Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
1.
J Clin Endocrinol Metab ; 109(4): 978-991, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37962976

RESUMO

BACKGROUND: Men with Klinefelter syndrome (KS) develop hypergonadotropic hypogonadism, are in need of testosterone replacement therapy (TRT), and present with a more than 4-fold increased risk of thrombosis. TRT in KS has the potential to modify thrombotic risk, but data are scarce. AIM: To assess effects of 18 months of TRT on hemostasis in KS and identify genes associated with the prothrombotic phenotype. METHODS: Untreated and TRT-treated men with KS were included at baseline and matched to healthy controls. TRT was initiated in untreated KS and all groups were reassessed after 18 months of follow-up. Thrombin generation was evaluated with or without thrombomodulin, and fibrin clot lysis was evaluated by turbidity measurements. RNA expression was assessed in blood, fat, and muscle tissue of patients with TRT-treated KS and controls. RESULTS: Thrombin generation with thrombomodulin was slightly increased in untreated KS, but overall KS was not associated with a hypercoagulable state. KS presented with fibrinolytic impairment associated with higher body fat and higher levels of fibrinogen. Eighteen months of TRT in KS was associated with a reduction in body fat and fibrinogen, attenuating the prothrombotic profile. The expression of ENPP4 was higher in men with KS and served as a key player among a group of genes associated with impaired fibrinolysis. CONCLUSION: KS is associated with a specific expression profile contributing to fibrinolytic impairment and increased thrombotic risk in the patients. TRT in patients with KS has the potential for alleviating the prothrombotic phenotype, in particular by reducing body fat and fibrinogen.


Assuntos
Hipogonadismo , Síndrome de Klinefelter , Trombose , Masculino , Humanos , Síndrome de Klinefelter/complicações , Síndrome de Klinefelter/tratamento farmacológico , Síndrome de Klinefelter/genética , Seguimentos , Trombomodulina/genética , Trombomodulina/uso terapêutico , Trombina/metabolismo , Hipogonadismo/tratamento farmacológico , Hipogonadismo/genética , Hipogonadismo/complicações , Testosterona/uso terapêutico , Hemostasia/genética , Fibrinogênio , RNA
2.
J Thromb Haemost ; 22(3): 645-665, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016518

RESUMO

BACKGROUND: Inherited bleeding, thrombotic, and platelet disorders (BTPDs) are a heterogeneous set of diseases, many of which are very rare globally. Over the past 5 decades, the genetic basis of some of these disorders has been identified, and recently, high-throughput sequencing has become the primary means of identifying disease-causing genetic variants. OBJECTIVES: Knowledge of the clinical validity of a gene-disease relationship is essential to provide an accurate diagnosis based on results of diagnostic gene panel tests and inform the construction of such panels. The Scientific and Standardization Committee for Genetics in Thrombosis and Hemostasis undertook a curation process for selecting 96 TIER1 genes for BTPDs. The purpose of the process was to evaluate the evidence supporting each gene-disease relationship and provide an expert-reviewed classification for the clinical validity of genes associated with BTPDs. METHODS: The Clinical Genome Resource (ClinGen) Hemostasis/Thrombosis Gene Curation Expert Panel assessed the strength of evidence for TIER1 genes using the semiquantitative ClinGen gene-disease clinical validity framework. ClinGen Lumping and Splitting guidelines were used to determine the appropriate disease entity or entities for each gene, and 101 gene-disease relationships were identified for curation. RESULTS: The final outcome included 68 Definitive (67%), 26 Moderate (26%), and 7 Limited (7%) classifications. The summary of each curation is available on the ClinGen website. CONCLUSION: Expert-reviewed assignment of gene-disease relationships by the ClinGen Hemostasis/Thrombosis Gene Curation Expert Panel facilitates accurate molecular diagnoses of BTPDs by clinicians and diagnostic laboratories. These curation efforts can allow genetic testing to focus on genes with a validated role in disease.


