Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0256147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34407141

RESUMO

Large mammalian herbivores use a diverse array of strategies to survive predator encounters including flight, grouping, vigilance, warning signals, and fitness indicators. While anti-predator strategies appear to be driven by specific predator traits, no prior studies have rigorously evaluated whether predator hunting characteristics predict reactive anti-predator responses. We experimentally investigated behavioral decisions made by free-ranging impala, wildebeest, and zebra during encounters with model predators with different functional traits. We hypothesized that the choice of response would be driven by a predator's hunting style (i.e., ambush vs. coursing) while the intensity at which the behavior was performed would correlate with predator traits that contribute to the prey's relative risk (i.e., each predator's prey preference, prey-specific capture success, and local predator density). We found that the choice and intensity of anti-predator behaviors were both shaped by hunting style and relative risk factors. All prey species directed longer periods of vigilance towards predators with higher capture success. The decision to flee was the only behavior choice driven by predator characteristics (capture success and hunting style) while intensity of vigilance, frequency of alarm-calling, and flight latency were modulated based on predator hunting strategy and relative risk level. Impala regulated only the intensity of their behaviors, while zebra and wildebeest changed both type and intensity of response based on predator traits. Zebra and impala reacted to multiple components of predation threat, while wildebeest responded solely to capture success. Overall, our findings suggest that certain behaviors potentially facilitate survival under specific contexts and that prey responses may reflect the perceived level of predation risk, suggesting that adaptive functions to reactive anti-predator behaviors may reflect potential trade-offs to their use. The strong influence of prey species identity and social and environmental context suggest that these factors may interact with predator traits to determine the optimal response to immediate predation threat.


Assuntos
Adaptação Fisiológica , Antílopes/fisiologia , Comportamento Animal/fisiologia , Ecossistema , Herbivoria/classificação , Dinâmica Populacional/estatística & dados numéricos , Comportamento Predatório/fisiologia , Animais , Cadeia Alimentar
2.
Commun Biol ; 4(1): 853, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244609

RESUMO

Plant-herbivore interactions promote the generation and maintenance of both plant and herbivore biodiversity. The antagonistic interactions between plants and herbivores lead to host race formation: the evolution of herbivore types specializing on different plant species, with restricted gene flow between them. Understanding how ecological specialization promotes host race formation usually depends on artificial approaches, using laboratory experiments on populations associated with agricultural crops. However, evidence on how host races are formed and maintained in a natural setting remains scarce. Here, we take a multidisciplinary approach to understand whether populations of the generalist spider mite Tetranychus urticae form host races in nature. We demonstrate that a host race co-occurs among generalist conspecifics in the dune ecosystem of The Netherlands. Extensive field sampling and genotyping of individuals over three consecutive years showed a clear pattern of host associations. Genome-wide differences between the host race and generalist conspecifics were found using a dense set of SNPs on field-derived iso-female lines and previously sequenced genomes of T. urticae. Hybridization between lines of the host race and sympatric generalist lines is restricted by post-zygotic breakdown, and selection negatively impacts the survival of generalists on the native host of the host race. Our description of a host race among conspecifics with a larger diet breadth shows how ecological and reproductive isolation aid in maintaining intra-specific variation in sympatry, despite the opportunity for homogenization through gene flow. Our findings highlight the importance of explicitly considering the spatial and temporal scale on which plant-herbivore interactions occur in order to identify herbivore populations associated with different plant species in nature. This system can be used to study the underlying genetic architecture and mechanisms that facilitate the use of a large range of host plant taxa by extreme generalist herbivores. In addition, it offers the chance to investigate the prevalence and mechanisms of ecological specialization in nature.


Assuntos
Adaptação Fisiológica/genética , Produtos Agrícolas/genética , Fluxo Gênico/genética , Variação Genética , Tetranychidae/genética , Animais , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/genética , Produtos Agrícolas/parasitologia , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Especiação Genética , Herbivoria/classificação , Herbivoria/genética , Interações Hospedeiro-Parasita/genética , Países Baixos , Filogenia , Isolamento Reprodutivo , Especificidade da Espécie , Simpatria , Tetranychidae/classificação
3.
Nat Commun ; 12(1): 3833, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188028

RESUMO

The question why non-avian dinosaurs went extinct 66 million years ago (Ma) remains unresolved because of the coarseness of the fossil record. A sudden extinction caused by an asteroid is the most accepted hypothesis but it is debated whether dinosaurs were in decline or not before the impact. We analyse the speciation-extinction dynamics for six key dinosaur families, and find a decline across dinosaurs, where diversification shifted to a declining-diversity pattern ~76 Ma. We investigate the influence of ecological and physical factors, and find that the decline of dinosaurs was likely driven by global climate cooling and herbivorous diversity drop. The latter is likely due to hadrosaurs outcompeting other herbivores. We also estimate that extinction risk is related to species age during the decline, suggesting a lack of evolutionary novelty or adaptation to changing environments. These results support an environmentally driven decline of non-avian dinosaurs well before the asteroid impact.


