Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.503
Filtrar
1.
Mol Immunol ; 170: 76-87, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640818

RESUMO

Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.


Assuntos
Hemócitos , Peróxido de Hidrogênio , Mariposas , Estresse Oxidativo , Peroxirredoxinas , Animais , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/imunologia , Mariposas/imunologia , Mariposas/genética , Estresse Oxidativo/genética , Peróxido de Hidrogênio/farmacologia , Hemócitos/metabolismo , Hemócitos/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Antioxidantes/metabolismo , Sequência de Aminoácidos , Dano ao DNA
2.
BMC Biol ; 22(1): 89, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644510

RESUMO

BACKGROUND: Innate immune responses can be activated by pathogen-associated molecular patterns (PAMPs), danger signals released by damaged tissues, or the absence of self-molecules that inhibit immunity. As PAMPs are typically conserved across broad groups of pathogens but absent from the host, it is unclear whether they allow hosts to recognize parasites that are phylogenetically similar to themselves, such as parasitoid wasps infecting insects. RESULTS: Parasitoids must penetrate the cuticle of Drosophila larvae to inject their eggs. In line with previous results, we found that the danger signal of wounding triggers the differentiation of specialized immune cells called lamellocytes. However, using oil droplets to mimic infection by a parasitoid wasp egg, we found that this does not activate the melanization response. This aspect of the immune response also requires exposure to parasite molecules. The unidentified factor enhances the transcriptional response in hemocytes and induces a specific response in the fat body. CONCLUSIONS: We conclude that a combination of danger signals and the recognition of nonself molecules is required to activate Drosophila's immune response against parasitic insects.


Assuntos
Hemócitos , Interações Hospedeiro-Parasita , Imunidade Inata , Vespas , Animais , Vespas/fisiologia , Interações Hospedeiro-Parasita/imunologia , Hemócitos/imunologia , Drosophila melanogaster/parasitologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/fisiologia , Larva/imunologia , Larva/parasitologia , Drosophila/parasitologia , Drosophila/imunologia
3.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685211

RESUMO

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Assuntos
Imunidade Celular , Imunidade Humoral , Proteínas de Insetos , Lectinas Tipo C , Staphylococcus aureus , Tribolium , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Staphylococcus aureus/imunologia , Tribolium/imunologia , Tribolium/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Hemócitos/imunologia , Hemócitos/metabolismo , Escherichia coli , Fagocitose , Larva/imunologia , Larva/microbiologia
4.
Dev Comp Immunol ; 156: 105168, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522715

RESUMO

Prohibitin2 (PHB2) is recently identified as a novel inner membrane mitophagy receptor to mediate mitophagy. In the present study, the function of CgPHB2 in mediating mitophagy in response to Vibrio splendidus stimulation was investigated in Crassostrea gigas. CgPHB2 protein was mainly distributed in the cytoplasm of three subpopulations of haemocytes. After V. splendidus stimulation, the expressions of CgPHB2 mRNA in haemocytes were up-regulated significantly at 6, 12 and 24 h, and the abundance of CgPHB2 protein was also enhanced at 12-24 h compared to control group. Furthermore, the green signals of CgPHB2 were colocalized respectively with the red signals of mitochondria and CgLC3 in the haemocytes at 12 h after V. splendidus stimulation, and the co-localization value of CgPHB2 and mtphagy Dye was significantly increased. The direct interaction between CgPHB2 and CgLC3 was simulated by molecular docking. In PHB2-inhibitor Fluorizoline-treated oysters, the mRNA expressions of mitophagy-related genes and the ratio of mitophagy were significantly decreased in haemocytes of oysters after V. splendidus stimulation. All the results collectively suggested that CgPHB2 participated in mediating the haemocyte mitophagy in the antibacterial immune response of oysters.


Assuntos
Crassostrea , Hemócitos , Mitofagia , Proibitinas , Proteínas Repressoras , Vibrio , Animais , Vibrio/imunologia , Vibrio/fisiologia , Hemócitos/imunologia , Hemócitos/metabolismo , Crassostrea/imunologia , Crassostrea/microbiologia , Mitofagia/imunologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Vibrioses/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Simulação de Acoplamento Molecular , Imunidade Inata
5.
Dev Comp Immunol ; 156: 105172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537730

RESUMO

Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.