Assuntos
Transtornos Plaquetários , Trombose , Humanos , Testes Genéticos/métodos , Transtornos Plaquetários/genética , Hemostasia/genética , Trombose/diagnóstico , Trombose/genética , Variação Genética
3.
Vopr Virusol ; 68(5): 445-453, 2023 Nov 07.
Artigo em Russo | MEDLINE | ID: mdl-38156578

RESUMO

INTRODUCTION:   COVID-19 is characterized by a varied clinical course. The aim of the work was to identify associations of SNPs of hemostatic system genes with COVID-19. MATERIALS AND METHODS: DNA was isolated from patients (n=117) and healthy participants (n=104). All infected patients were divided into 3 groups, depending on disease severity assessment, which was appreciated by NEWS2. Another group consisted of participants, who had asymptomatic infection in the past. Determination of SNPs of the genes FGB (-455 G/A), FII (20210 G/A), FV (1691 G/A), FVII (10976 G/A), FXIIIA1 (103 G/T), ITGA2 (807 C/T), ITGB3 (1565 T/C), SERPINE1 (-675 5G/4G) were performed by PCR using the "Genetics of Hemostasis" kit ("DNA-Technology", Russia). RESULTS: In analyzed SNPs, no significant differences were detected between the group of infected patients and healthy participants. But significant association was revealed in gene SERPINE1 (-675 5G/4G), when patient groups, differing in the disease severity, were analyzed relative to the group of participants with asymptomatic infection (p=0.0381; p=0 .0066; p=0.0009). It was found, that as COVID-19 severity scores increased, the proportion of 5G allele of gene SERPINE1 decreased, and the proportion of the 4G allele increased (p=0.005; p=0.009; p=0.0005). Similar processes were observed for genotypes 5G/5G and 4G/4G. DISCUSSION: The gene SERPINE1 (-675 5G/4G) is associated with the severity of COVID-19. CONCLUSION: For the first time, it was discovered that 5G/5G genotype of gene SERPINE1 (-675 5G/4G) can be a marker of a milder course of COVID-19, and the 4G/4G genotype as a more severe one.


Assuntos
COVID-19 , Hemostáticos , Humanos , Infecções Assintomáticas , COVID-19/epidemiologia , COVID-19/genética , Genótipo , Hemostasia/genética , DNA , Inibidor 1 de Ativador de Plasminogênio/genética
4.
J Thromb Haemost ; 21(8): 2007-2019, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37085036

RESUMO

Quantitative abnormalities in factor VIII (FVIII) and its binding partner, von Willebrand factor (VWF), are associated with an increased risk of bleeding or thrombosis, and pathways that regulate the clearance of VWF-FVIII can strongly influence their plasma levels. In 2010, the Cohorts for Heart and Aging Research in Genome Epidemiology (CHARGE) on genome-wide association study meta-analysis identified variants in the genes for the sinusoidal endothelial receptors C-type lectin domain family 4 member M (CLEC4M), stabilin-2, and scavenger receptor class A member 5 (SCARA5) as being associated with plasma levels of VWF and/or FVIII in normal individuals. The ability of these receptors to bind, internalize, and clear the VWF-FVIII complex from the circulation has now been reported in a series of studies using in vitro and in vivo models. The receptor stabilin-2 has also been shown to modulate the immune response to infused VWF-FVIII concentrates in a murine model. In addition, the influence of genetic variants in CLEC4M, STAB2, and SCARA5 on type 1 von Willebrand disease/low VWF phenotype, FVIII pharmacokinetics, and the risk of venous thromboembolism has been described in a number of patient-based studies. Understanding the role of these receptors in the regulation of VWF-FVIII clearance has led to significant insights into the genomic architecture that modulates plasma VWF and FVIII levels, improving the understanding of pathways that regulate VWF-FVIII clearance and the mechanistic basis of quantitative VWF-FVIII pathologies.


Assuntos
Hemostáticos , Trombose , Doenças de von Willebrand , Animais , Camundongos , Fator de von Willebrand/metabolismo , Estudo de Associação Genômica Ampla , Fator VIII/genética , Hemostasia/genética , Trombose/genética , Trombose/metabolismo , Células Endoteliais/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Doenças de von Willebrand/metabolismo , Receptores Depuradores Classe A/genética
5.
Cardiovasc Res ; 119(8): 1624-1640, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943786

RESUMO

The haemostatic system is pivotal to maintaining vascular integrity. Multiple components involved in blood coagulation have central functions in inflammation and immunity. A derailed haemostasis is common in prevalent pathologies such as sepsis, cardiovascular disorders, and lately, COVID-19. Physiological mechanisms limit the deleterious consequences of a hyperactivated haemostatic system through adaptive changes in gene expression. While this is mainly regulated at the level of transcription, co- and posttranscriptional mechanisms are increasingly perceived as central hubs governing multiple facets of the haemostatic system. This layer of regulation modulates the biogenesis of haemostatic components, for example in situations of increased turnover and demand. However, they can also be 'hijacked' in disease processes, thereby perpetuating and even causally entertaining associated pathologies. This review summarizes examples and emerging concepts that illustrate the importance of posttranscriptional mechanisms in haemostatic control and crosstalk with the immune system. It also discusses how such regulatory principles can be used to usher in new therapeutic concepts to combat global medical threats such as sepsis or cardiovascular disorders.