Assuntos
Biodiversidade , Dinossauros/fisiologia , Extinção Biológica , Adaptação Fisiológica , Animais , Evolução Biológica , Mudança Climática , Comportamento Competitivo , Dinossauros/classificação , Fósseis , Herbivoria/classificação , Herbivoria/fisiologia , Planetas Menores , Modelos Biológicos
4.
BMC Plant Biol ; 20(1): 551, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33297957

RESUMO

BACKGROUND: Tansy plants (Tanacetum vulgare L.) are known for their high intraspecific chemical variation, especially of volatile organic compounds (VOC) from the terpenoid compound group. These VOCs are closely involved in plant-insect interactions and, when profiled, can be used to classify plants into groups known as chemotypes. Tansy chemotypes have been shown to influence plant-aphid interactions, however, to date no information is available on the response of different tansy chemotypes to simultaneous herbivory by more than one insect species. RESULTS: Using a multi-cuvette system, we investigated the responses of five tansy chemotypes to feeding by sucking and/or chewing herbivores (aphids and caterpillars; Metopeurum fuscoviride Stroyan and Spodoptera littoralis Boisduval). Herbivory by caterpillars following aphid infestation led to a plant chemotype-specific change in the patterns of terpenoids stored in trichome hairs and in VOC emissions. The transcriptomic analysis of a plant chemotype represents the first de novo assembly of a transcriptome in tansy and demonstrates priming effects of aphids on a subsequent herbivory. Overall, we show that the five chemotypes do not react in the same way to the two herbivores. As expected, we found that caterpillar feeding increased VOC emissions, however, a priori aphid infestation only led to a further increase in VOC emissions for some chemotypes. CONCLUSIONS: We were able to show that different chemotypes respond to the double herbivore attack in different ways, and that pre-treatment with aphids had a priming effect on plants when they were subsequently exposed to a chewing herbivore. If neighbouring chemotypes in a field population react differently to herbivory/dual herbivory, this could possibly have effects from the individual level to the group level. Individuals of some chemotypes may respond more efficiently to herbivory stress than others, and in a group environment these "louder" chemotypes may affect the local insect community, including the natural enemies of herbivores, and other neighbouring plants.


Assuntos
Perfilação da Expressão Gênica/métodos , Doenças das Plantas/genética , Tanacetum/genética , Compostos Orgânicos Voláteis/metabolismo , Animais , Afídeos/fisiologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Herbivoria/classificação , Herbivoria/fisiologia , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , RNA-Seq/métodos , Tanacetum/metabolismo , Tanacetum/parasitologia , Terpenos/análise , Terpenos/metabolismo , Compostos Orgânicos Voláteis/análise
5.
Genetica ; 148(2): 87-99, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32096054

RESUMO

Crabs feed on a wide range of items and display diverse feeding strategies. The primary objective of this study was to investigate 10 digestive enzyme genes in representative crabs to provide insights into the genetic basis of feeding habits among crab functional groups. Crabs were classified into three groups based on their feeding habits: herbivores (HV), omnivores (OV), and carnivores (CV). To test whether crabs' feeding adaptations matched adaptive evolution of digestive enzyme genes, we examined the 10 digestive enzyme genes of 12 crab species based on hepatopancreas transcriptome data. Each of the digestive enzyme genes was compared to orthologous sequences using both nucleotide- (i.e., PAML and Datamonkey) and protein-level (i.e., TreeSAAP) approaches. Positive selection genes were detected in HV crabs (AMYA, APN, and MGAM) and CV crabs (APN, CPB, PNLIP, RISC, TRY, and XPD). Additionally, a series of positive selection sites were localized in important functional regions of these digestive enzyme genes. This is the first study to characterize the molecular basis of crabs' digestive enzyme genes based on functional feeding group. Our data suggest that HV crabs have evolved an enhanced digestion capacity for carbohydrates, and CV crabs have acquired digestion capacity for proteins and lipids.


