Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 204: 108092, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479455

RESUMO

Reovirus designated as Mud crab reovirus (MCRV) is associated with the mass mortalities of mud crabs resulting in significant economic loss to crab and shrimp-mud crab polyculture farmers in the Nagayalanka, Krishna district, Andhra Pradesh. The 100 % chronic mass mortalities have been attributed to the outbreak of Mud crab reovirus (MCRV) in the polyculture farms. The moribund crabs showed autotomy, discoloration of carapace, loss of appetite, slow movement and loose gills. Histopathological observations of the infected mud crabs showed an atrophied hepatopancreas, complete degeneration of tissues along with viral inclusions in hepatopancreas, gills and muscles. Further analysis using Transmission electron microscopy (TEM), showed that the viral particles had a diameter of 70 nm and exhibited a non-enveloped, icosahedral shape arranged in a crystalline manner. The virus mainly infects the connective tissue of hepatopancreas, gills, muscle and develops in the cytoplasm. RT-PCR reconfirmed the presence of reovirus in the hepatopancreas of spontaneously infected mud crab Scylla serrata. The current study shows the importance of monitoring the MCRV prevalence in polyculture farms to minimize its spread and precautionary measures can be taken by screening the brooders from the crab hatchery and stocking of wild crabs without screening should be avoided in order to prevent MCRV outbreak.


Assuntos
Aquicultura , Braquiúros , Reoviridae , Animais , Índia/epidemiologia , Braquiúros/virologia , Reoviridae/ultraestrutura , Reoviridae/isolamento & purificação , Surtos de Doenças , Infecções por Reoviridae/virologia , Infecções por Reoviridae/epidemiologia , Incidência , Hepatopâncreas/virologia , Hepatopâncreas/patologia
2.
Viruses ; 13(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34835065

RESUMO

Crayfish are a keystone species of freshwater ecosystems and a successful invasive species. However, their pathogens, including viruses, remain understudied. The aim of this study was to analyze the virome of the invasive signal crayfish (Pacifastacus leniusculus) and to elucidate the potential differences in viral composition and abundance along its invasion range in the Korana River, Croatia. By the high-throughput sequencing of ribosomal RNA, depleted total RNA isolated from the crayfish hepatopancreas, and subsequent sequence data analysis, we identified novel and divergent RNA viruses, including signal crayfish-associated reo-like, hepe-like, toti-like, and picorna-like viruses, phylogenetically related to viruses previously associated with crustacean hosts. The patterns of reads abundance and calculated nucleotide diversities of the detected viral sequences varied along the invasion range. This could indicate the possible influence of different factors and processes on signal crayfish virome composition: e.g., the differences in signal crayfish population density, the non-random dispersal of host individuals from the core to the invasion fronts, and the transfer of viruses from the native co-occurring and phylogenetically related crayfish species. The study reveals a high, previously undiscovered diversity of divergent RNA viruses associated with signal crayfish, and sets foundations for understanding the potential risk of virus transmissions as a result of this invader's dispersal.


Assuntos
Astacoidea/virologia , Espécies Introduzidas , Vírus de RNA/genética , Viroma/genética , Animais , Croácia , Monitoramento Ambiental , Variação Genética , Genoma Viral/genética , Hepatopâncreas/virologia , Filogenia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Rios , Análise de Sequência de DNA
3.
Viruses ; 13(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578276

RESUMO

Multiple enveloped viruses with rod-shaped nucleocapsids have been described, infecting the epithelial cell nuclei within the hepatopancreas tubules of crustaceans. These bacilliform viruses share the ultrastructural characteristics of nudiviruses, a specific clade of viruses infecting arthropods. Using histology, electron microscopy and high throughput sequencing, we characterise two further bacilliform viruses from aquatic hosts, the brown shrimp (Crangon crangon) and the European shore crab (Carcinus maenas). We assembled the full double stranded, circular DNA genome sequences of these viruses (~113 and 132 kbp, respectively). Comparative genomics and phylogenetic analyses confirm that both belong within the family Nudiviridae but in separate clades representing nudiviruses found in freshwater and marine environments. We show that the three thymidine kinase (tk) genes present in all sequenced nudivirus genomes, thus far, were absent in the Crangon crangon nudivirus, suggesting there are twenty-eight core genes shared by all nudiviruses. Furthermore, the phylogenetic data no longer support the subdivision of the family Nudiviridae into four genera (Alphanudivirus to Deltanudivirus), as recently adopted by the International Committee on Taxonomy of Viruses (ICTV), but rather shows two main branches of the family that are further subdivided. Our data support a recent proposal to create two subfamilies within the family Nudiviridae, each subdivided into several genera.


