Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 8569, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444622

RESUMO

The role of magnetism in the biological functioning of hemoglobin has been debated since its discovery by Pauling and Coryell in 1936. The hemoglobin molecule contains four heme groups each having a porphyrin layer with a Fe ion at the center. Here, we present combined density-functional theory and quantum Monte Carlo calculations for an effective model of Fe in a heme cluster. In comparison with these calculations, we analyze the experimental data on human adult hemoglobin (HbA) from the magnetic susceptibility, Mössbauer and magnetic circular dichroism (MCD) measurements. In both the deoxygenated (deoxy) and the oxygenated (oxy) cases, we show that local magnetic moments develop in the porphyrin layer with antiferromagnetic coupling to the Fe moment. Our calculations reproduce the magnetic susceptibility measurements on deoxy and oxy-HbA. For deoxy-HbA, we show that the anomalous MCD signal in the UV region is an experimental evidence for the presence of antiferromagnetic Fe-porphyrin correlations. The functional properties of hemoglobin such as the binding of O2, the Bohr effect and the cooperativity are explained based on the magnetic correlations. This analysis suggests that magnetism could be involved in the functioning of hemoglobin.


Assuntos
Heme/metabolismo , Hemeproteínas/fisiologia , Hemoglobinas/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Heme/química , Hemoglobinas/química , Humanos , Ferro/química , Fenômenos Magnéticos , Oxigênio/química
2.
Brain Res ; 1720: 146317, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276637

RESUMO

Malaria, caused by an intracellular protozoan parasite of the genus Plasmodium, is one of the most important infectious diseases worldwide. In 2017, a total of 219 millions cases were reported with 435,000 deaths related to malaria. A major complication of malaria infection is cerebral malaria (CM), characterized by enhanced blood-brain barrier permeability, leukocyte infiltration and/or activation, and neuronal dropout resulting in coma and death in significant numbers of individuals, especially children. Despite the high incidence and mortality, the pathogenesis of cerebral malaria is not well characterized. Hemozoin (HMZ) or "malaria pigment," a by-product of intraerythrocytic parasite-mediated hemoglobin catabolism, is released into the bloodstream after lysis of the host infected erythrocyte. The effects of HMZ on brain cells has not been studied due to the contamination/adhesion/aggregation of the HMZ with host and toxic parasitic factors. We now demonstrate that extracellular purified HMZ is taken up by human neurons and astrocytes, resulting in cellular dysfunction and toxicity. These findings contribute to a better understanding of the neuropathogenesis of CM and provide evidence that HMZ accumulation in the bloodstream could result in CNS compromise. Thus, alternative approaches to reducing circulating HMZ could serve as a potential treatment.


Assuntos
Hemeproteínas/metabolismo , Malária Cerebral/fisiopatologia , Apoptose/fisiologia , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Cultura de Células , Eritrócitos , Feto , Hemeproteínas/fisiologia , Humanos , Malária Cerebral/metabolismo , Neurônios/patologia
3.
Arch Biochem Biophys ; 641: 1-30, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407792

RESUMO

Heme proteins are crucial for biological systems by performing diverse functions. Nature has evolved diverse approaches to fine-tune the structure and function of heme proteins, of which post-translational modification (PTM) is a primary method. As reviewed herein, a multitude of PTMs have been discovered for heme proteins in the last several decades, including heme-protein cross-links with heme side chains (Cys-heme, Tyr-heme and Asp/Glu-heme, etc) or porphyrin ring (Lys-heme and Tyr-heme, etc), heme modifications (sulfheme and nitriheme, etc), amino acids cross-links between two or among multiple residues (Cys-Cys, Tyr-His, Tyr-Cys, Met-Tyr-Trp, etc), and amino acids modifications by oxidation, nitration, phosphorylation and glycation, etc. With the development of research methods and advances in research techniques, deep insights have been obtained for the formation mechanisms of PTMs, as well as their effects on the structure and function of heme proteins. Moreover, some positive PTMs have been successfully applied to create artificial heme proteins with advanced functions, whereas some negative PTMs have been regulated by rational design of inhibitors. The tremendous progress, together with those ongoing, will make it possible to rationally control the diverse PTMs of heme proteins, especially those associated with human diseases, toward our desired goals for a better life.