Assuntos
Braquiúros/genética , Evolução Molecular , Trato Gastrointestinal/enzimologia , Seleção Genética/genética , Adaptação Fisiológica/genética , Animais , Braquiúros/classificação , Braquiúros/enzimologia , Carnivoridade/classificação , Carnivoridade/fisiologia , Dieta , Herbivoria/classificação , Herbivoria/genética
6.
Mycologia ; 112(6): 1212-1239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32057282

RESUMO

We isolated and characterized 65 anaerobic gut fungal (AGF; Neocallimastigomycota) strains from fecal samples of five wild (W, axis deer, white-tailed deer, Boer goat, mouflon, and Nilgiri tahr), one zoo-housed (Z, zebra), and three domesticated (D,  horse, sheep, and goat) herbivores in the US states of Texas (TX) and Oklahoma (OK), Wales (WA), and the Indian states of Kerala (KE) and Haryana (HA). Phylogenetic assessment using the D1-D2 regions of the large subunit (28S) rDNA and internal transcribed spacer 1 (ITS1) identified seven monophyletic clades that are distinct from all currently recognized AGF genera. All strains displayed monocentric thalli and produced exclusively or predominantly monoflagellate zoospores, with the exception of axis deer strains, which produced polyflagellate zoospores. Analysis of amplicon-based AGF diversity surveys indicated that zebra and horse strains are representatives of uncultured AL1 group, whereas domesticated goat and sheep strains are representatives of uncultured AL5 group, previously encountered in fecal and rumen samples of multiple herbivores. The other five lineages, all of which were isolated from wild herbivores, have not been previously encountered in such surveys. Our results significantly expand the genus-level diversity within the Neocallimastigomycota and strongly suggest that wild herbivores represent a yet-untapped reservoir of AGF diversity. We propose seven novel genera and eight novel Neocallimastigomycota species to comprise these strains, for which we propose the names Agriosomyces longus (mouflon and wild Boer goat), Aklioshbomyces papillarum (white-tailed deer), Capellomyces foraminis (wild Boar goat), and C. elongatus (domesticated goat), Ghazallomyces constrictus (axis deer), Joblinomyces apicalis (domesticated goat and sheep), Khoyollomyces ramosus (zebra-horse), and Tahromyces munnarensis (Nilgiri tahr).


Assuntos
Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Animais de Zoológico/microbiologia , Herbivoria , Neocallimastigomycota/classificação , Neocallimastigomycota/genética , Filogenia , Anaerobiose , Animais , DNA Fúngico/genética , DNA Ribossômico/genética , Cervos/microbiologia , Fezes/microbiologia , Feminino , Cabras/microbiologia , Herbivoria/classificação , Cavalos/microbiologia , Masculino , Neocallimastigomycota/isolamento & purificação , Ovinos/microbiologia , Suínos/microbiologia
7.
Proc Natl Acad Sci U S A ; 117(3): 1573-1579, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907310

RESUMO

Land-use change is a major driver of biodiversity loss worldwide. Although biodiversity often shows a delayed response to land-use change, previous studies have typically focused on a narrow range of current landscape factors and have largely ignored the role of land-use history in shaping plant and animal communities and their functional characteristics. Here, we used a unique database of 220,000 land-use records to investigate how 20-y of land-use changes have affected functional diversity across multiple trophic groups (primary producers, mutualists, herbivores, invertebrate predators, and vertebrate predators) in 75 grassland fields with a broad range of land-use histories. The effects of land-use history on multitrophic trait diversity were as strong as other drivers known to impact biodiversity, e.g., grassland management and current landscape composition. The diversity of animal mobility and resource-acquisition traits was lower in landscapes where much of the land had been historically converted from grassland to crop. In contrast, functional biodiversity was higher in landscapes containing old permanent grasslands, most likely because they offer a stable and high-quality habitat refuge for species with low mobility and specialized feeding niches. Our study shows that grassland-to-crop conversion has long-lasting impacts on the functional biodiversity of agricultural ecosystems. Accordingly, land-use legacy effects must be considered in conservation programs aiming to protect agricultural biodiversity. In particular, the retention of permanent grassland sanctuaries within intensive landscapes may offset ecological debts.