Assuntos
Crangonidae/virologia , Genoma Viral , Nudiviridae/classificação , Nudiviridae/genética , Filogenia , Animais , Genômica , Hepatopâncreas/virologia , Nudiviridae/isolamento & purificação , Água do Mar/virologia
4.
Dev Comp Immunol ; 119: 104041, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33577842

RESUMO

As a downstream interactor of ß-catenin, Pangolin which is the homologous protein of the T cell factor/lymphoid enhancer factor (TCF/LEF) in vertebrates is less understood in the research field of immunity. In this study, two isoforms of Litopenaeus vannamei Pangolin (LvPangolin1 and LvPangolin2) were identified. Phylogenetic tree analysis revealed that all of the Pangolin proteins from invertebrates were represented the same lineage. The mRNA expression profiles of the LvPangolin1 and LvPangolin2 genes differed across different tissues. The expression of LvPangolin1 and the amount of LvPangolin1and LvPangolin2 combined (LvPangolinComb) were significantly increased in the haemocyte, intestine and gill but reduced in the hepatopancreas after white spot syndrome virus (WSSV) challenge. The inhibition of LvPangolin1 but not LvPangolinComb significantly reduced the survival rates of L. vannamei after WSSV infection, while significantly higher WSSV viral loads in both LvPangolin1-inhibited and LvPangolinComb-inhibited L. vannamei were observed. Knockdown of LvPangolin by RNAi could distinctly decrease the expression of antimicrobial peptide (AMP) genes and their related transcription factors. All of these results indicate that LvPangolin plays a positive role in the response to WSSV infection and that this may be mediated through regulating the immune signalling pathways which control the expression of AMPs with antiviral abilities.


Assuntos
Proteínas de Artrópodes/imunologia , Imunidade Inata/imunologia , Penaeidae/imunologia , Fatores de Transcrição TCF/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Sequência de Bases , Clonagem Molecular , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/virologia , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Hepatopâncreas/virologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/virologia , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Análise de Sequência de DNA , Análise de Sobrevida , Fatores de Transcrição TCF/classificação , Fatores de Transcrição TCF/genética , Transcriptoma/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia
5.
J Invertebr Pathol ; 180: 107545, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33571511

RESUMO

Outbreaks of white spot syndrome virus (WSSV) have caused serious damage to penaeid shrimp aquaculture worldwide. Despite great efforts to characterize the virus, the conditions that lead to infection and the infection mechanisms, there is still a lack of understanding regarding these complex virus-host interactions, which is needed to develop consistent and effective treatment methods for WSSV. In this study, we used a gas chromatography - mass spectrometry (GC-MS)-based metabolomics approach to compare the metabolite profiles of gills, haemolymph and hepatopancreas from whiteleg shrimp (Penaeus vannamei) exposed to WSSV and corresponding controls. The results revealed clear discriminations between metabolite profiles of WSSV-challenged shrimp and controlled shrimp in each tissue. The responses of shrimp gills to WSSV infection were characterized by increases of many fatty acids and amino acids in WSSV-challenged shrimp compared to the controls. Changes in haemolymph metabolite profiles include the increased levels of itaconic acid, energy-related metabolites, metabolites in glutathione cycle and decrease of amino acids. The WSSV challenge led to the decreases of several fatty acids and amino acids and increases of other amino acids, lactic acid and other organic compounds (levulinic acid, malonic acid and putrescine) in hepatopancreas. These alterations of shrimp metabolites suggest several immune responses of shrimp to WSSV in a tissue-specific manner, including upregulation of osmoregulation, antimicrobial activity, metabolic rate, gluconeogenesis, glutathione pathway in control of oxidative stress and shift from aerobic to anaerobic metabolism in shrimp which indicates the Warburg effect. The findings from this study provide a better understanding of molecular process of shrimp response against WSSV invasion which may be useful for development of disease management strategies.


Assuntos
Penaeidae/metabolismo , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Aquicultura , Cromatografia Gasosa-Espectrometria de Massas , Brânquias/virologia , Hemolinfa/virologia , Hepatopâncreas/virologia
6.
Fish Shellfish Immunol ; 100: 18-26, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32142871