Assuntos
Hemeproteínas/química , Hemeproteínas/fisiologia , Processamento de Proteína Pós-Traducional , Aminoácidos/química , Glucose/química , Humanos , Nitratos/química , Oxirredução , Fosforilação , Relação Estrutura-Atividade
4.
Proc Natl Acad Sci U S A ; 114(32): 8556-8561, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739893

RESUMO

Proteins carrying an iron-porphyrin (heme) cofactor are essential for biological O2 management. The nature of Fe-O2 bonding in hemoproteins is debated for decades. We used energy-sampling and rapid-scan X-ray Kß emission and K-edge absorption spectroscopy as well as quantum chemistry to determine molecular and electronic structures of unligated (deoxy), CO-inhibited (carboxy), and O2-bound (oxy) hemes in myoglobin (MB) and hemoglobin (HB) solutions and in porphyrin compounds at 20-260 K. Similar metrical and spectral features revealed analogous heme sites in MB and HB and the absence of low-spin (LS) to high-spin (HS) conversion. Amplitudes of Kß main-line emission spectra were directly related to the formal unpaired Fe(d) spin count, indicating HS Fe(II) in deoxy and LS Fe(II) in carboxy. For oxy, two unpaired Fe(d) spins and, thus by definition, an intermediate-spin iron center, were revealed by our static and kinetic X-ray data, as supported by (time-dependent) density functional theory and complete-active-space self-consistent-field calculations. The emerging Fe-O2 bonding situation includes in essence a ferrous iron center, minor superoxide character of the noninnocent ligand, significant double-bond properties of the interaction, and three-center electron delocalization as in ozone. It resolves the apparently contradictory classical models of Pauling, Weiss, and McClure/Goddard into a unifying view of O2 bonding, tuned toward reversible oxygen transport.


Assuntos
Hemeproteínas/fisiologia , Hemoglobinas/química , Ferro/metabolismo , Proteínas de Transporte , Elétrons , Heme/química , Heme/metabolismo , Hemeproteínas/metabolismo , Hemoglobinas/metabolismo , Ferro/química , Ligantes , Mioglobina/química , Mioglobina/metabolismo , Oxigênio/metabolismo , Porfirinas/metabolismo , Análise Espectral , Raios X
5.
Int J Mol Sci ; 18(6)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28632164

RESUMO

Thiosulfate formation and biodegradation processes link aerobic and anaerobic metabolism of cysteine. In these reactions, sulfite formed from thiosulfate is oxidized to sulfate while hydrogen sulfide is transformed into thiosulfate. These processes occurring mostly in mitochondria are described as a canonical hydrogen sulfide oxidation pathway. In this review, we discuss the current state of knowledge on the interactions between hydrogen sulfide and hemoglobin, myoglobin and neuroglobin and postulate that thiosulfate is a metabolically important product of this processes. Hydrogen sulfide oxidation by ferric hemoglobin, myoglobin and neuroglobin has been defined as a non-canonical hydrogen sulfide oxidation pathway. Until recently, it appeared that the goal of thiosulfate production was to delay irreversible oxidation of hydrogen sulfide to sulfate excreted in urine; while thiosulfate itself was only an intermediate, transient metabolite on the hydrogen sulfide oxidation pathway. In the light of data presented in this paper, it seems that thiosulfate is a molecule that plays a prominent role in the human body. Thus, we hope that all these findings will encourage further studies on the role of hemoproteins in the formation of this undoubtedly fascinating molecule and on the mechanisms responsible for its biological activity in the human body.