Assuntos
Biodiversidade , Ecossistema , Pradaria , Agricultura , Animais , Conservação dos Recursos Naturais , Bases de Dados Factuais , Ecologia , Herbivoria/classificação , Invertebrados/classificação , Plantas/classificação , Densidade Demográfica
8.
Proc Natl Acad Sci U S A ; 116(43): 21478-21483, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591246

RESUMO

Present-day African ecosystems serve as referential models for conceptualizing the environmental context of early hominin evolution, but the degree to which modern ecosystems are representative of those in the past is unclear. A growing body of evidence from eastern Africa's rich and well-dated late Cenozoic fossil record documents communities of large-bodied mammalian herbivores with ecological structures differing dramatically from those of the present day, implying that modern communities may not be suitable analogs for the ancient ecosystems of hominin evolution. To determine when and why the ecological structure of eastern Africa's herbivore faunas came to resemble those of the present, here we analyze functional trait changes in a comprehensive dataset of 305 modern and fossil herbivore communities spanning the last ∼7 Myr. We show that nearly all communities prior to ∼700 ka were functionally non-analog, largely due to a greater richness of non-ruminants and megaherbivores (species >1,000 kg). The emergence of functionally modern communities precedes that of taxonomically modern communities by 100,000s of years, and can be attributed to the combined influence of Plio-Pleistocene C4 grassland expansion and pulses of aridity after ∼1 Ma. Given the disproportionate ecological impacts of large-bodied herbivores on factors such as vegetation structure, hydrology, and fire regimes, it follows that the vast majority of early hominin evolution transpired in the context of ecosystems that functioned unlike any today. Identifying how past ecosystems differed compositionally and functionally from those today is key to conceptualizing ancient African environments and testing ecological hypotheses of hominin evolution.


Assuntos
Evolução Biológica , Ecossistema , Hominidae/genética , África Oriental , Animais , Fósseis/história , Herbivoria/classificação , Herbivoria/genética , História Antiga , Hominidae/classificação , Humanos , Paleontologia
9.
Mar Pollut Bull ; 148: 182-193, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31430705

RESUMO

Djiboutian coral reefs are poorly studied, but are of critical importance to tourism and artisanal fishing in this small developing nation. In 2014 and 2016 we carried out the most comprehensive survey of Djiboutian reefs to date, and present data on their ecology, health and estimate their vulnerability to future coral bleaching and anthropogenic impacts. Reef type varied from complex reef formations exposed to wind and waves along the Gulf of Aden, to narrow fringing reefs adjacent to the deep sheltered waters of the Gulf of Tadjoura. Evidence suggests that in the past 35 years the reefs have not previously experienced severe coral bleaching or significant human impacts, with many reefs having healthy and diverse coral and fish populations. Mean coral cover was high (52%) and fish assemblages were dominated by fishery target species and herbivores. However, rising sea surface temperatures (SSTs) and rapid recent coastal development activities in Djibouti are likely future threats to these relatively untouched reefs.


Assuntos
Antozoários/crescimento & desenvolvimento , Ecossistema , Animais , Antozoários/classificação , Recifes de Corais , Djibuti , Pesqueiros , Herbivoria/classificação , Atividades Humanas , Humanos
10.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180246, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31154978

RESUMO

The repeated evolutionary specialization of distantly related insects to cardenolide-containing host plants provides a stunning example of parallel adaptation. Hundreds of herbivorous insect species have independently evolved insensitivity to cardenolides, which are potent inhibitors of the alpha-subunit of Na+,K+-ATPase (ATPα). Previous studies investigating ATPα-mediated cardenolide insensitivity in five insect orders have revealed remarkably high levels of parallelism in the evolution of this trait, including the frequent occurrence of parallel amino acid substitutions at two sites and recurrent episodes of duplication followed by neo-functionalization. Here we add data for a sixth insect order, Orthoptera, which includes an ancient group of highly aposematic cardenolide-sequestering grasshoppers in the family Pyrgomorphidae. We find that Orthopterans exhibit largely predictable patterns of evolution of insensitivity established by sampling other insect orders. Taken together the data lend further support to the proposal that negative pleiotropic constraints are a key determinant in the evolution of cardenolide insensitivity in insects. Furthermore, analysis of our expanded taxonomic survey implicates positive selection acting on site 111 of cardenolide-sequestering species with a single-copy of ATPα, and sites 115, 118 and 122 in lineages with neo-functionalized duplicate copies, all of which are sites of frequent parallel amino acid substitution. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Assuntos
Cardenolídeos/farmacologia , Herbivoria/efeitos dos fármacos , Herbivoria/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Ortópteros/efeitos dos fármacos , Ortópteros/genética , Sequência de Aminoácidos , Animais , Evolução Biológica , Herbivoria/classificação , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos/química , Insetos/classificação , Insetos/genética , Ortópteros/química , Ortópteros/classificação , Filogenia , Alinhamento de Sequência , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Nat Commun ; 9(1): 5089, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504767