Assuntos
COVID-19 , Doenças Cardiovasculares , Hemostáticos , MicroRNAs , Humanos , COVID-19/genética , Hemostasia/genética , Regulação da Expressão Gênica , Coagulação Sanguínea/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , MicroRNAs/genética
6.
PLoS Genet ; 18(11): e1010534, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36449521

RESUMO

Tissue factor (TF) is an evolutionarily conserved protein necessary for initiation of hemostasis. Zebrafish have two copies of the tissue factor gene (f3a and f3b) as the result of an ancestral teleost fish duplication event (so called ohnologs). In vivo physiologic studies of TF function have been difficult given early lethality of TF knockout in the mouse. We used genome editing to produce knockouts of both f3a and f3b in zebrafish. Since ohnologs arose through sub- or neofunctionalization, they can unmask unknown functions of non-teleost genes and could reveal whether mammalian TF has developmental functions distinct from coagulation. Here we show that a single copy of either f3a or f3b is necessary and sufficient for normal lifespan. Complete loss of TF results in lethal hemorrhage by 2-4 months despite normal embryonic and vascular development. Larval vascular endothelial injury reveals predominant roles for TFa in venous circulation and TFb in arterial circulation. Finally, we demonstrate that loss of TF predisposes to a stress-induced cardiac tamponade independent of its role in fibrin formation. Overall, our data suggest partial subfunctionalization of TFa and TFb. This multigenic zebrafish model has the potential to facilitate study of the role of TF in different vascular beds.


Assuntos
Duplicação Gênica , Hemostasia , Tromboplastina , Animais , Camundongos , Larva , Tromboplastina/genética , Tromboplastina/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Hemostasia/genética , Veias/fisiologia , Artérias/fisiologia
7.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142883

RESUMO

Carotid atherosclerosis (CA) is an important risk factor for ischemic stroke. We described the miRNA and hemostasis profile of patients with moderate and advanced stages of carotid atherosclerosis and elucidated potential correlations with hemostatic activation. A prospective case-control study included 61 patients with evidence of carotid atherosclerosis (via ultrasound). The study population was divided into groups depending on the degree of carotid artery stenosis: 60% or more (advanced) and <60% (moderate). All patients underwent the following blood tests: general blood test, hemostatic parameters and microRNA. Extraction of microRNA was performed using Leukocyte RNA Purification Kit (NORGEN Biotec Corp., Thorold, ON, Canada); miRNA quantification was performed via RT-PCR. Statistical analysis was performed in R programming language (v. 4.1.0) using RSudio. MicroRNA expression profile was different depending on CA degree. MiR-33a-5p/3p levels were higher in patients with ≥60% carotid stenosis (42.70 and 42.45 versus 38.50 and 38.50, respectively, p < 0.05). Almost complete separation can be visualized with the levels of miR-126-5p: 9.50 in the moderate CA group versus 5.25 in the advanced CA (p < 0.001). MiR-29-5p was higher in the moderate CA group: 28.60 [25.50;33.05] than in advanced CA group: 25.75 [24.38;29.50] (p = 0.086); miR-29-3p was also higher in the moderate CA group: 10.36 [8.60;14.99] than in advanced CA group: 8.46 [7.47;10.3] (p = 0.001). By-group pairwise correlation analyses revealed at least three clusters with significant positive correlations in the moderate CA group: miR-29-3p with factors V and XII (r = 0.53 and r = 0.37, respectively, p < 0.05); miR-21-5p with ADAMTS13, erythrocyte sedimentation rate and D-dimer (r = 0.42, r = 0.36 and r = 0.44, respectively, p < 0.05); stenosis degree with miR-33a-5p/3p and factor VIII levels (r = 0.43 (both) and r = 0.62, respectively, p < 0.05). Hemostasis parameters did not reveal significant changes in CA patients: the only statistically significant differences concerned factor VIII, plasminogen and (marginally significant) ADAMTS-13 and protein C. Down-regulation of miR-126-5p expression has been identified as a promising biomarker of advanced carotid atherosclerosis with high specificity and sensitivity. Correlation cluster analysis showed potential interplay between miRNAs and hemostatic activation in the setting of carotid atherosclerosis.