Assuntos
Globinas/fisiologia , Hemoglobinas/fisiologia , Mioglobina/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Tiossulfatos/metabolismo , Cisteína/metabolismo , Hemeproteínas/fisiologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Neuroglobina , Oxirredução , Sulfetos/metabolismo , Sulfitos/metabolismo
6.
Biomol Concepts ; 8(2): 105-118, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28574374

RESUMO

Classical all α-helical globins are present in all living organisms and are ordered in three lineages: (i) flavohemoglobins and single domain globins, (ii) protoglobins and globin coupled sensors and (iii) truncated hemoglobins, displaying the 3/3 or the 2/2 all α-helical fold. However, over the last two decades, all ß-barrel and mixed α-helical-ß-barrel heme-proteins displaying heme-based functional properties (e.g. ligand binding, transport and sensing) closely similar to those of all α-helical globins have been reported. Monomeric nitrophorins (NPs) and α1-microglobulin (α1-m), belonging to the lipocalin superfamily and nitrobindins (Nbs) represent prototypical heme-proteins displaying the all ß-barrel and mixed α-helical-ß-barrel folds. NPs are confined to the Reduviidae and Cimicidae families of Heteroptera, whereas α1-m and Nbs constitute heme-protein families spanning bacteria to Homo sapiens. The structural organization and the reactivity of the stable ferric solvent-exposed heme-Fe atom suggest that NPs and Nbs are devoted to NO transport, storage and sensing, whereas Hs-α1-m participates in heme metabolism. Here, the structural and functional properties of NPs and Nbs are reviewed in parallel with those of sperm whale myoglobin, which is generally taken as the prototype of monomeric globins.


Assuntos
Hemeproteínas/fisiologia , Proteínas e Peptídeos Salivares/fisiologia , Animais , Percevejos-de-Cama , Hemeproteínas/química , Humanos , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas e Peptídeos Salivares/química , Termodinâmica
7.
Proc Natl Acad Sci U S A ; 113(12): E1757-66, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26951670

RESUMO

The virulence of many pathogens depends upon their ability to cope with immune-generated nitric oxide (NO·). In Escherichia coli, the major NO· detoxification systems are Hmp, an NO· dioxygenase (NOD), and NorV, an NO· reductase (NOR). It is well established that Hmp is the dominant system under aerobic conditions, whereas NorV dominates anaerobic conditions; however, the quantitative contributions of these systems under the physiologically relevant microaerobic regime remain ill defined. Here, we investigated NO· detoxification in environments ranging from 0 to 50 µM O2, and discovered a regime in which E. coli NO· defenses were severely compromised, as well as conditions that exhibited oscillations in the concentration of NO·. Using an integrated computational and experimental approach, E. coli NO· detoxification was found to be extremely impaired at low O2 due to a combination of its inhibitory effects on NorV, Hmp, and translational activities, whereas oscillations were found to result from a kinetic competition for O2 between Hmp and respiratory cytochromes. Because at least 777 different bacterial species contain the genetic requirements of this stress response oscillator, we hypothesize that such oscillatory behavior could be a widespread phenomenon. In support of this hypothesis,Pseudomonas aeruginosa, whose respiratory and NO· response networks differ considerably from those of E. coli, was found to exhibit analogous oscillations in low O2 environments. This work provides insight into how bacterial NO· defenses function under the low O2 conditions that are likely to be encountered within host environments.


Assuntos
Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Aerobiose , Simulação por Computador , Di-Hidropteridina Redutase/fisiologia , Proteínas de Escherichia coli/fisiologia , Hemeproteínas/fisiologia , Interações Hospedeiro-Patógeno , Modelos Biológicos , NADH NADPH Oxirredutases/fisiologia , Oxirredutases/fisiologia , Oxigênio/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Especificidade da Espécie
8.
Cell Microbiol ; 18(3): 413-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26348250