Assuntos
Proliferação de Células , Crassostrea , Hemócitos , Fatores Reguladores de Interferon , Lipopolissacarídeos , Animais , Hemócitos/metabolismo , Hemócitos/imunologia , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Crassostrea/imunologia , Lipopolissacarídeos/imunologia , Imunidade Inata , Humanos , Granulócitos/imunologia , Granulócitos/metabolismo , Células HEK293
6.
Dev Comp Immunol ; 156: 105171, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38537729

RESUMO

Trace amine-associated receptors (TAARs) are a class of G protein-coupled receptors, playing an immunomodulatory function in the neuroinflammatory responses. In the present study, a TAAR homologue with a 7tm_classA_rhodopsin-like domain (designated as CgTAAR1L) was identified in oyster Crassostrea gigas. The abundant CgTAAR1L transcripts were detected in visceral ganglia and haemocytes compared to other tissues, which were 55.35-fold and 32.95-fold (p < 0.01) of those in adductor muscle, respectively. The mRNA expression level of CgTAAR1L in haemocytes significantly increased and reached the peak level at 3 h after LPS or Poly (I:C) stimulation, which was 4.55-fold and 12.35-fold of that in control group, respectively (p < 0.01). After the expression of CgTAAR1L was inhibited by the injection of its targeted siRNA, the mRNA expression levels of interleukin17s (CgIL17-1, CgIL17-5 and CgIL17-6), and defensin (Cgdefh1) significantly decreased at 3 h after LPS stimulation, which was 0.51-fold (p < 0.001), 0.39-fold (p < 0.01), 0.48-fold (p < 0.05) and 0.41-fold (p < 0.05) of that in the control group, respectively. The nuclear translocation of Cgp65 protein was suppressed in the CgTAAR1L-RNAi oysters. Furthermore, the number of Vibrio splendidus in the haemolymph of CgTAAR1L-RNAi oysters significantly increased (4.11-fold, p < 0.001) compared with that in the control group. In contrast, there was no significant difference in phagocytic rate of haemocytes to V. splendidus in the CgTAAR1L-RNAi oysters. These results indicated that CgTAAR1L played an important role in the immune defense against bacterial infection by inducing the expressions of interleukin and defensin.


Assuntos
Crassostrea , Defensinas , Hemócitos , Lipopolissacarídeos , Receptores Acoplados a Proteínas G , Vibrio , Animais , Crassostrea/imunologia , Hemócitos/imunologia , Hemócitos/metabolismo , Vibrio/imunologia , Vibrio/fisiologia , Lipopolissacarídeos/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Defensinas/genética , Defensinas/metabolismo , Imunidade Inata , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Poli I-C/imunologia , RNA Interferente Pequeno/genética , Vibrioses/imunologia , Receptores Associados a Traços de Amina
7.
J Innate Immun ; 16(1): 173-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38387449

RESUMO

INTRODUCTION: The brain is considered as an immune-privileged organ, yet innate immune reactions can occur in the central nervous system of vertebrates and invertebrates. Silkworm (Bombyx mori) is an economically important insect and a lepidopteran model species. The diversity of cell types in the silkworm brain, and how these cell subsets produce an immune response to virus infection, remains largely unknown. METHODS: Single-nucleus RNA sequencing (snRNA-seq), bioinformatics analysis, RNAi, and other methods were mainly used to analyze the cell types and gene functions of the silkworm brain. RESULTS: We used snRNA-seq to identify 19 distinct clusters representing Kenyon cell, glial cell, olfactory projection neuron, optic lobes neuron, hemocyte-like cell, and muscle cell types in the B. mori nucleopolyhedrovirus (BmNPV)-infected and BmNPV-uninfected silkworm larvae brain at the late stage of infection. Further, we found that the cell subset that exerts an antiviral function in the silkworm larvae brain corresponds to hemocytes. Specifically, antimicrobial peptides were significantly induced by BmNPV infection in the hemocytes, especially lysozyme, exerting antiviral effects. CONCLUSION: Our single-cell dataset reveals the diversity of silkworm larvae brain cells, and the transcriptome analysis provides insights into the immune response following virus infection at the single-cell level.


