a S. dysenteriae infection in the Galleria mellonella larvae model. Thus, our results indicate that isothiocyanates can be effectively used to combat dangerous bacterial infections.


Assuntos
Antibacterianos/farmacologia , Isotiocianatos/farmacologia , Mariposas/microbiologia , Shigella dysenteriae/efeitos dos fármacos , Sulfóxidos/farmacologia , Animais , Chlorocebus aethiops , Dieta , Células HeLa , Hemócitos/efeitos dos fármacos , Hemócitos/fisiologia , Humanos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Fagocitose , Toxina Shiga/biossíntese , Toxina Shiga/genética , Shigella dysenteriae/crescimento & desenvolvimento , Shigella dysenteriae/metabolismo , Shigella dysenteriae/patogenicidade , Células Vero
14.
Genes (Basel) ; 12(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34573375

RESUMO

The Mediterranean mussel is one of the most economically relevant bivalve mollusk species in Europe and China. The absence of massive mortalities and their resistance to pathogens affecting other cultured bivalves has been under study in recent years. The transcriptome response of this species to different immune stimuli has been extensively studied, and even the complexity of its genome, which has recently been sequenced, has been suggested as one of the factors contributing to this resistance. However, studies concerning the non-coding RNA profiles remain practically unexplored-especially those corresponding to the lncRNAs. To the best of our knowledge, this is the second characterization and study of lncRNAs in this bivalve species. In this work, we identified the potential repertoire of lncRNAs expressed in mussel hemocytes, and using RNA-Seq we analyzed the lncRNA profile of mussel hemocytes stimulated in vitro with three different immune stimuli: LPS, poly I:C, and ß-glucans. Compared to unstimulated hemocytes, LPS induced the highest modulation of lncRNAs, whereas poly I:C and ß-glucans induced a similar discrete response. Based on the potential cis-regulatory activity of the lncRNAs, we identified the neighboring protein-coding genes of the regulated lncRNAs to estimate-at least partially-the processes in which they are implicated. After applying correlation analyses, it seems that-especially for LPS-the lncRNAs could participate in the regulation of gene expression, and substantially contribute to the immune response.


Assuntos
Mytilus/genética , Mytilus/imunologia , RNA Longo não Codificante/genética , Animais , Regulação da Expressão Gênica , Ontologia Genética , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Hemócitos/fisiologia , Lipopolissacarídeos/farmacologia , Poli I-C/farmacologia , Reprodutibilidade dos Testes , beta-Glucanas/farmacologia
15.
Toxins (Basel) ; 13(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34437415

RESUMO

Harmful effects caused by the exposure to paralytic shellfish toxins (PSTs) and bioactive extracellular compounds (BECs) on bivalves are frequently difficult to attribute to one or the other compound group. We evaluate and compare the distinct effects of PSTs extracted from Alexandrium catenella (Alex5) cells and extracellular lytic compounds (LCs) produced by A. tamarense (NX-57-08) on Mytilus edulis hemocytes. We used a 4 h dose-response in vitro approach and analyzed how these effects correlate with those observed in a previous in vivo feeding assay. Both bioactive compounds caused moderated cell death (10-15%), being dose-dependent for PST-exposed hemocytes. PSTs stimulated phagocytic activity at low doses, with a moderate incidence in lysosomal damage (30-50%) at all tested doses. LCs caused a dose-dependent impairment of phagocytic activity (up to 80%) and damage to lysosomal membranes (up to 90%). PSTs and LCs suppressed cellular ROS production and scavenged H2O2 in in vitro assays. Neither PSTs nor LCs affected the mitochondrial membrane potential in hemocytes. In vitro effects of PST extracts on M. edulis hemocytes were consistent with our previous study on in vivo exposure to PST-producing algae, while for LCs, in vivo and in vitro results were not as consistent.