RESUMO

Infectious pancreatic necrosis virus (IPNV) primarily infects larvae and young salmonid with serious economic losses, which causes haemorrhage and putrescence of hepatopancreas. To develop a more effective oral vaccine against IPNV infection, the aeromonas hydrophila adhesion (AHA1) gene was used as a targeting molecule for intestinal epithelial cells. A genetically engineered Lactobacillus casei (pPG-612-AHA1-CK6-VP2/L. casei 393) was constructed to express the AHA1-CK6-VP2 fusion protein. The expression of interest protein was confirmed by western blotting and the immunogenicity of pPG-612-AHA1-CK6-VP2/L. casei 393 was evaluated. And the results showed that more pPG-612-AHA1-CK6-VP2/L. casei 393 were found in the intestinal mucosal surface of the immunized group. The Lactobacillus-derived AHA1-CK6-VP2 fusion protein could induce the production of serum IgM and skin mucus IgT specific for IPNV with neutralizing activity in rainbow trouts. The levels of IL-1ß, IL-8 and TNF-α isolated from the lymphocytes stimulated by AHA1-CK6-EGFP produced were significantly higher than EGFP group. For transcription levels of IL-1ß, IL-8, CK6, MHC-II, Mx and TNF-1α in the spleen, the result indicated that the adhesion and target chemokine recruit more immune cells to induce cellular immunity. The level of IPNV in the immunized group of pPG-612-AHA1-CK6-VP2/L. casei 393 was significantly lower than that in the control groups. These data indicated that the adhesion and target chemokine could enhance antigen delivery efficiency, which provides a valuable strategy for the development of IPNV recombination Lactobacillus casei oral vaccine in the future.


Assuntos
Infecções por Birnaviridae/veterinária , Doenças dos Peixes/prevenção & controle , Imunização/veterinária , Oncorhynchus mykiss/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Administração Oral , Animais , Anticorpos Antivirais/sangue , Infecções por Birnaviridae/prevenção & controle , Citocinas/imunologia , Doenças dos Peixes/virologia , Hepatopâncreas/patologia , Hepatopâncreas/virologia , Imunização/métodos , Imunização Secundária , Imunogenicidade da Vacina , Vírus da Necrose Pancreática Infecciosa , Lacticaseibacillus casei/genética , Oncorhynchus mykiss/virologia , Proteínas Estruturais Virais/administração & dosagem , Vacinas Virais/imunologia
7.
Fish Shellfish Immunol ; 100: 436-444, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32200070

RESUMO

The cathepsin C, a lysosomal cysteine protease, involves the modulation of immune and inflammatory responses in living organisms. However, the knowledge on cathepsin C in red swamp crayfish (Procambarus clarkii), a freshwater crustacean with economic values, remained unclear. In the present study, we provide identification and molecular characterization of cathepsin C from P. clarkii. (Hereafter Pc-cathepsin C). The Pc-cathepsin C cDNA contained a 1356 bp open reading frame that encoded a protein of 451 amino acid residues. The deduced amino acid sequence comprised of cathepsin C exclusion domain and pept_C1 domain, and also catalytic residues (Cys248, His395 and Asn417). Analysis of the transcriptional patterns of the Pc-cathepsin C gene revealed that it was broadly distributed in various tissues of P. clarkii, and it was more abundant in the hepatopancreas and gut. Following a challenge with viral and bacterial pathogen-associated molecular patterns, the expression of Pc-cathepsin C was strongly enhanced at different time points. The knockdown of Pc-cathepsin C, altered the expression of immune-responsive genes, suggesting its immunoregulatory role in P. clarkii. This study has identified and provided the immunoregulatory function of Pc-cathepsin C, which will contribute to further investigation of the molecular mechanism of cathepsin C in crustaceans.


Assuntos
Proteínas de Artrópodes/imunologia , Astacoidea/imunologia , Infecções Bacterianas/veterinária , Catepsina C/imunologia , Imunidade Inata , Viroses/veterinária , Animais , Astacoidea/microbiologia , Astacoidea/virologia , Bactérias/patogenicidade , Infecções Bacterianas/imunologia , DNA Complementar , Perfilação da Expressão Gênica , Hepatopâncreas/imunologia , Hepatopâncreas/virologia , Lipopolissacarídeos , Filogenia , Poli I-C , Viroses/imunologia , Vírus/patogenicidade
8.
Fish Shellfish Immunol ; 98: 766-772, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31734284

RESUMO

Infectious hypodermal and haematopoietic necrosis virus (IHHNV) is a major viral pathogen in cultured penaeid shrimp. IHHNV has many hosts, mainly including crustaceans. It has recently been reported that Procambarus clarkii can be infected by IHHNV. In the present study, we studied the hepatopancreas of P. clarkii by transcriptome high-throughput sequencing to analyze the response of P. clarkii to IHHNV infection. After de novo assembly, there were 400,340,760 clean reads. A total of 237 differentially expressed genes (DEGs) were obtained, including 77 significantly up-regulated unigenes and 160 significantly down-regulated ones. The expression levels of 12 immune-related DEGs were validated by qRT-PCR, substantiating the reliability of RNA-Seq results. The enrichment analysis of DEGs showed that the immune-related pathways were closely related to apoptosis and phagocytosis. Moreover, a large number of pathways related to metabolic function were down-regulated, suggesting that IHHNV infection might affect the growth of P. clarkii.