Assuntos
Bombyx , Encéfalo , Hemócitos , Imunidade Inata , Larva , Muramidase , Animais , Bombyx/imunologia , Bombyx/virologia , Encéfalo/imunologia , Encéfalo/virologia , Larva/imunologia , Larva/virologia , Hemócitos/imunologia , Muramidase/metabolismo , Muramidase/genética , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/imunologia , Análise de Célula Única , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética
8.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323810

RESUMO

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Assuntos
Proteínas de Artrópodes , Hemócitos , Interações entre Hospedeiro e Microrganismos , Penaeidae , RNA-Seq , Análise da Expressão Gênica de Célula Única , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Penaeidae/citologia , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/imunologia
9.
PeerJ ; 11: e15337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483985

RESUMO

To assess the immune potential of spiders, in the present study juvenile and adult females of Parasteatoda tepidariorum were exposed to Bacillus subtilis infection, injury by a nylon monofilament and a combination of both. The expression level of selected immune-related genes: defensin 1 (PtDEF1), lysozyme 1 (PtLYS1), lysozyme C (PtLYSC), lysozyme M1 (PtLYSM1), autophagy-related protein 101 (PtATG101), dynamin (PtDYN) and heat shock proteins (HSP70) (PtHSPB, PtHSPB2A, PtHSPB2B), production of lysozyme and HSP70 proteins, and hemocytes viability were measured. The obtained results indicated expression of the lysozyme, autophagy-related protein and HSP70 genes in both ontogenetic stages of P. tepidariorum. It has been also shown that the simultaneous action of mechanical and biological factors causes higher level of lysozyme and HSP70, cell apoptosis intensity and lower level of hemocytes viability than in the case of exposure to a single immunostimulant. Moreover, mature females showed stronger early immune responses compared to juveniles.


Assuntos
Bacillus subtilis , Corpos Estranhos , Aranhas , Animais , Feminino , Bacillus subtilis/imunologia , Corpos Estranhos/imunologia , Aranhas/genética , Aranhas/imunologia , Aranhas/microbiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Fatores Etários , Regulação da Expressão Gênica/imunologia , Apoptose/imunologia , Hemócitos/imunologia
10.
Fish Shellfish Immunol ; 127: 659-665, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779813

RESUMO

The infection of the kinetoplastid flagellate Azumiobodo hoyamushi causes soft tunic syndrome that often results in mass mortality in the aquaculture of the edible ascidian Halocynthia roretzi. In the diseased ascidian individuals, the flagellates are exclusively found in the tunic matrix that entirely cover the epidermis, and never invade into internal tissues, such as a mantle. The present study for the first time demonstrated that the ascidian blood plasma and hemolymph have an activity to agglutinate and disintegrate the flagellates, suggesting the innate immunity protects the internal tissue from the invasion of A. hoyamushi. This activity is indifferent between the healthy and the diseased individuals. Allo-specific recognition and cytotoxic reaction among ascidian hemocytes, so-called contact reaction, occur among the individuals of healthy-healthy, healthy-diseased, and diseased-diseased combination, and therefore, the hemocytes from diseased individuals still retain the allo-reactivity. Moreover, the allo-reactive combinations are not changed under the presence of the flagellates, indicating the flagellates neither suppress nor induce the effector system of the contact reaction. These results suggest that the infection of A. hoyamushi does not impair the innate immunity in the ascidian hemolymph.


Assuntos
Hemócitos , Hemolinfa , Imunidade Inata , Urocordados , Animais , Hemócitos/imunologia , Hemolinfa/imunologia , Urocordados/imunologia
11.
Dev Comp Immunol ; 129: 104349, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007655