RESUMO

Plasmodium falciparum (P. falciparum)-induced effects on the phenotype of human dendritic cells (DC) could contribute to poor induction of long-lasting protective immunity against malaria. DC ability to present antigens to naïve T cells, thus initiating adaptive immune responses depends on complex switches in chemokine receptors, production of soluble mediators and expression of molecules enabling antigen-presentation and maturation. To examine the cellular basis of these processes in the context of malaria, we performed detailed analysis of early events following exposure of human monocyte-derived DC to natural hemozoin (nHZ) and the synthetic analog of its heme core, ß-hematin. DC exposed to either molecule produced high levels of the inflammatory chemokine MCP-1, showed continuous high expression of the inflammatory chemokine receptor CCR5, no upregulation of the lymphoid homing receptor CCR7 and no cytoskeletal actin redistribution with loss of podosomes. DC partially matured as indicated by increased expression of major histocompatibility complex (MHC) class II and CD86 following nHZ and ß-hematin exposure, however there was a lack in expression of the maturation marker CD83 following nHZ but not ß-hematin exposure. Overall our data demonstrate that exposure to nHZ partially impairs the capacity of DC to mature, an effect in part differential to ß-hematin.


Assuntos
Células Dendríticas/fisiologia , Hemeproteínas/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/metabolismo , Antígenos CD/metabolismo , Antígeno B7-2/metabolismo , Quimiocina CCL2/metabolismo , Células Dendríticas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hemeproteínas/farmacologia , Humanos , Imunoglobulinas/metabolismo , Lipopolissacarídeos/farmacologia , Malária Falciparum/parasitologia , Glicoproteínas de Membrana/metabolismo , Podossomos/efeitos dos fármacos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo , Antígeno CD83
9.
J Biol Chem ; 290(31): 19067-80, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26063806

RESUMO

The genome of the cyanobacterium Nostoc sp. PCC7120 carries three genes (all4978, all7016, and alr7522) encoding putative heme-binding GAF (cGMP-specific phosphodiesterases, adenylyl cyclases, and FhlA) proteins that were annotated as transcriptional regulators. They are composed of an N-terminal cofactor domain and a C-terminal helix-turn-helix motif. All4978 showed the highest affinity for protoheme binding. The heme binding capability of All7016 was moderate, and Alr7522 did not bind heme at all. The "as isolated" form of All4978, identified by Soret band (λmax = 427 nm), was assigned by electronic absorption, EPR, and resonance Raman spectroscopy as a hexa-coordinated low spin Fe(III) heme with a distal cysteine ligand (absorption of δ-band around 360 nm). The protoheme cofactor is noncovalently incorporated. Reduction of the heme could be accomplished by chemically using sodium dithionite and electrospectrochemically; this latter method yielded remarkably low midpoint potentials of -445 and -453 mV (following Soret and α-band absorption changes, respectively). The reduced form of the heme (Fe(II) state) binds both NO and CO. Cysteine coordination of the as isolated Fe(III) protein is unambiguous, but interestingly, the reduced heme instead displays spectral features indicative of histidine coordination. Cys-His ligand switches have been reported as putative signaling mechanisms in other heme-binding proteins; however, these novel cyanobacterial proteins are the first where such a ligand-switch mechanism has been observed in a GAF domain. DNA binding of the helix-turn-helix domain was investigated using a DNA sequence motif from its own promoter region. Formation of a protein-DNA complex preferentially formed in ferric state of the protein.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/metabolismo , Hemeproteínas/química , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Heme/química , Hemeproteínas/fisiologia , Ligantes , Dados de Sequência Molecular , Oxirredução , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Secundária de Proteína
10.
PLoS One ; 10(3): e0119836, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781011