Assuntos
Proteínas de Artrópodes/metabolismo , Astacoidea/imunologia , Densovirinae/fisiologia , Regulação da Expressão Gênica , Hepatopâncreas/virologia , Transcriptoma , Animais , Astacoidea/virologia , Perfilação da Expressão Gênica , Hepatopâncreas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala
9.
Sci Rep ; 9(1): 10086, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300678

RESUMO

Viral diseases of crustaceans are increasingly recognised as challenges to shellfish farms and fisheries. Here we describe the first naturally-occurring virus reported in any clawed lobster species. Hypertrophied nuclei with emarginated chromatin, characteristic histopathological lesions of DNA virus infection, were observed within the hepatopancreatic epithelial cells of juvenile European lobsters (Homarus gammarus). Transmission electron microscopy revealed infection with a bacilliform virus containing a rod shaped nucleocapsid enveloped in an elliptical membrane. Assembly of PCR-free shotgun metagenomic sequencing produced a circular genome of 107,063 bp containing 97 open reading frames, the majority of which share sequence similarity with a virus infecting the black tiger shrimp: Penaeus monodon nudivirus (PmNV). Multiple phylogenetic analyses confirm the new virus to be a novel member of the Nudiviridae: Homarus gammarus nudivirus (HgNV). Evidence of occlusion body formation, characteristic of PmNV and its closest relatives, was not observed, questioning the horizontal transmission strategy of HgNV outside of the host. We discuss the potential impacts of HgNV on juvenile lobster growth and mortality and present HgNV-specific primers to serve as a diagnostic tool for monitoring the virus in wild and farmed lobster stocks.


Assuntos
Doenças dos Peixes/virologia , Nephropidae/virologia , Nudiviridae/classificação , Nudiviridae/genética , Animais , Genoma Viral/genética , Hepatopâncreas/virologia , Microscopia Eletrônica de Transmissão , Nudiviridae/isolamento & purificação , Penaeidae/virologia , Filogenia , Frutos do Mar/virologia
10.
J Virol Methods ; 270: 38-45, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009654

RESUMO

The lack of shrimp cell lines and difficulty in establishing shrimp cell culture systems, with an appropriate medium is a major concern in the aquaculture sector. The present study attempts to address this issue by developing an in vitro cell culture system from various tissues (hemocytes, heart, lymphoid tissue, hepatopancreas, gill, eye stalk, and muscle) of Penaeus vannamei (P.vannamei) using commercially available L-15 medium. The cell culture medium was formulated using five different media such as HBSCM-1, HBSCM-2, HBSCM-3, HBSCM-4, and HBSCM-5 containing L-proline and glucose with fetal bovine serum (FBS) supplements. Among the different media used, the HBSCM-5 medium with supplements showed good attachment and proliferation of cells with fibroblast-like, epithelioid, round, and adherent cell morphology in hemocyte culture. The same medium was further screened using different tissues to enhance the cell growth. The hemocytes, heart, and lymphoid tissue cells were passaged five times and maintained up to 20 days. Hepatopancreas and gill cells initially showed good morphological features and survived for more than ten days following subculture cells. Eye stalks and muscle cells perished within five days and did not show any unique morphology. The primary hemocyte cells were subjected to species identification, using cytochrome oxidase subunit I (COI) gene. To assess the primary hemocyte cell culture, cells were used for in vitro propagation of white spot syndrome virus (WSSV) and confirmed by the conventional polymerase chain reaction (PCR). Similarly, the primary cells were treated with bacterial extracellular products (ECPs) from Vibrio parahaemolyticus and Vibrio harveyi, to evaluate the cytotoxicity.