RESUMO

The function of B-cell lymphoma-2 (Bcl-2) family proteins can be divided into two categories: anti-apoptotic and pro-apoptotic. As an anti-apoptotic protein, Bcl2-associated athanogene 3 (BAG3) plays a key role in regulating apoptosis, development, cell movement, and autophagy, and mediating the adaptability of cells to stimulation. However, SpBAG3 has not been reported in mud crab (Scylla paramamosain), and the regulatory effect of SpBAG3 on apoptosis in mud crab and its function in antiviral immunity is still unknown. In this study, SpBAG3 was found, and characterized, which encoded a total of 175 amino acid (molecular mass 19.3 kDa), including a specific conserved domain of the BAG family. SpBAG3 was significantly down-regulated at 0-48 h post-infection with WSSV in vivo. The antiviral effect of SpBAG3 was investigated using RNA interference. The results indicated that SpBAG3 might be involved in assisting the replication of WSSV in the host. SpBAG3 could change the mitochondrial membrane potential (△ψm), and affect cell apoptosis through mitochondrial apoptotic pathways. Therefore, the results of this study suggested that SpBAG3 could assist WSSV infection by inhibiting the apoptosis of the hemocytes in mud crab.


Assuntos
Braquiúros/imunologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas de Artrópodes/genética , Perfilação da Expressão Gênica , Hemócitos/imunologia , Imunidade Inata/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Filogenia , Vírus da Síndrome da Mancha Branca 1/fisiologia
12.
Fish Shellfish Immunol ; 121: 116-123, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34995768

RESUMO

Molluscan bivalves secrete shell matrices into the extrapallial space (EPS) to guide the precipitation of rigid shells. Meanwhile, immune components are present in the EPS and shell matrices, which are pivotal in resistant to invaded pathogens, thus ensuring the shell formation process. However, the origin of these components remains unclear. In this study, we revealed numerous vesicles were secreted from the outer mantle epithelial cells by using light and electron microscopes. The secreted vesicles were isolated by gradient centrifugation and confirmed by transmission electron microscopy. Proteomics analysis showed that the secreted vesicles were composed of cytoplasmic and immune components, most of which do not have signal peptides, indicating that they were secreted by a non-classical pathway. Moreover, real-time PCR revealed that some immune components were highly expressed in the mantle tissue, compared to the hemocytes. FTIR analysis verified the presence of lipids in the shell matrices, indicating that the vesicles have integrated into the shell layers. Taken together, our results suggested that mantle epithelial cells secreted some important immune components into the EPS via secreted vesicle transportation, thus cooperating with the hemocytes to play a vital role in immunity during shell formation.


Assuntos
Exoesqueleto , Vesículas Extracelulares , Pinctada , Exoesqueleto/imunologia , Animais , Vesículas Extracelulares/imunologia , Hemócitos/imunologia , Microscopia Eletrônica de Transmissão , Pinctada/imunologia , Reação em Cadeia da Polimerase em Tempo Real
13.
J Neuroimmunol ; 363: 577801, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973473

RESUMO

Huntington's disease (HD) is a late-onset; progressive, dominantly inherited neurological disorder marked by an abnormal expansion of polyglutamine (poly Q) repeats in Huntingtin (HTT) protein. The pathological effects of mutant Huntingtin (mHTT) are not restricted to the nervous system but systemic abnormalities including immune dysregulation have been evidenced in clinical and experimental settings of HD. Indeed, mHTT is ubiquitously expressed and could induce cellular toxicity by directly acting on immune cells. However, it is still unclear if selective expression of mHTT exon1 in neurons could induce immune responses and hemocytes' function. In the present study, we intended to monitor perturbations in the hemocytes' population and their physiological functions in Drosophila, caused by pan-neuronal expression of mHTT protein. A measure of hemocyte count and their physiological activities caused by pan-neuronal expression of mHTT protein highlighted the extent of immune dysregulation occurring with disease progression. We found that pan-neuronal expression of mHTT significantly alters crystal cells and plasmatocyte count in larvae and adults with disease progression. Interestingly, plasmatocytes isolated from diseased conditions exhibit a gradual decline in phagocytic activity ex vivo at progressive stages of the disease as compared to age-matched control groups. In addition, diseased flies displayed elevated reactive oxygen species (ROS) in circulating plasmatocytes at the larval stage and in sessile plasmatocytes of hematopoietic pockets at terminal stages of disease. These findings strongly implicate that neuronal expression of mHTT alone is sufficient to induce non-cell-autonomous immune dysregulation in vivo.