RESUMO

The role of infection in erythropoietic dysfunction is poorly understood. In children with P. falciparum malaria, the by-product of hemoglobin digestion in infected red cells (hemozoin) is associated with the severity of anemia which is independent of circulating levels of the inflammatory cytokine tumor necrosis alpha (TNF-α). To gain insight into the common and specific effects of TNF-α and hemozoin on erythropoiesis, we studied the gene expression profile of purified primary erythroid cultures exposed to either TNF-α (10 ng/ml) or to hemozoin (12.5 µg/ml heme units) for 24 hours. Perturbed gene function was assessed using co-annotation of associated gene ontologies and expression of selected genes representative of the profile observed was confirmed by real time PCR (rtPCR). The changes in gene expression induced by each agent were largely distinct; many of the genes significantly modulated by TNF-α were not affected by hemozoin. The genes modulated by TNF-α were significantly enriched for those encoding proteins involved in the control of type 1 interferon signalling and the immune response to viral infection. In contrast, genes induced by hemozoin were significantly enriched for functional roles in regulation of transcription and apoptosis. Further analyses by rtPCR revealed that hemozoin increases expression of transcription factors that form part of the integrated stress response which is accompanied by reduced expression of genes involved in DNA repair. This study confirms that hemozoin induces cellular stress on erythroblasts that is additional to and distinct from responses to inflammatory cytokines and identifies new genes that may be involved in the pathogenesis of severe malarial anemia. More generally the respective transcription profiles highlight the varied mechanisms through which erythropoiesis may be disrupted during infectious disease.


Assuntos
Eritrócitos/citologia , Eritropoese/fisiologia , Doenças Hematológicas/etiologia , Hemeproteínas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hemeproteínas/metabolismo , Hemeproteínas/fisiologia , Humanos , Imunidade Celular , Interferons/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/fisiologia
11.
J Parasitol ; 100(6): 737-42, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25265042

RESUMO

Despite recent advances in medical technology and a global effort to improve public health and hygiene, parasitic infections remain a major health and economic burden worldwide. The World Health Organization estimates that about 1/3 of the world's population is currently infected with a soil-transmitted helminth, and millions more suffer from diseases caused by protozoan parasites including Plasmodium, Trypanosoma, and Leishmania species. Due to the selective pressure applied by parasitic and other infections, animals have evolved an intricate immune system; however, the current worldwide prevalence of parasitic infections clearly indicates that these pathogens have adapted equally well. Thus, developing a better understanding of the host-parasite relationship, particularly by focusing on the host immune response and the mechanisms by which parasites evade this response, is a critical first step in mitigating the detrimental effects of parasitic diseases. Macrophages are critical contributors during the host response to protozoan parasites, and the success or failure of these cells often tips the balance in favor of the host or parasite. Herein, we briefly discuss macrophage biology and provide an update on our current understanding of how these cells recognize glycosylphosphatidylinositol anchors from protozoan parasites as well as malarial hemozoin.


Assuntos
Glicosilfosfatidilinositóis/fisiologia , Hemeproteínas/fisiologia , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Fagocitose/fisiologia , Animais , Plasmodium/química , Plasmodium/metabolismo , Receptores Toll-Like/fisiologia
12.
PLoS One ; 9(7): e103706, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078090

RESUMO

Apoptosis in macrophages is responsible for immune-depression and pathological effects during malaria. Phagocytosis of PRBC causes induction of apoptosis in macrophages through release of cytosolic factors from infected cells. Heme polymer or ß-hematin causes dose-dependent death of macrophages with LC50 of 132 µg/ml and 182 µg/ml respectively. The toxicity of hemin or heme polymer was amplified several folds in the presence of non-toxic concentration of methemoglobin. ß-hematin uptake in macrophage through phagocytosis is crucial for enhanced toxicological effects in the presence of methemoglobin. Higher accumulation of ß-hematin is observed in macrophages treated with ß-hematin along with methemoglobin. Light and scanning electron microscopic observations further confirm accumulation of ß-hematin with cellular toxicity. Toxicological potentiation of pro-oxidant molecules toward macrophages depends on generation of H2O2 and independent to release of free iron from pro-oxidant molecules. Methemoglobin oxidizes ß-hematin to form oxidized ß-hematin (ßH*) through single electron transfer mechanism. Pre-treatment of reaction mixture with spin-trap Phenyl-N-t-butyl-nitrone dose-dependently reverses the ß-hematin toxicity, indicates crucial role of ßH* generation with the toxicological potentiation. Acridine orange/ethidium bromide staining and DNA fragmentation analysis indicate that macrophage follows an oxidative stress dependent apoptotic pathway to cause death. In summary, current work highlights mutual co-operation between methemoglobin and different pro-oxidant molecules to enhance toxicity towards macrophages. Hence, methemoglobin peroxidase activity can be probed for subduing cellular toxicity of pro-oxidant molecules and it may in-turn make up for host immune response against the malaria parasite.