RESUMO

The rise of Neogene C4 grasslands is one of the most drastic changes recently experienced by the biosphere. A central - and widely debated - hypothesis posits that Neogene grasslands acted as a major adaptive zone for herbivore lineages. We test this hypothesis with a novel model system, the Sesamiina stemborer moths and their associated host-grasses. Using a comparative phylogenetic framework integrating paleoenvironmental proxies we recover a negative correlation between the evolutionary trajectories of insects and plants. Our results show that paleoenvironmental changes generated opposing macroevolutionary dynamics in this insect-plant system and call into question the role of grasslands as a universal adaptive cradle. This study illustrates the importance of implementing environmental proxies in diversification analyses to disentangle the relative impacts of biotic and abiotic drivers of macroevolutionary dynamics.


Assuntos
Evolução Biológica , Pradaria , Insetos/fisiologia , Poaceae/fisiologia , Animais , Ecossistema , Herbivoria/classificação , Herbivoria/fisiologia , Insetos/classificação , Filogenia , Poaceae/classificação
12.
Sci Rep ; 7(1): 8366, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827583

RESUMO

The early evolution of archosauromorphs (bird- and crocodile-line archosaurs and stem-archosaurs) represents an important case of adaptive radiation that occurred in the aftermath of the Permo-Triassic mass extinction. Here we enrich the early archosauromorph record with the description of a moderately large (3-4 m in total length), herbivorous new allokotosaurian, Shringasaurus indicus, from the early Middle Triassic of India. The most striking feature of Shringasaurus indicus is the presence of a pair of large supraorbital horns that resemble those of some ceratopsid dinosaurs. The presence of horns in the new species is dimorphic and, as occurs in horned extant bovid mammals, these structures were probably sexually selected and used as weapons in intraspecific combats. The relatively large size and unusual anatomy of Shringasaurus indicus broadens the morphological diversity of Early-Middle Triassic tetrapods and complements the understanding of the evolutionary mechanisms involved in the early archosauromorph diversification.


Assuntos
Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Herbivoria/classificação , Animais , Evolução Biológica , Índia
13.
Rev. biol. trop ; 64(2): 507-520, abr.-jun. 2016. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-843294

RESUMO

AbstractPlants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants’ resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development, demonstrating the importance of evaluating different plant traits when characterizing the vegetative investment. As expected by theory, the trade-off in resource allocation favored changes in defense compounds production and patterns of herbivory. The understanding of this important element of insect-plant interactions will be fundamental to decipher coevolutionary life histories and interactions between plant species reproduction and herbivory. Besides that, only through long-term studies we will be able to build models and develop more accurate forecasts about the factors that trigger the bottom-up effect on herbivory performance, as well the top-down effect of herbivores on plant trait evolution. Rev. Biol. Trop. 64 (2): 507-520. Epub 2016 June 01.