Assuntos
Hemócitos/imunologia , Proteína Huntingtina/genética , Doença de Huntington/imunologia , Fagocitose/imunologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila melanogaster , Humanos , Mutação , Neurônios/metabolismo
14.
Emerg Microbes Infect ; 11(1): 136-146, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34890523

RESUMO

Candida auris has globally emerged as a multidrug-resistant fungus linked to healthcare-associated outbreaks. There is still limited evidence on its virulence, pathogenicity determinants, and complex host-pathogen interactions. This study analyzes the in vivo fungal behaviour, immune response, and host-pathogen interactions upon C. auris infection compared to C. albicans and C. parapsilosis in G. mellonella. This was performed by immunolabelling fungal structures and larval plasmatocytes and using a quantitative approach incorporating bioinformatic morphometric techniques into the study of microbial pathogenesis. C. auris presents a remarkably higher immunogenic activity than expected at its moderate degree of tissue invasion. It induces a greater inflammatory response than C. albicans and C. parapsilosis at the expense of plasmatocyte nodule formation, especially in non-aggregative strains. It specifically invades the larval respiratory system, in a pattern not previously observed in other Candida species, and presents inter-phenotypic tissue tropism differences. C. auris filaments in vivo less frequently than C. albicans or C. parapsilosis mostly through pseudohyphal growth. Filamentation might not be a major pathogenic determinant in C. auris, as less virulent aggregative phenotypes form pseudohyphae to a greater extent. C. auris has important both interspecific and intraspecific virulence and phenotype heterogeneity, with aggregative phenotypes of C. auris sharing characteristics with low pathogenic species such as C. parapsilosis. Our work suggests that C. auris owns an important morphogenetic plasticity that distinguishes it from other yeasts of the genus. Routine phenotypic identification of aggregative or non-aggregative phenotypes should be performed in the clinical setting as it may impact patient management.


Assuntos
Candida auris/fisiologia , Interações Hospedeiro-Patógeno , Mariposas/imunologia , Mariposas/microbiologia , Animais , Candida albicans/imunologia , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candida auris/citologia , Candida auris/imunologia , Candida auris/patogenicidade , Candida parapsilosis/imunologia , Candida parapsilosis/patogenicidade , Candida parapsilosis/fisiologia , Hemócitos/imunologia , Hemócitos/fisiologia , Hemolinfa/microbiologia , Imunidade , Larva/microbiologia , Mariposas/fisiologia , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Virulência
15.
Aquat Toxicol ; 242: 106022, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798302

RESUMO

Oysters are an excellent biomonitor of coastal pollution and the hyper-accumulator of toxic metals such as copper and zinc (Zn). One unique feature of molluscs is their hemocytes which are mainly involved in immune defenses. Different subpopulations of hemocytes have been identified, but their functions in metal transport and detoxification are not clear. In this study, we examined the immune responses of different subpopulations of oyster Crassostrea hongkongensis hemocytes under different periods of Zn exposure by using flow cytometer and confocal microscopy. In vitro exposure to Zn resulted in acute immune responses by increasing the reactive oxygen species (ROS) production and phagocytosis and decreased number of granulocytes and mitochondrial membrane potential (MMP) within 3 h. Granulocyte mortality and lysosomal pH increased whereas glutathione (GSH) decreased within 1 h of in vitro exposure, indicating the immune stimulation of granulocytes. Within the first 7 days of in vivo exposure, immunocompetence of granulocytes was inhibited with increasing granulocyte mortality but decreasing ROS production and phagocytosis. However, with a further extension of Zn exposure to 14 days, both phagocytosis and lysosomal content increased with an increasing number of granulocytes, indicating the increase of hemocyte-mediated immunity. Our study demonstrated that granulocytes played important roles in oyster immune defenses while other subpopulations may also participate in immune functions. The degranulation and granulation due to transition between semigranulocytes and granulocytes after Zn exposure were important in metal detoxification. The study contributed to our understanding of the immune phenomena and the adaptive capability of oysters in metal contaminated environments.