Assuntos
Doenças das Artérias Carótidas , Hemostáticos , MicroRNAs , Proteína ADAMTS13 , Biomarcadores , Doenças das Artérias Carótidas/genética , Estudos de Casos e Controles , Fator VIII , Hemostasia/genética , Humanos , MicroRNAs/metabolismo , Plasminogênio , Proteína C
8.
Blood Adv ; 6(15): 4537-4552, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35764499

RESUMO

Mutations in MYH9, the gene encoding the heavy chain of nonmuscle myosin IIa (NMII-A), cause MYH9-related disease (MYH9-RD), which is an autosomal-dominant thrombocytopenia with bleeding tendency. Previously, we showed that NMII-A in endothelial cells (ECs) is critical for hemostasis via regulating von Willebrand factor (VWF) release from Weibel-Palade bodies (WPBs). The aim of this study was to determine the role of the expression of MYH9 mutants in ECs in the pathogenesis of the MYH9-RD bleeding symptom. First, we expressed the 5 most common NMII-A mutants in ECs and found that E1841K mutant-expressing ECs secreted less VWF than the controls in response to a cyclic adenosine monophosphate (cAMP) signaling agonist. Then, we generated 2 knockin mouse lines, 1 with Myh9 E1841K in ECs and the other in megakaryocytes. Endothelium-specific E1841K mice exhibited impaired cAMP-induced VWF release and a prolonged bleeding time with normal platelets, whereas megakaryocyte-specific E1841K mice exhibited macrothrombocytopenia and a prolonged bleeding time with normal VWF release. Finally, we presented mechanistic findings that E1841K mutation not only interferes with S1943 phosphorylation and impairs the peripheral distribution of Rab27a-positive WPBs in Ecs under quiescent condition but also interferes with S1916 phosphorylation by disrupting the interaction with zyxin and CKIIα and reduces actin framework formation around WPBs and subsequent VWF secretion under the stimulation by a cAMP agonist. Altogether, our results suggest that impaired cAMP-induced endothelial VWF secretion by E1841K mutant expression may contribute to the MYH9-RD bleeding phenotype.


Assuntos
Células Endoteliais , Hemostasia , Cadeias Pesadas de Miosina , Trombocitopenia , Fator de von Willebrand , Animais , Células Endoteliais/metabolismo , Hemostasia/genética , Hemostasia/fisiologia , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Trombocitopenia/congênito , Trombocitopenia/genética , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
9.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628635

RESUMO

In the present decade, we are seeing a rapid increase in available genetics and multiomics information on blood and vascular components of the human and mammalian circulation, involved in haemostasis, athero- and venous thrombosis, and thrombo-inflammation [...].


Assuntos
Trombose , Trombose Venosa , Animais , Hemostasia/genética , Humanos , Inflamação/genética , Mamíferos , Trombose/genética
10.
J Thromb Haemost ; 20(8): 1759-1765, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35514262

RESUMO

Since the early inception of genome-wide association studies (GWAS), it became clear that, in all diseases or traits studied, most genetic variants are likely to exert their effect on gene expression mainly by altering the function of regulatory elements. At the same time, the regulation of the gene expression field broadened its boundaries, from the univocal relationship between regulatory elements and genes to include genome organization, long-range DNA interactions, and epigenetics. Next-generation sequencing has introduced genome-wide approaches that have greatly improved our understanding of the general principles of gene expression. However, elucidating how these apply in every single genomic locus still requires painstaking experimental work, in which several independent lines of evidence are required, and often this is helped by rare genetic variants in individuals with rare diseases. This review will focus on the non-coding features of the genome involved in transcriptional regulation, that when altered, leads to known cases of inherited (familial) thrombotic and hemostatic phenotypes, emphasizing the role of enhancers and super-enhancers.