Assuntos
Técnicas de Cultura de Células/veterinária , Penaeidae/citologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Animais , Aquicultura , Técnicas de Cultura de Células/métodos , Células Cultivadas , Expressão Gênica , Genes Virais , Hemócitos/citologia , Hemócitos/virologia , Hepatopâncreas/citologia , Hepatopâncreas/virologia , Músculos/citologia , Músculos/virologia , Reação em Cadeia da Polimerase , Segmento Posterior do Olho/citologia , Segmento Posterior do Olho/virologia , Organismos Livres de Patógenos Específicos , Viroses/veterinária
11.
Sci Rep ; 8(1): 13080, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166588

RESUMO

Acute hepatopancreatic necrosis disease (AHPND) has extended rapidly, causing alarming shrimp mortalities. Initially, the only known causative agent was Vibrio parahaemolyticus carrying a plasmid coding for the mortal toxins PirVP. Recently, it has been found that the plasmid and hence the disease, could be transferred among members of the Harveyi clade. The current study performs a genomic characterization of an isolate capable of developing AHPND in shrimp. Mortality studies and molecular and histopathological analyses showed the infection capacity of the strain. Multilocus sequence analysis placed the bacteria as a member of the Orientalis clade, well known for containing commensal and even probiotic bacteria used in the shrimp industry. Further whole genome comparative analyses, including Vibrio species from the Orientalis clade, and phylogenomic metrics (TETRA, ANI and DDH) showed that the isolate belongs to a previously unidentified species, now named Vibrio punensis sp. nov. strain BA55. Our findings show that the gene transfer capacity of Vibrio species goes beyond the clade classification, demonstrating a new pathogenic capacity to a previously known commensal clade. The presence of these genes in a different Vibrio clade may contribute to the knowledge of the Vibrio pathogenesis and has major implications for the spread of emerging diseases.


Assuntos
Genes Virais , Filogenia , Vibrioses/genética , Vibrioses/virologia , Vibrio/genética , Animais , Bactérias/isolamento & purificação , Sequência de Bases , Bioensaio , DNA/metabolismo , Hepatopâncreas/patologia , Hepatopâncreas/virologia , Tipagem de Sequências Multilocus , Necrose , Penaeidae/microbiologia , Penaeidae/virologia , Plasmídeos/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Vibrio/isolamento & purificação
12.
Dis Aquat Organ ; 129(3): 183-191, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30154278

RESUMO

Shrimp infected with Penaeus monodon densovirus (PmoDNV) usually display no specific gross signs, but heavy infections can kill postlarvae and retard juvenile growth. In the present study, samples of hepatopancreas, feces, gonads and hemolymph were isolated from male and female P. monodon subadults chronically infected by PmoDNV. Each sample of hepatopancreas and gonad was divided into 2 parts: one for PmoDNV detection by polymerase chain reaction (PCR), and the other for routine histology and immunohistochemistry. The frequency of positive findings via PCR assays was 92% in the hepatopancreas, 57% in feces, 50% in ovary, 35% in hemolymph and 0% in the testis. Using the densitometric value (DV) of the specific band for PmoDNV relative to that of the ß-actin gene as an index of the viral load in the samples, no significant differences were observed among sample types and sexes. Hematoxylin-eosin staining of infected hepatopancreas revealed typical PmoDNV inclusions in the nuclei of infected cells. The ovaries with high DV (>1) contained various types of inclusions along the row of the follicular cells or possibly in the connective tissue cells surrounding the oocytes. Using immunohistochemistry with specific probes to detect PmoDNV proteins, a positive reaction was observed in viral inclusions found in infected hepatopancreas and in ovaries with high DV, specifically in the ovarian capsule, hemolymph, oocytes and nuclear inclusions. These results suggest that the localization of PmoDNV in P. monodon is not confined to the hepatopancreas, but rather that the virus can also occur in the ovary; hence, trans-ovarian, vertical transmission of the virus is highly possible.


Assuntos
Densovirus/fisiologia , Ovário/virologia , Penaeidae/virologia , Animais , Densovirus/isolamento & purificação , Fezes/virologia , Feminino , Hemolinfa/virologia , Hepatopâncreas/virologia , Interações Hospedeiro-Patógeno , Masculino , Reação em Cadeia da Polimerase
13.
Artigo em Inglês | MEDLINE | ID: mdl-30041062