Assuntos
Hemócitos/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Mytilus edulis , Animais , Sobrevivência Celular/efeitos dos fármacos , Dinoflagellida , Hemócitos/metabolismo , Hemócitos/fisiologia , Lisossomos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Intoxicação por Frutos do Mar
16.
Dev Comp Immunol ; 125: 104230, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34388674

RESUMO

Spreading behavior of hemocytes (= insect blood cells) is essential for cellular immune responses against various microbial pathogens. It is activated by prostaglandin E2 (PGE2) via its membrane receptor associated with secondary messenger, cAMP, in insects. This study observed an increase of calcium ion (Ca2+) level after an acute increase of cAMP induced by PGE2 treatment and clarified the intracellular signals underlying the hemocyte-spreading behavior. Inhibition of Ca2+ flux significantly impaired the hemocyte-spreading and subsequent cellular immune response, phagocytosis. The up-regulation of intracellular Ca2+ in response to PGE2 was dependent on cAMP because RNA interference (RNAi) of PGE2 receptor expression or inhibiting adenylate cyclase prevented Ca2+ mobilization. The up-regulation of Ca2+ was induced by inositol triphosphate (IP3) via its specific IP3 receptor. Furthermore, inhibition of ryanodine receptor impaired Ca2+ mobilization, suggesting Ca2+-induced Ca2+ release. However, the effective spreading behavior of hemocytes was dependent on both secondary messengers. Ca2+ signal stimulated by cAMP was required for activating small G proteins because RNAi treatments of small G proteins such as Rac1, RhoA, and Cdc42 failed to stimulate hemocyte-spreading. In contrast, aquaporin was activated by cAMP. Its activity was necessary for changing cell volume during hemocyte-spreading. These results indicate that PGE2 mediates hemocyte-spreading via cAMP signal to activate aquaporin and via Ca2+ signal to activate actin cytoskeletal rearrangement.


Assuntos
Citoesqueleto de Actina/metabolismo , Aquaporinas/metabolismo , Hemócitos/fisiologia , Proteínas de Insetos/metabolismo , Spodoptera/imunologia , Animais , Cálcio/metabolismo , Adesão Celular , Movimento Celular , AMP Cíclico/metabolismo , Proteínas de Insetos/genética , Larva , Prostaglandinas E/metabolismo , Transdução de Sinais
17.
Dev Comp Immunol ; 125: 104215, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34324898

RESUMO

A number of white spot syndrome virus (WSSV)-binding proteins have been identified previously in the hemocytes of Fenneropenaeus chinensis. In order to further investigate the differential WSSV-binding proteins in hemocyte subpopulations, granular hemocytes and hyalinocytes were sorted from WSSV-infected shrimp by immunomagnetic bead (IMB) method. The results of ELISA and immuno-dot blot assay showed that the WSSV-binding activity of granular hemocytes proteins was much stronger than that of hyalinocytes proteins. And the percentage of WSSV-positive granular hemocytes was significantly higher than that of hyalinocytes post WSSV infection, indicating that granular hemocytes were more susceptible to WSSV infection. Moreover, a total of 9 WSSV-binding proteins were successfully identified in granular hemocytes and hyalinocytes by two-dimensional virus overlay protein binding assay (2D-VOPBA) and MALDI-TOF MS analysis, of which 3 binding proteins (arginine kinase, protease 1 and transglutaminase) existing in both hyalinocytes and granular hemocytes and 6 proteins (F1ATP synthase ß-chain, hnRNPs, GAPDH, RACK1, ß-actin and cellular retinoic acid) detected only in granular hemocytes. Among these identified WSSV-binding proteins, the transglutaminase (TG) was further recombinantly expressed, and the recombinant TG could be bound with WSSV. Subsequently, quantitative real-time PCR analysis showed that differential expression levels of WSSV-binding proteins were observed in granular hemocytes and hyalinocytes. The results of this study revealed that the WSSV-binding proteins were differentially expressed in granular hemocytes and hyalinocytes, which provided a deeper insight into the interaction between WSSV and hemocyte subpopulations.