Assuntos
Crassostrea , Hemócitos , Poluentes Químicos da Água , Zinco , Animais , Crassostrea/efeitos dos fármacos , Crassostrea/imunologia , Hemócitos/efeitos dos fármacos , Hemócitos/imunologia , Fagocitose , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
16.
Fish Shellfish Immunol ; 120: 202-213, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34843943

RESUMO

Oyster is the worldwide aquaculture molluscan and evolves a complex immune defense system, with hemocytes as the major immune system for its host defense. However, the functional heterogeneity of hemocyte has not been characterized, which markedly hinders our understanding of its defense role. Here, we used the single-cell transcriptome profiling (scRNA-seq), which provides a high-resolution visual insight into its dynamics, to map the hemocyte and assess its heterogeneity in a molluscan oyster Crassostrea hongkongensis. By combining with the cell type specific RNA-seq, thirteen subpopulations belonging to granulocyte, semi-granulocyte, and hyalinocyte were revealed. The granulocytes mainly participated in immune response and autophagy process. Pseudo-temporal ordering of granulocytes identified two different cell-lineages. The hematopoietic transcription factors regulated networks controlling their differentiations were also identified. We further identified one subpopulation of granulocytes in immune activate states with the cell cycle and immune responsive genes expressions, which illustrated the functional heterogeneity of the same cell type. Collectively, our scRNA-seq analysis demonstrated the hemocytes diversity of molluscans. The results are important in our understanding of the immune defense evolution and functional differentiation of hemocytes in Phylum Mollusca.


Assuntos
Crassostrea , Hemócitos , Transcriptoma , Animais , Crassostrea/genética , Crassostrea/imunologia , Granulócitos/imunologia , Hemócitos/imunologia , Ensaios de Triagem em Larga Escala , Fagocitose , RNA-Seq , Análise de Célula Única
17.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34865034

RESUMO

Extracellular traps (ETs) released from vertebrate and invertebrate immune cells consist of chromatin and toxic granule contents that are capable of immobilizing and killing microbes. This recently described innate immune response is not well documented in insects. The present study found that ETs were released by hemocytes of Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) in vivo and ex vivo after bacterial stimulation. ET release (ETosis), hemolymph coagulation, and melanization likely contributed to the immobilization and killing of the bacteria. The injection of G. mellonella hemocyte deoxyribonucleic acid (DNA) in the presence of bacteria increased bacterial clearance rate and prolonged insect survival. Taken together, these results indicate the presence of insect hemocyte extracellular traps (IHETs) that protect the insect against microbial infection in the hemocoel and represent the first documentation of ETs in insects in vivo.


Assuntos
Infecções Bacterianas , Armadilhas Extracelulares , Hemócitos , Mariposas , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/veterinária , Armadilhas Extracelulares/imunologia , Hemócitos/imunologia , Hemócitos/microbiologia , Larva , Mariposas/imunologia , Mariposas/microbiologia
18.
J Therm Biol ; 101: 103082, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34879910

RESUMO

Changes in temperature resulting from climate change can impact the distribution and survival of species, including bees, where temperature may also affect their immune system. Evaluation of immune system activity is often performed by the total count of circulating hemocytes in the hemolymph. However, there are few studies on bees examining the relationship between the amount of circulating hemocytes and temperature. This study evaluated changes of circulating hemocytes in Apis mellifera hemolymph at different temperatures and development stages. Total hemocytes of bees were determined at - 8, 16, 24, and 32 °C - and at different development stages - in vivo larvae, in vitro larvae, newly emerged, and forager bees. A. mellifera larvae had a greater number of circulating hemocytes compared to the other development stages (newly emerged and foragers). Additionally, temperature was an important factor explaining variation of circulating hemocytes in the hemolymph, according to principal component analyses (PCA), as the number of circulating hemocytes was greater at higher temperatures. Therefore, extreme events arising from climate change, such as variation in temperature, can directly impact the immune system of bees, both individually and at the colony level, threatening the distribution and survival of several species.