RESUMO

Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor that induces genes involved in glucose metabolism. HIF-1 is formed by a regulatory α-subunit (HIF-1α) and a constitutive ß-subunit (HIF-1ß). The white spot syndrome virus (WSSV) induces a shift in glucose metabolism and oxidative stress. HIF-1α is associated with the induction of metabolic changes in tissues of WSSV-infected shrimp. However, the contributions of HIF-1 to viral load and antioxidant responses in WSSV-infected shrimp have been not examined. In this study, the effect of HIF-1 silencing on viral load and the expression and activity of antioxidant enzymes (superoxide dismutase-SOD, glutathione S-transferase-GST, and catalase) along with oxidative damage (lipid peroxidation and protein carbonyl) in tissues of white shrimp infected with the WSSV were studied. The viral load increased in hepatopancreas and muscle after WSSV infection, and the accumulative mortality was of 100% at 72 h post-infection. The expression and activity of SOD, catalase, and GST decreased in each tissue evaluated after WSSV infection. Protein carbonyl concentrations increased in each tissue after WSSV infection, while lipid peroxidation increased in hepatopancreas, but not in muscle. Silencing of HIF-1α decreased the WSSV viral load in hepatopancreas and muscle of infected shrimp along with shrimp mortality. Silencing of HIF-1α ameliorated the antioxidant response in a tissue-specific manner, which translated to a decrease in oxidative damage. These results suggest that HIF-1 is essential for restoring the antioxidant response, which counters the oxidative injury associated with WSSV infection.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , Aquicultura , DNA Viral/isolamento & purificação , Inativação Gênica , Hepatopâncreas/crescimento & desenvolvimento , Hepatopâncreas/metabolismo , Hepatopâncreas/virologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intramusculares , Peroxidação de Lipídeos , México , Músculos/metabolismo , Músculos/virologia , Especificidade de Órgãos , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Penaeidae/crescimento & desenvolvimento , Penaeidae/metabolismo , Carbonilação Proteica , Interferência de RNA , RNA de Cadeia Dupla/administração & dosagem , RNA de Cadeia Dupla/metabolismo , Carga Viral , Vírus da Síndrome da Mancha Branca 1/isolamento & purificação , Vírus da Síndrome da Mancha Branca 1/fisiologia
14.
Dis Aquat Organ ; 125(1): 53-61, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627492

RESUMO

Redspotted grouper nervous necrosis virus (RGNNV), genus Betanodavirus, family Nodaviridae, is the causative agent of viral encephalopathy and retinopathy (otherwise known as viral nervous necrosis) and can infect several fish species worldwide. Betanodaviruses, including RGNNV, are very resilient in the aquatic environment, and their presence has already been reported in several wild marine species including invertebrates. In order to investigate the interaction between a bivalve mollusc (Manila clam Ruditapes philippinarum) and RGNNV, we optimised a culture-based method. The bioaccumulation of the pathogenic RGNNV by R. philippinarum and the potential shedding of viable RGNNV from RGNNV-exposed clams were evaluated through a culture-based method. R. philippinarum clearly accumulated viable RGNNV in their hepatopancreatic tissue and were able to release viable RGNNV via faecal matter and filtered water into the surrounding environment. The role of clams as bioaccumulators and shedders of viable RGGNV could put susceptible cohabiting cultured fish at risk. RGNNV-contaminated molluscs could behave as reservoirs for this virus and may modify the virus epidemiology.


Assuntos
Bivalves/virologia , Nodaviridae/fisiologia , Animais , Hepatopâncreas/virologia , Interações Hospedeiro-Patógeno , Eliminação de Partículas Virais
15.
Infect Genet Evol ; 51: 211-218, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28404482

RESUMO

Vibrio parahaemolyticus is a causative agent of acute hapatopancreatic necrosis syndrome (AHPNS) which causes early mortality in white shrimp. Emergence of AHPNS has caused tremendous economic loss for aquaculture industry particularly in Asia since 2010. Previous studies reported that strains causing AHPNS harbor a 69-kb plasmid with possession of virulence genes, pirA and pirB. However, genetic variation of the 69-kb plasmid among AHPNS related strains has not been investigated. This study aimed to analyze genetic composition and diversity of the 69-kb plasmid in strains isolated from shrimps affected by AHPNS. Plasmids recovered from V. parahaemolyticus strain VPE61 which represented typical AHPNS pathogenicity, strain VP2HP which did not represent AHPNS pathogenicity but was isolated from AHPNS affected shrimp and other AHPNS V. parahaemolyticus isolates in Genbank were investigated. Protein coding genes of the 69-kb plasmid from the strain VPE61 were identical to that of AHPNS strain from Vietnam except the inverted complement 3.4-kb transposon covering pirA and pirB. The strain VP2HP possessed remarkable large 183-kb plasmid which shared similar protein coding genes to those of the 69-kb plasmid from strain VPE61. However, the 3.4-kb transposon covering pirA and pirB was absent from the 183-kb plasmid in strain VP2HP. A number of protein coding genes from the 183-kb plasmid were also detected in other AHPNS strains. In summary, this study identified a novel 183-kb plasmid that is related to AHPNS causing strains. Homologous recombination of the 69-kb AHPNS plasmid and other naturally occurring plasmids together with loss and gain of AHPNS virulence genes in V. parahaemolyticus were observed. The outcome of this research enables understanding of plasmid dynamics that possibly affect variable degrees of AHPNS pathogenicity.