Assuntos
Estudo de Associação Genômica Ampla , Trombose , Elementos Facilitadores Genéticos , Variação Genética , Hemostasia/genética , Humanos , Fenótipo , Trombose/genética
11.
J Thromb Haemost ; 20(6): 1331-1349, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285134

RESUMO

BACKGROUND: Multi-phenotype analysis of genetically correlated phenotypes can increase the statistical power to detect loci associated with multiple traits, leading to the discovery of novel loci. This is the first study to date to comprehensively analyze the shared genetic effects within different hemostatic traits, and between these and their associated disease outcomes. OBJECTIVES: To discover novel genetic associations by combining summary data of correlated hemostatic traits and disease events. METHODS: Summary statistics from genome wide-association studies (GWAS) from seven hemostatic traits (factor VII [FVII], factor VIII [FVIII], von Willebrand factor [VWF] factor XI [FXI], fibrinogen, tissue plasminogen activator [tPA], plasminogen activator inhibitor 1 [PAI-1]) and three major cardiovascular (CV) events (venous thromboembolism [VTE], coronary artery disease [CAD], ischemic stroke [IS]), were combined in 27 multi-trait combinations using metaUSAT. Genetic correlations between phenotypes were calculated using Linkage Disequilibrium Score Regression (LDSC). Newly associated loci were investigated for colocalization. We considered a significance threshold of 1.85 × 10-9 obtained after applying Bonferroni correction for the number of multi-trait combinations performed (n = 27). RESULTS: Across the 27 multi-trait analyses, we found 4 novel pleiotropic loci (XXYLT1, KNG1, SUGP1/MAU2, TBL2/MLXIPL) that were not significant in the original individual datasets, were not described in previous GWAS for the individual traits, and that presented a common associated variant between the studied phenotypes. CONCLUSIONS: The discovery of four novel loci contributes to the understanding of the relationship between hemostasis and CV events and elucidate common genetic factors between these traits.


Assuntos
Doenças Cardiovasculares , Hemostáticos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Fator XI/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Hemostasia/genética , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Ativador de Plasminogênio Tecidual/genética
12.
BMC Med Genomics ; 15(1): 69, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337356

RESUMO

A majority of studies reporting human genetic variants were performed in populations of European ancestry whereas other global populations, and particularly many ethnolinguistic groups in other continents, are heavily underrepresented in these studies. To investigate the extent of this disproportionate representation of global populations concerning variants of significance to thrombosis and hemostasis, 845 single nucleotide polymorphisms (SNPs) in and around 34 genes associated with thrombosis and hemostasis and included in the commercial Axiom Precision Medicine Research Array (PMRA) were evaluated, using gene frequencies in 3 African (Somali and Luhya in East Africa, and Yoruba in West Africa) and 14 non-African (admixed American, East Asian, European, South Asian, and sub-groups) populations. Among the populations studied, Europeans were observed to be the best represented population by the hemostatic SNPs included in the PMRA. The European population also presented the largest number of common pharmacogenetic and pathogenic hemostatic variants reported in the ClinVar database. The number of such variants decreased the farther the genetic distance a population was from Europeans, with Yoruba and East Asians presenting the least number of clinically significant hemostatic SNPs in ClinVar while also being the two genetically most distinct populations from Europeans among the populations compared. Current study shows the lopsided representation of global populations as regards to hemostatic genetic variants listed in different commercial SNP arrays, such as the PMRA, and reported in genetic databases while also underlining the importance of inclusion of non-European ethnolinguistic populations in genomics studies designed to discover variants of significance to bleeding and thrombotic disorders.


Assuntos
Etnicidade , Hemostáticos , Povo Asiático/genética , Bases de Dados Genéticas , Etnicidade/genética , Frequência do Gene , Hemostasia/genética , Humanos , Polimorfismo de Nucleotídeo Único
13.
Hamostaseologie ; 42(S 01): S5-S12, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35226963