Assuntos
Heme/fisiologia , Hemeproteínas/fisiologia , Macrófagos/fisiologia , Metemoglobina/fisiologia , Animais , Antimaláricos/efeitos adversos , Antimaláricos/uso terapêutico , Apoptose , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Heme/toxicidade , Hemeproteínas/toxicidade , Peróxido de Hidrogênio/metabolismo , Dose Letal Mediana , Peroxidação de Lipídeos , Macrófagos/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Metemoglobina/toxicidade , Camundongos , Oxirredução , Estresse Oxidativo , Fagocitose , Plasmodium falciparum/fisiologia , Polímeros/toxicidade , Carbonilação Proteica , Espécies Reativas de Oxigênio/toxicidade
13.
Biochim Biophys Acta ; 1840(6): 2032-41, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24556123

RESUMO

BACKGROUND: Malaria is an extremely devastating disease that continues to affect millions of people each year. A distinctive attribute of malaria infected red blood cells is the presence of malarial pigment or the so-called hemozoin. Hemozoin is a biocrystal synthesized by Plasmodium and other blood-feeding parasites to avoid the toxicity of free heme derived from the digestion of hemoglobin during invasion of the erythrocytes. SCOPE OF REVIEW: Hemozoin is involved in several aspects of the pathology of the disease as well as in important processes such as the immunogenicity elicited. It is known that the once best antimalarial drug, chloroquine, exerted its effect through interference with the process of hemozoin formation. In the present review we explore what is known about hemozoin, from hemoglobin digestion, to its final structural analysis, to its physicochemical properties, its role in the disease and notions of the possible mechanisms that could kill the parasite by disrupting the synthesis or integrity of this remarkable crystal. MAJOR CONCLUSIONS: The importance and peculiarities of this biocrystal have given researchers a cause to consider it as a target for new antimalarials and to use it through unconventional approaches for diagnostics and therapeutics against the disease. GENERAL SIGNIFICANCE: Hemozoin plays an essential role in the biology of malarial disease. Innovative ideas could use all the existing data on the unique chemical and biophysical properties of this macromolecule to come up with new ways of combating malaria.


Assuntos
Hemeproteínas/fisiologia , Malária/tratamento farmacológico , Animais , Cloroquina/farmacologia , Cristalização , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/química , Humanos , Malária/etiologia
14.
Oncogene ; 33(38): 4653-63, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24141772

RESUMO

Haeme-responsive gene (HRG)-1 encodes a 16-kDa transmembrane protein that is induced by insulin-like growth factor-1 (IGF-1) and associates with the vacuolar-(H(+)) ATPase (V-ATPase). We previously reported that HRG-1 is essential for V-ATPase activity in endosomal acidification and receptor trafficking. Here, we show that in highly invasive and migratory cancer cell lines, HRG-1 and the V-ATPase are co-expressed at the plasma membrane, whereas in less invasive cell lines and non-transformed cells HRG-1 over-expression remains confined to intracellular compartments. Stable suppression of HRG-1 in invasive breast cancer MDA-MB-231 cells decreases extracellular pH, cell growth, migration and invasion. Ectopic expression of HRG-1 in non-invasive MCF-7 cells enhances V-ATPase activity, lowers the extracellular pH and increases the pH-dependent activity of MMP2 and MMP9 matrix metalloproteinases. HRG-1 enhances trafficking of the glucose transporter-1 (GLUT-1) with a concomitant increase in glucose uptake and lactate production. HRG-1 also promotes trafficking of the insulin-like growth factor I receptor (IGF-1R), ß1-integrin and IGF-1 signalling. Taken together, our findings indicate that HRG-1 expression at the plasma membrane enhances V-ATPase activity, drives glycolytic flux and facilitates cancer cell growth, migration and invasion. Thus, HRG-1 may represent a novel target for selectively disrupting V-ATPase activity and the metastatic potential of cancer cells.