Assuntos
Proteínas de Bactérias/genética , Hepatopâncreas/virologia , Penaeidae/microbiologia , Plasmídeos/química , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidade , Animais , Aquicultura/economia , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Variação Genética , Hepatopâncreas/patologia , Filogenia , Plasmídeos/metabolismo , Vibrio parahaemolyticus/classificação , Vietnã , Virulência
16.
Fish Shellfish Immunol ; 62: 175-183, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28110034

RESUMO

Microbial diseases have received much attention due to their enormous destruction of aquaculture, and Vibrio parahaemolyticus is one of the main pathogens that cause bacterial disease in the clam Meretrix petechialis. To better understand the molecular mechanisms of the immune response to Vibrio in M. petechialis, RNA-Seq was applied to explore global expression changes of hepatopancreas from this clam after Vibrio challenge. There were 199,318,966 clean reads obtained by Illumina sequencing, which were further assembled into 214,577 transcripts, and then 147,255 unigenes with an N50 of 1393 bp were identified. Gene ontology (GO) analysis revealed 21 biological process subcategories, 15 cellular component subcategories and 12 molecular function subcategories. A total of 8358 unigenes were mapped onto 267 biological signaling pathways by KEGG, among which there were 16 pathways related to the immune system. In total, 206 differentially expressed genes (DEGs) were identified, including 113 up-regulated unigenes and 93 down-regulated unigenes. In these DEGs, 96 DEGs were annotated in at least one database, accounting for 46.60% of all significant DEGs. To validate the transcriptome dataset, 15 DEGs were selected for real-time qPCR confirmation and the results showed that expression patterns of 13 genes (86.7%) agreed well with the RNA-Seq analysis. Fourteen of the 206 DEGs were annotated to be immune-related genes, and we examined the expression patterns of four immune-related DEGs using clams post immersion challenge. This study enriched the M. petechialis transcriptome database and provided insight into the immune response of M. petechialis against Vibrio infection.


Assuntos
Bivalves/genética , Expressão Gênica , Imunidade Inata , Transcriptoma , Vibrio parahaemolyticus/fisiologia , Animais , Bivalves/imunologia , Bivalves/virologia , Hepatopâncreas/metabolismo , Hepatopâncreas/virologia , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
17.
Fish Shellfish Immunol ; 56: 84-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27368536

RESUMO

Apoptosis inducing factor (AIF) and cytochrome c (CYC) are two mitochondrial apoptogenic factors. In the present study, the cDNA sequences of AIF (LvAIF) and CYC (LvCYC) were cloned from Pacific white shrimp, Litopenaeus vannamei. The LvAIF was 1664 bp, including a 5'-terminal untranslated region (UTR) of 154 bp, an open reading frame (ORF) of 1323 bp encoding a polypeptide of 440 amino acids (aa) and a 3' UTR of 187 bp. The LvCYC was 582 bp, including a 50 bp 5' UTR, a 315 bp ORF encoding for 104 aa, and a 217 bp 3' UTR. The deduced protein of LvAIF contained a conserved Pyr_redox and AIF_C domain at the N-terminal and the predicted LvCYC included a conservative cytochrome_C domain, respectively. Phylogenetic analysis revealed that LvAIF belonged to AIF1 subfamily and showed a close relationship with AIF1 from vertebrates and LvCYC showed the closest relationship with its counterparts from shrimp Marsupenaeus japonicus. Tissue expression profiles showed that both LvAIF and LvCYC existed in most tissues, with the most predominant expression of LvAIF in intestine, then followed muscle and the weakest expression in gill. The highest expression of LvCYC was detected in muscle, and the weakest expression was in hemocytes. Additionally, after white spot syndrome virus (WSSV) infection, the significant up-regulation of LvAIF, LvCYC and caspase 3 transcripts and the increase of pro-caspase 3 and active-caspase 3 protein were detected at most time points (P < 0.05). However, all of the three genes down-regulated in hemocytes in the early stage after WSSV infection. WSSV proliferation and shrimp mortality showed a time-dependent manner and the production of ROS in hemocytes were significantly increased at 6 and 24 h after infection. Our results showed that the apoptotic genes AIF, CYC and caspase 3 might play crucial roles in hepatopancreas, however, the production of ROS in hemocytes might be important in shrimp defense against WSSV infection.