RESUMO

Hemostasis is a complex and tightly regulated system that attempts to maintain a homeostatic balance to permit normal blood flow, without bleeding or thrombosis. Hemostasis reflects the subtle balance between procoagulant and anticoagulant factors in the pathways of primary hemostasis, secondary hemostasis, and fibrinolysis. The major components in this interplay include the vascular endothelium, platelets, coagulation factors, and fibrinolytic factors. After vessel wall injury, the subendothelium is exposed to the blood stream, followed by rapid activation of platelets via collagen binding and von Willebrand factor-mediated platelet adhesion to the damaged vessel wall through platelet glycoprotein receptor Ib/IX/V. Activated platelets change their shape, release bioactive molecules from their granules, and expose negatively charged phospholipids on their surface. For a proper function of this process, an adequate number of functional platelets are required. Subsequently, a rapid generation of sufficient amounts of thrombin begins; followed by activation of the coagulation system and its coagulation factors (secondary hemostasis), generating fibrin that consolidates the platelet plug. To maintain equilibrium between coagulation and anticoagulation, the naturally occurring anticoagulants such as protein C, protein S, and antithrombin keep this process in balance. Deficiencies (inherited or acquired) at any level of this fine-tuned system result in pathologic bleedings or increased hypercoagulability states leading to thrombosis. This review will focus on genetic diagnosis of inherited bleeding, thrombotic, and platelet disorders, discussing strengths and limitations of existing diagnostic settings and genetic tools and highlight some important considerations necessary for clinical application.


Assuntos
Transtornos Plaquetários , Trombose , Humanos , Proteína S/metabolismo , Fator de von Willebrand/metabolismo , Trombina/metabolismo , Proteína C , Hemostasia/genética , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Trombose/metabolismo , Plaquetas/metabolismo , Fatores de Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/metabolismo , Hemorragia/genética , Fibrina/metabolismo , Anticoagulantes , Glicoproteínas da Membrana de Plaquetas/metabolismo , Antitrombinas/metabolismo , Fosfolipídeos/metabolismo , Colágeno/metabolismo
14.
Blood ; 139(9): 1374-1388, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905618

RESUMO

Genetic variants within the fibrinogen Aα chain encoding the αC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ∼10% plasma fibrinogen levels relative to FgaWT/WT mice, linked to 90% reduction in hepatic Fga messenger RNA (mRNA) because of nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, whereas Fga-/- mice had continuous bleeding. Platelets from FgaWT/WT and Fga270/270 mice displayed comparable initial aggregation following adenosine 5'-diphosphate stimulation, but Fga270/270 platelets quickly disaggregated. Despite ∼10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ∼30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ∼10% with small interfering RNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen αC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.


Assuntos
Afibrinogenemia , Plaquetas/metabolismo , Fibrinogênio , Hemostasia/genética , Mutação , Agregação Plaquetária/genética , Trombose , Afibrinogenemia/genética , Afibrinogenemia/metabolismo , Animais , Fibrinogênio/genética , Fibrinogênio/metabolismo , Camundongos , Camundongos Knockout , Trombose/genética , Trombose/metabolismo
15.
J Proteome Res ; 20(12): 5241-5263, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672606

RESUMO

The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.


Assuntos
Proteoma , Proteômica/tendências , Envelhecimento/genética , COVID-19/genética , Bases de Dados de Proteínas , Hemostasia/genética , Humanos , Espectrometria de Massas , Proteoma/genética
16.
J Thromb Haemost ; 19(10): 2612-2617, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34355501

RESUMO

The implementation of high-throughput sequencing (HTS) technologies in research and diagnostic laboratories has linked many new genes to rare bleeding, thrombotic, and platelet disorders (BTPD), and revealed multiple genetic variants linked to those disorders, many of them being of uncertain pathogenicity when considering the accepted evidence (variant consequence, frequency in control datasets, number of reported patients, prediction models, and functional assays). The sequencing effort has also resulted in resources for gathering disease-causing variants associated with specific genes, but for BTPD, such well-curated databases exist only for a few genes. On the other hand, submissions by individuals or diagnostic laboratories to the variant database ClinVar are hampered by the lack of a submission process tailored to capture the specific features of hemostatic diseases. As we move toward the implementation of HTS in the diagnosis of BTPD, the Scientific and Standardization Committee for Genetics in Thrombosis and Haemostasis has developed and tested a REDCap-based interface, aimed at the community, to submit curated genetic variants for diagnostic-grade BTPD genes. Here, we describe the use of the interface and the initial submission of 821 variants from 30 different centers covering 14 countries. This open-access variant resource will be shared with the community to improve variant classification and regular bulk data transfer to ClinVar.