Assuntos
Glucose/metabolismo , Hemeproteínas/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Membrana Celular/metabolismo , Citosol/metabolismo , Líquido Extracelular/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Ácido Láctico/metabolismo , Células MCF-7 , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Transporte Proteico
15.
Am J Respir Cell Mol Biol ; 48(5): 589-600, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23328641

RESUMO

Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a deadly complication of malaria, and its pathophysiology is insufficiently understood. Both in humans and in murine models, MA-ARDS is characterized by marked pulmonary inflammation. We investigated the role of hemozoin in MA-ARDS in C57Bl/6 mice infected with Plasmodium berghei NK65, P. berghei ANKA, and P. chabaudi AS. By quantifying hemozoin in the lungs and measuring the disease parameters of MA-ARDS, we demonstrated a highly significant correlation between pulmonary hemozoin concentrations, lung weights, and alveolar edema. Histological analysis of the lungs demonstrated that hemozoin is localized in phagocytes and infected erythrocytes, and only occasionally in granulocytes. Species-specific differences in hemozoin production, as measured among individual schizonts, were associated with variations in pulmonary pathogenicity. Furthermore, both pulmonary hemozoin and lung pathology were correlated with the number of infiltrating inflammatory cells, an increased pulmonary expression of cytokines, chemokines, and enzymes, and concentrations of alveolar vascular endothelial growth factor. The causal relationship between hemozoin and inflammation was investigated by injecting P. falciparum-derived hemozoin intravenously into malaria-free mice. Hemozoin potently induced the pulmonary expression of proinflammatory chemokines (interferon-γ inducible protein-10/CXC-chemokine ligand (CXCL)10, monocyte chemotactic protein-1/CC-chemokine ligand 2, and keratinocyte-derived chemokine/CXCL1), cytokines (IL-1ß, IL-6, IL-10, TNF, and transforming growth factor-ß), and other inflammatory mediators (inducible nitric oxide synthase, heme oxygenase-1, nicotinamide adenine dinucleotide phosphate- oxidase-2, and intercellular adhesion molecule-1). Thus, hemozoin correlates with MA-ARDS and induces pulmonary inflammation.


Assuntos
Hemeproteínas/metabolismo , Malária/metabolismo , Plasmodium berghei/metabolismo , Plasmodium chabaudi/metabolismo , Pneumonia/parasitologia , Síndrome do Desconforto Respiratório/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Contagem de Linfócito CD4 , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Hemeproteínas/fisiologia , Interações Hospedeiro-Parasita , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária/complicações , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Plasmodium berghei/imunologia , Plasmodium berghei/fisiologia , Plasmodium chabaudi/imunologia , Plasmodium chabaudi/fisiologia , Pneumonia/imunologia , Pneumonia/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Esquizontes/imunologia , Esquizontes/metabolismo , Esquizontes/fisiologia , Especificidade da Espécie , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Blood ; 119(18): 4301-10, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22403252

RESUMO

Severe Plasmodium falciparum malaria evolves through the interplay among capillary sequestration of parasitized erythrocytes, deregulated inflammatory responses, and hemostasis dysfunction. After rupture, each parasitized erythrocyte releases not only infective merozoites, but also the digestive vacuole (DV), a membrane-bounded organelle containing the malaria pigment hemozoin. In the present study, we report that the intact organelle, but not isolated hemozoin, dually activates the alternative complement and the intrinsic clotting pathway. Procoagulant activity is destroyed by phospholipase C treatment, indicating a critical role of phospholipid head groups exposed at the DV surface. Intravenous injection of DVs caused alternative pathway complement consumption and provoked apathy and reduced nociceptive responses in rats. Ultrasonication destroyed complement-activating and procoagulant properties in vitro and rendered the DVs biologically inactive in vivo. Low-molecular-weight dextran sulfate blocked activation of both complement and coagulation and protected animals from the harmful effects of DV infusion. We surmise that in chronic malaria, complement activation by and opsonization of the DV may serve a useful function in directing hemozoin to phagocytic cells for safe disposal. However, when the waste disposal system of the host is overburdened, DVs may transform into a trigger of pathology and therefore represent a potential therapeutic target in severe malaria.