Assuntos
Fator de Indução de Apoptose/genética , Proteínas de Artrópodes/genética , Citocromos c/genética , Regulação da Expressão Gênica , Imunidade Inata , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Fator de Indução de Apoptose/química , Fator de Indução de Apoptose/metabolismo , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Clonagem Molecular , Citocromos c/química , Citocromos c/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Hemócitos/imunologia , Hemócitos/virologia , Hepatopâncreas/imunologia , Hepatopâncreas/virologia , Penaeidae/metabolismo , Penaeidae/virologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Vírus da Síndrome da Mancha Branca 1/fisiologia
18.
Lett Appl Microbiol ; 63(2): 103-10, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27221155

RESUMO

UNLABELLED: A new genotype of yellow head virus (YHV), designated as YHV-8, was found in farmed shrimp Fenneropenaeus chinensis suffering suspectedly from EMS/AHPNS (early mortality disease/acute hepatopancreatic necrosis disease) in China in 2012. In this study, a one-step, real-time reverse-transcription loop-mediated isothermal amplification (rRT-LAMP) assay was developed for better detection of both genotypes of YHV-1 and YHV-8. A set of six specific primers was successfully designed targeting a conserved region of the YHV genome. The LAMP reaction was optimized to contain 8 mmol l(-1) Mg(2+) and 1·4 mmol l(-1) dNTPs, and to be performed at 58°C for 60 min. The detection sensitivity of the rRT-LAMP method was as low as 7 × 10(0)  copies per reaction. The specificity of the method was validated by the absence of any cross-reaction with the RNA samples extracted from other shrimp viruses (Taura syndrome virus, white spot syndrome virus, infectious hypodermal and haematopoietic necrosis virus, hepatopancreatic parvovirus) and specific pathogen-free (SPF) shrimp. The resulting standard curves showed high correlation coefficient values. Furthermore, the test of farm samples showed that YHV was detected in three of 111 Litopenaeus vannamei, six of eight Fenneropenaeus chinensis, five of 19 Macrobrachium rosenbergii and none of the nine Marsupenaeus japonicus. These results suggest that this assay is applicable widely as a new rapid and sensitive detection method in the research of YHV. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, we designate a new genotype of yellow head virus (YHV) as YHV genotype 8 (YHV-8) which was detected in diseased shrimp in China. A rapid, sensitive and specific rRT-LAMP detecting method for both YHV-8 and YHV-1 has been established. It is anticipated that this novel assay will be instrumental for diagnosis and surveillance of the virulent genotypes of YHV.


Assuntos
Hepatopâncreas/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Penaeidae/virologia , Roniviridae/genética , Animais , China , Primers do DNA , Genótipo , Hepatopâncreas/patologia , Transcrição Reversa , Roniviridae/classificação , Roniviridae/isolamento & purificação , Sensibilidade e Especificidade
20.
Fish Shellfish Immunol ; 47(1): 511-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26384846

RESUMO

Seasonal changes in water temperature directly affect the aquatic ecosystem. The blue crab, Callinectes sapidus, inhabiting the Chesapeake Bay has been adapted to seasonal changes of the environmental conditions. In this, the animals halt their physiological process of the growth and reproduction during colder months while they resume these processes as water temperatures increase. We aimed to understand the effect of the elevated temperatures on a disease progression of reo-like virus (CsRLV) and innate immunity of adult female C. sapidus. Following a rise in water temperature from 10 to 23 °C, CsRLV levels in infected crabs rose significantly in hemocytes and multiple organs. However, in hemocytes, the elevated temperature had no effect on the levels of three innate immune genes: Cas-ecCuZnSOD-2, CasPPO and CasLpR three carbohydrate metabolic genes: CasTPS, CasGlyP; and CasTreh and the total hemocyte counts (THC). Interestingly, the hemocytes of CsRLV infected animals exposed to 23 °C for 10 days had significantly elevated levels of Cas-ecCuZnSOD-2 and CasTPS, compared to those of the uninfected ones also exposed to the same condition and compared to hatchery-raised females kept at 23 °C. Despite the lack of changes in THC, the types of hemocytes from the animals with high CsRLV levels differed from those of uninfected ones and from hatchery animals kept at 23 °C: CsRLV-infected crabs had hemocytes of smaller size with less cytosolic complexity than uninfected crabs. It therefore appears that the change in temperature influences rapid replication of CsRLV in all internal tissues examined. This implies that CsRLV may have broad tissue tropism. Interestingly, the digestive tract (mid- and hindgut) contains significantly higher levels of CsRLV than hemocytes while hepatopancreas and ovary have lower levels than hemocytes. Innate immune responses differ by tissue: midgut and hepatopancreas with upregulated Cas-ecCuZnSOD-2 similar to that found in hemocytes. By contrast, hepatopancreas showed a down-regulated CasTPS, suggesting carbohydrate stress during infection.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Reoviridae/fisiologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , Braquiúros/virologia , Feminino , Hemócitos/imunologia , Hemócitos/virologia , Hepatopâncreas/imunologia , Hepatopâncreas/virologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...