Assuntos
Transtornos Plaquetários , Trombose , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/genética , Comunicação , Genômica , Hemostasia/genética , Humanos , Trombose/diagnóstico , Trombose/genética
17.
Thyroid ; 31(9): 1305-1315, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34210154

RESUMO

Background: Untreated hypothyroidism is associated with acquired von Willebrand syndrome, and hyperthyroidism is associated with increased thrombosis risk. However, the causal effects of thyroid function on hemostasis, coagulation, and fibrinolysis are unknown. Methods: In a two-sample Mendelian randomization (MR) study with genome-wide association variants, we assessed causality of genetically predicted hypothyroidism (N = 134,641), normal-range thyrotropin (TSH; N = 54,288) and free thyroxine (fT4) (N = 49,269), hyperthyroidism (N = 51,823), and thyroid peroxidase antibody positivity (N = 25,821) on coagulation (activated partial thromboplastin time, von Willebrand factor [VWF], factor VIII [FVIII], prothrombin time, factor VII, fibrinogen) and fibrinolysis (D-dimer, tissue plasminogen activator [TPA], plasminogen activator inhibitor-1) from the CHARGE Hemostasis Consortium (N = 2583-120,246). Inverse-variance-weighted random effects were the main MR analysis followed by sensitivity analyses. Two-sided p < 0.05 was nominally significant, and p < 0.0011[ = 0.05/(5 exposures × 9 outcomes)] was Bonferroni significant for the main MR analysis. Results: Genetically increased TSH was associated with decreased VWF [ß(SE) = -0.020(0.006), p = 0.001] and with decreased fibrinogen [ß(SE) = -0.008(0.002), p = 0.001]. Genetically increased fT4 was associated with increased VWF [ß(SE) = 0.028(0.011), p = 0.012]. Genetically predicted hyperthyroidism was associated with increased VWF [ß(SE) = 0.012(0.004), p = 0.006] and increased FVIII [ß(SE) = 0.013(0.005), p = 0.007]. Genetically predicted hypothyroidism and hyperthyroidism were associated with decreased TPA [ß(SE) = -0.009(0.024), p = 0.024] and increased TPA [ß(SE) = 0.022(0.008), p = 0.008], respectively. MR sensitivity analyses showed similar direction but lower precision. Other coagulation and fibrinolytic factors were inconclusive. Conclusions: In the largest genetic studies currently available, genetically increased TSH and fT4 may be associated with decreased and increased synthesis of VWF, respectively. Since Bonferroni correction may be too conservative given the correlation between the analyzed traits, we cannot reject nominal associations of thyroid traits with coagulation or fibrinolytic factors.


Assuntos
Hemostasia/genética , Hipertireoidismo/genética , Hipotireoidismo/genética , Polimorfismo de Nucleotídeo Único , Autoanticorpos/sangue , Biomarcadores/sangue , Coagulação Sanguínea/genética , Fatores de Coagulação Sanguínea/análise , Testes de Coagulação Sanguínea , Estudos de Casos e Controles , Fibrinólise/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipertireoidismo/sangue , Hipertireoidismo/diagnóstico , Hipotireoidismo/sangue , Hipotireoidismo/diagnóstico , Análise da Randomização Mendeliana , Fenótipo , Medição de Risco , Fatores de Risco , Tireotropina/sangue , Tiroxina/sangue , Fator de von Willebrand/análise
18.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202091

RESUMO

As a cell surface tissue plasminogen activator (tPA)-plasminogen receptor, the annexin A2 (A2) complex facilitates plasmin generation on the endothelial cell surface, and is an established regulator of hemostasis. Whereas A2 is overexpressed in hemorrhagic disease such as acute promyelocytic leukemia, its underexpression or impairment may result in thrombosis, as in antiphospholipid syndrome, venous thromboembolism, or atherosclerosis. Within immune response cells, A2 orchestrates membrane repair, vesicle fusion, and cytoskeletal organization, thus playing a critical role in inflammatory response and tissue injury. Dysregulation of A2 is evident in multiple human disorders, and may contribute to the pathogenesis of various inflammatory disorders. The fibrinolytic system, moreover, is central to wound healing through its ability to remodel the provisional matrix and promote angiogenesis. A2 dysfunction may also promote tissue fibrogenesis and end-organ fibrosis.