Assuntos
Coagulação Sanguínea/fisiologia , Via Alternativa do Complemento/fisiologia , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Vacúolos/fisiologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Sulfato de Dextrana/farmacologia , Hemeproteínas/fisiologia , Hemólise , Humanos , Hipestesia/etiologia , Membranas Intracelulares/fisiologia , Pulmão/parasitologia , Malária Falciparum/sangue , Malária Falciparum/complicações , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Monócitos/parasitologia , Limiar da Dor , Fagocitose , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/ultraestrutura , Ratos , Ratos Sprague-Dawley , Baço/parasitologia
19.
Free Radic Biol Med ; 52(9): 1620-33, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22343413

RESUMO

Nitric oxide (NO) is an inevitable product of life in an oxygen- and nitrogen-rich environment. This reactive diatomic molecule exhibits microbial cytotoxicity, in large part by facilitating nitrosative stress and inhibiting heme-containing proteins within the aerobic respiratory chain. Metabolism of NO is therefore essential for microbial life. In many bacteria, fungi, and protozoa, the evolutionarily ancient flavohemoglobin (flavoHb) converts NO and O(2) to inert nitrate (NO(3)(-)) and undergoes catalytic regeneration via flavin-dependent reduction. Since its identification, widespread efforts have characterized roles for flavoHb in microbial nitrosative stress protection. Subsequent genomic studies focused on flavoHb have elucidated the transcriptional machinery necessary for inducible NO protection, such as NsrR in Escherichia coli, as well as additional proteins that constitute a nitrosative stress protection program. As an alternative strategy, flavoHb has been heterologously employed in higher eukaryotic organisms such as plants and human tumors to probe the function(s) of endogenous NO signaling. Such an approach may also provide a therapeutic route to in vivo NO depletion. Here we focus on the molecular features of flavoHb, the hitherto characterized NO-sensitive transcriptional machinery responsible for its induction, the roles of flavoHb in resisting mammalian host defense systems, and heterologous applications of flavoHb in plant/mammalian systems (including human tumors), as well as unresolved questions surrounding this paradigmatic NO-consuming enzyme.


Assuntos
Di-Hidropteridina Redutase/fisiologia , Proteínas de Escherichia coli/fisiologia , Hemeproteínas/fisiologia , NADH NADPH Oxirredutases/fisiologia , Nitrosação , Estresse Oxidativo , Aerobiose , Sequência de Aminoácidos , Anaerobiose , Di-Hidropteridina Redutase/química , Di-Hidropteridina Redutase/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hemeproteínas/química , Hemeproteínas/genética , Humanos , Dados de Sequência Molecular , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/genética , Óxido Nítrico/fisiologia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Transcrição Gênica
20.
Biofactors ; 38(1): 1-13, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22213392

RESUMO

CO is a colorless and odorless gas produced by the incomplete combustion of hydrocarbons, both of natural and anthropogenic origin. Several microorganisms, including aerobic and anaerobic bacteria and anaerobic archaea, use exogenous CO as a source of carbon and energy for growth. On the other hand, eukaryotic organisms use endogenous CO, produced during heme degradation, as a neurotransmitter and as a signal molecule. CO sensors act as signal transducers by coupling a "regulatory" heme-binding domain to a "functional" signal transmitter. Although high CO concentrations inhibit generally heme-protein actions, low CO levels can influence several signaling pathways, including those regulated by soluble guanylate cyclase and/or mitogen-activated protein kinases. This review summarizes recent insights into CO metabolism, sensing, and signaling.


Assuntos
Monóxido de Carbono/metabolismo , Transdução de Sinais , Animais , Archaea/metabolismo , Bactérias/metabolismo , Hemeproteínas/genética , Hemeproteínas/metabolismo , Hemeproteínas/fisiologia , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...