Assuntos
Infecções por Vírus de DNA/imunologia , Hemócitos/fisiologia , Penaeidae/imunologia , Transglutaminases/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Arginina Quinase/genética , Arginina Quinase/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Células Cultivadas , Separação Imunomagnética , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Ligação Proteica , Transglutaminases/genética
18.
Front Immunol ; 12: 660873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093550

RESUMO

Aedes aegypti mosquitoes are vectors for arboviruses of medical importance such as dengue (DENV) and Zika (ZIKV) viruses. Different innate immune pathways contribute to the control of arboviruses in the mosquito vector including RNA interference, Toll and Jak-STAT pathways. However, the role of cellular responses mediated by circulating macrophage-like cells known as hemocytes remains unclear. Here we show that hemocytes are recruited to the midgut of Ae. aegypti mosquitoes in response to DENV or ZIKV. Blockade of the phagocytic function of hemocytes using latex beads induced increased accumulation of hemocytes in the midgut and a reduction in virus infection levels in this organ. In contrast, inhibition of phagocytosis by hemocytes led to increased systemic dissemination and replication of DENV and ZIKV. Hence, our work reveals a dual role for hemocytes in Ae. aegypti mosquitoes, whereby phagocytosis is not required to control viral infection in the midgut but is essential to restrict systemic dissemination. Further understanding of the mechanism behind this duality could help the design of vector-based strategies to prevent transmission of arboviruses.


Assuntos
Aedes/citologia , Aedes/virologia , Vírus da Dengue/fisiologia , Hemócitos/imunologia , Hemócitos/virologia , Zika virus/fisiologia , Aedes/anatomia & histologia , Animais , Feminino , Hemócitos/fisiologia , Mosquitos Vetores , Fagócitos/virologia , Fagocitose
19.
Sci Rep ; 11(1): 13099, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162929

RESUMO

Despite the central role of hemocytes in crustacean immunity, the process of hemocyte differentiation and maturation remains unclear. In some decapods, it has been proposed that the two main types of hemocytes, granular cells (GCs) and semigranular cells (SGCs), differentiate along separate lineages. However, our current findings challenge this model. By tracking newly produced hemocytes and transplanted cells, we demonstrate that almost all the circulating hemocytes of crayfish belong to the GC lineage. SGCs and GCs may represent hemocytes of different developmental stages rather than two types of fully differentiated cells. Hemocyte precursors produced by progenitor cells differentiate in the hematopoietic tissue (HPT) for 3 ~ 4 days. Immature hemocytes are released from HPT in the form of SGCs and take 1 ~ 3 months to mature in the circulation. GCs represent the terminal stage of development. They can survive for as long as 2 months. The changes in the expression pattern of marker genes during GC differentiation support our conclusions. Further analysis of hemocyte phagocytosis indicates the existence of functionally different subpopulations. These findings may reshape our understanding of crustacean hematopoiesis and may lead to reconsideration of the roles and relationship of circulating hemocytes.


Assuntos
Astacoidea/crescimento & desenvolvimento , Hemócitos/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Feminino , Citometria de Fluxo , Hematopoese , Masculino , Reação em Cadeia da Polimerase em Tempo Real
20.
Dev Comp Immunol ; 123: 104161, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34107277

RESUMO

Drosophila is a valuable paradigm for studying tumorigenesis and cancer. Mutations causing hematopoietic aberrations and melanotic-blood-tumors found in Drosophila mutants are vastly studied. Clear understanding about the blood cells, signaling pathways and the tissues affected during hematopoietic tumor formation provide an opportunity to delineate the effects of cancer therapeutics. Using this simple hematopoietic archetype, we elucidated the effects of the anti-cancer drug, Methotrexate (MTX) on immune responses in two scenarios i.e. against wasp infection and in hematopoietic mutant, hopTum-l. Through this in vivo study we show that MTX impedes the immune responses against wasp infection including the encapsulation response. We further observed that MTX reduces the tumor penetrance in gain-of-function mutants of JAK/STAT pathway, hopTum-l. MTX is anti-inflammatory as it hinders not only the immune responses of acute inflammation as observed after wasp infestation, but also chronic inflammatory responses associated with constitutively activated JAK/STAT pathway mutant (hopTum-l) carrying blood tumors.


Assuntos
Drosophila melanogaster/imunologia , Hemócitos/fisiologia , Imunidade/efeitos dos fármacos , Metotrexato/farmacologia , Vespas/fisiologia , Animais , Animais Geneticamente Modificados , Carcinogênese , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/parasitologia , Sistema Hematopoético , Janus Quinases/metabolismo , Larva , Mutação/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...