Assuntos
Anexina A2/genética , Suscetibilidade a Doenças , Fibrinólise/genética , Fibrose/etiologia , Inflamação/etiologia , Animais , Anexina A2/metabolismo , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Biomarcadores , Fibrose/metabolismo , Hemostasia/genética , Humanos , Imunidade , Inflamação/metabolismo , Especificidade de Órgãos , Regeneração
19.
PLoS One ; 16(4): e0250576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909672

RESUMO

Surgery in humans is continuously evolving and promoted minimally invasive treatment. On the other hand, despite the importance of the 3Rs principles for experimental animals is well documented, no reports describe specific methodologies for implementing "refinement" in practice. Here, we describe a new technique, the "Ohta Method" for caudal arthrocentesis in the pursuit of the 3Rs for animal experiments and the development of innovative methods for investigating systemic organ arteries through minimally invasive procedures. This procedure requires only a percutaneous puncture of the caudal artery without any injury to the limb or body trunk. In addition, it does not cut down the artery, making hemostasis easier and recovering arterial damage easier. We will show multiple organ artery angiographies in marmoset for the first time in the world. The principle described in this paper could also be applied to many other small animals, such as rats. Moreover, using this method, multiple doses of the drug or cells can be administered to the target organ at the time of therapeutic intervention, thereby enabling the establishment of more sophisticated and complex therapeutic intervention studies as translational research.


Assuntos
Angiografia , Artérias/metabolismo , Artrocentese/métodos , Animais , Artérias/diagnóstico por imagem , Callithrix , Hemostasia/genética , Humanos , Punções/métodos , Ratos
20.
Neurology ; 96(20): e2481-e2487, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33795393

RESUMO

OBJECTIVE: To assess support for a causal relationship between hemostatic measures and migraine susceptibility using genetic instrumental analysis. METHODS: Two-sample Mendelian randomization instrumental analyses leveraging available genome-wide association study (GWAS) summary statistics were applied to hemostatic measures as potentially causal for migraine and its subtypes, migraine with aura (MA) and migraine without aura (MO). Twelve blood-based measures of hemostasis were examined, including plasma level or activity of 8 hemostatic factors and 2 fibrinopeptides together with 2 hemostasis clinical tests. RESULTS: There were significant instrumental effects between increased coagulation factor VIII activity (FVIII; odds ratio [95% confidence interval] 1.05 [1.03, 1.08]/SD, p = 6.08 × 10-05), von Willebrand factor level (vWF; 1.05 [1.03, 1.08]/SD, p = 2.25 × 10-06), and phosphorylated fibrinopeptide A level (1.13 [1.07, 1.19]/SD, p = 5.44 × 10-06) with migraine susceptibility. When extended to migraine subtypes, FVIII, vWF, and phosphorylated fibrinopeptide A showed slightly stronger effects with MA than overall migraine. Fibrinogen level was inversely linked with MA (0.76 [0.64, 0.91]/SD, p = 2.32 × 10-03) but not overall migraine. None of the hemostatic factors was linked with MO. In sensitivity analysis, effects for fibrinogen and phosphorylated fibrinopeptide A were robust, whereas independent effects of FVIII and vWF could not be distinguished, and FVIII associations were potentially affected by pleiotropy at the ABO locus. Causal effects from migraine to the hemostatic measures were not supported in reverse Mendelian randomization. However, MA was not included due to lack of instruments. CONCLUSIONS: The findings support potential causality of increased FVIII, vWF, and phosphorylated fibrinopeptide A and decreased fibrinogen in migraine susceptibility, especially for MA, potentially revealing etiologic relationships between hemostasis and migraine.


Assuntos
Hemostasia/genética , Enxaqueca com Aura/genética , Enxaqueca sem Aura/genética , Estudos de Casos e Controles , Fator VII/metabolismo , Fator VIII/metabolismo , Fator XI/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Fibrinogênio/metabolismo , Fibrinopeptídeo A/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Coeficiente Internacional Normatizado , Análise da Randomização Mendeliana , Transtornos de Enxaqueca/sangue , Transtornos de Enxaqueca/epidemiologia , Transtornos de Enxaqueca/genética , Enxaqueca com Aura/sangue , Enxaqueca com Aura/epidemiologia , Enxaqueca sem Aura/sangue , Enxaqueca sem Aura/epidemiologia , Tempo de Tromboplastina Parcial , Inibidor 1 de Ativador de Plasminogênio/sangue , Tempo de Protrombina , Ativador de Plasminogênio Tecidual/sangue , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...