Assuntos
Abelhas/imunologia , Temperatura , Animais , Hemócitos/imunologia , Hemolinfa/imunologia , Larva/imunologia
19.
Front Immunol ; 12: 735497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603317

RESUMO

Serine protease inhibitors of Kazal-type (SPINKs) were widely identified in vertebrates and invertebrates, and played regulatory roles in digestion, coagulation, and fibrinolysis. In this study, we reported the important role of SPINK7 in regulating immune defense of silkworm, Bombyx mori. SPINK7 contains three Kazal domains and has 6 conserved cysteine residues in each domain. Quantitative real-time PCR analyses revealed that SPINK7 was exclusively expressed in hemocytes and was upregulated after infection with two fungi, Saccharomyces cerevisiae and Candida albicans. Enzyme activity inhibition test showed that SPINK7 significantly inhibited the activity of proteinase K from C. albicans. Additionally, SPINK7 inhibited the growth of three fungal spores, including S. cerevisiae, C. albicans, and Beauveria bassiana. The pathogen-associated molecular patterns (PAMP) binding assays suggested that SPINK7 could bind to ß-D-glucan and agglutinate B. bassiana and C. albicans. In vitro assays were performed using SPINK7-coated agarose beads, and indicated that SPINK7 promoted encapsulation and melanization of agarose beads by B. mori hemocytes. Furthermore, co-localization studies using immunofluorescence revealed that SPINK7 induced hemocytes to aggregate and entrap the fungi spores of B. bassiana and C. albicans. Our study revealed that SPINK7 could recognize fungal PAMP and induce the aggregation, melanization, and encapsulation of hemocytes, and provided valuable clues for understanding the innate immunity and cellular immunity in insects.


Assuntos
Beauveria/imunologia , Bombyx/imunologia , Candida albicans/imunologia , Hemócitos/imunologia , Proteínas de Insetos/metabolismo , Micoses/imunologia , Saccharomyces cerevisiae/imunologia , Inibidor da Tripsina Pancreática de Kazal/metabolismo , Animais , Beauveria/metabolismo , Beauveria/patogenicidade , Bombyx/genética , Bombyx/metabolismo , Bombyx/microbiologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Hemócitos/metabolismo , Hemócitos/microbiologia , Interações entre Hospedeiro e Microrganismos , Imunidade Celular , Imunidade Inata , Proteínas de Insetos/genética , Micoses/genética , Micoses/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Saccharomyces cerevisiae/patogenicidade , Transdução de Sinais , Inibidor da Tripsina Pancreática de Kazal/genética
20.
Front Immunol ; 12: 746017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621277

RESUMO

Vibrio species are ubiquitously distributed in marine environments, with important implications for emerging infectious diseases. However, relatively little is known about defensive strategies deployed by hosts against Vibrio pathogens of distinct virulence traits. Being an ecologically relevant host, the oyster Crassostrea hongkongensis can serve as an excellent model for elucidating mechanisms underlying host-Vibrio interactions. We generated a Vibrio alginolyticus mutant strain (V. alginolyticus△vscC ) with attenuated virulence by knocking out the vscC encoding gene, a core component of type III secretion system (T3SS), which led to starkly reduced apoptotic rates in hemocyte hosts compared to the V. alginolyticusWT control. In comparative proteomics, it was revealed that distinct immune responses arose upon encounter with V. alginolyticus strains of different virulence. Quite strikingly, the peroxisomal and apoptotic pathways are activated by V. alginolyticusWT infection, whereas phagocytosis and cell adhesion were enhanced in V. alginolyticus△vscC infection. Results for functional studies further show that V. alginolyticusWT strain stimulated respiratory bursts to produce excess superoxide (O2•-) and hydrogen peroxide (H2O2) in oysters, which induced apoptosis regulated by p53 target protein (p53tp). Simultaneously, a drop in sGC content balanced off cGMP accumulation in hemocytes and repressed the occurrence of apoptosis to a certain extent during V. alginolyticus△vscC infection. We have thus provided the first direct evidence for a mechanistic link between virulence of Vibrio spp. and its immunomodulation effects on apoptosis in the oyster. Collectively, we conclude that adaptive responses in host defenses are partially determined by pathogen virulence, in order to safeguard efficiency and timeliness in bacterial clearance.


Assuntos
Crassostrea/microbiologia , Hemócitos/imunologia , Vibrio alginolyticus/patogenicidade , Animais , Apoptose , Proteínas de Bactérias/genética , Crassostrea/efeitos dos fármacos , Crassostrea/imunologia , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Técnicas de Inativação de Genes , Hemócitos/citologia , Hemócitos/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/farmacologia , Deleção de Sequência , Superóxidos/análise , Sistemas de Secreção Tipo III/genética , Vibrio alginolyticus/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...