ResumenLas plantas tienen recursos limitados para invertir en reproducción, crecimiento vegetativo y defensa contra herbívoros. El cambio en la distribución de recursos promueve variaciones en rasgos vegetales, que pueden afectar los niveles tróficos superiores. Durante dos años consecutivos de alta y baja inversión reproductiva se evaluó el cambio de recursos entre crecimiento vegetativo y defensa, y su efecto indirecto sobre la herbivoría en Copaifera langsdorffii. Nos preguntamos: i) ¿La inversión de recursos para la reproducción causa reducción del crecimiento vegetativo, como predice la hipótesis de equilibrio carbono/nutrientes, haciendo posible gastar más recursos en defensa? ii) ¿La variación en distribución de recursos para crecimiento y defensa entre años de alta y baja fructificación modifica indirectamente la herbivoría? Se monitorearon treinta y cinco árboles durante 2008 (gran fructificación) y 2009 (sin fructificación) en un área de vegetación de cerrado (Brasil), para evaluar la inversión diferencial en rasgos vegetativos (biomasa, crecimiento y No. de ramificaciones), defensa (concentración de taninos e hipersensibilidad vegetal) y herbivoría. De acuerdo a nuestra primera pregunta, se observó que en el año de fructificación la biomasa leñosa afectó negativamente la concentración de taninos, indicando que la producción de frutos redujo los recursos que podían invertirse en crecimiento y defensa. Además, la resistencia de las plantas y el ataque de agallas fueron influidos positivamente por la concentración de taninos y la biomasa foliar, lo que sugiere que la resistencia de los árboles a la herbivoría es un buen indicador de defensa vegetal y una estrategia efectiva de defensa de C. langsdorffii, además hay evidencia de respuesta trófica indirecta, como se postula en la segunda pregunta. En resumen, el patrón de fructificación supra-anual provoca varios efectos en el desarrollo de las plantas, mostrando la importancia de evaluar diversos rasgos vegetales al caracterizar la inversión de recursos de una especie. Como se esperaba, el cambio en la distribución de recursos modifica la producción de compuestos de defensa y los patrones de herbivoría. El entendimiento de este elemento importante de las interacciones insecto-planta será fundamental para descifrar la historia natural coevolutiva y las interacciones entre reproducción vegetal y ataque herbívoro. Además de eso, solo a través de estudios a largo plazo vamos a ser capaces de construir modelos y desarrollar pronósticos más precisos acerca de los factores que desencadenan el efecto de abajo hacia arriba en el rendimiento de la herbivoría, así el efecto de arriba hacia abajo de los herbívoros sobre la evolución de las plantas.


Assuntos
Animais , Adaptação Fisiológica/fisiologia , Herbivoria/fisiologia , Insetos/fisiologia , Fabaceae/fisiologia , Tumores de Planta , Herbivoria/classificação , Insetos/classificação , Fabaceae/crescimento & desenvolvimento , Fabaceae/parasitologia
14.
Rev Biol Trop ; 64(2): 507-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29451751

RESUMO

Plants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants' resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development, demonstrating the importance of evaluating different plant traits when characterizing the vegetative investment. As expected by theory, the trade-off in resource allocation favored changes in defense compounds production and patterns of herbivory. The understanding of this important element of insect-plant interactions will be fundamental to decipher coevolutionary life histories and interactions between plant species reproduction and herbivory. Besides that, only through long-term studies we will be able to build models and develop more accurate forecasts about the factors that trigger the bottom-up effect on herbivory performance, as well the top-down effect of herbivores on plant trait evolution.


Assuntos
Adaptação Fisiológica/fisiologia , Fabaceae/fisiologia , Herbivoria/fisiologia , Insetos/fisiologia , Animais , Fabaceae/crescimento & desenvolvimento , Fabaceae/parasitologia , Herbivoria/classificação , Insetos/classificação , Tumores de Planta
15.
Environ Manage ; 57(1): 189-206, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26319143

RESUMO

Wildlife reserves are becoming increasingly isolated from the surrounding human-dominated landscapes particularly in Asia. It is imperative to understand how species are distributed spatially and temporally in and outside reserves, and what factors influence their occurrence. This study surveyed 7500 km(2) landscape surrounding five reserves in the Western Ghats to examine patterns of occurrence of five herbivores: elephant, gaur, sambar, chital, and pig. Species distributions are modeled spatio-temporally using an occupancy approach. Trained field teams conducted 3860 interview-based occupancy surveys in a 10-km buffer surrounding these five reserves in 2012. I found gaur and wild pig to be the least and most wide-ranging species, respectively. Elephant and chital exhibit seasonal differences in spatial distribution unlike the other three species. As predicted, distance to reserve, the reserve itself, and forest cover were associated with higher occupancy of all species, and higher densities of people negatively influenced occurrence of all species. Park management, species protection, and conflict mitigation efforts in this landscape need to incorporate temporal and spatial understanding of species distributions. All species are known crop raiders and conflict prone locations with resources (such as water and forage) have to be monitored and managed carefully. Wildlife reserves and adjacent areas are critical for long-term persistence and habitat use for all five herbivores and must be monitored to ensure wildlife can move freely. Such a large-scale approach to map and monitor species distributions can be adapted to other landscapes to identify and monitor critical habitats shared by people and wildlife.


Assuntos
Animais Selvagens/classificação , Conservação dos Recursos Naturais , Herbivoria/classificação , Animais , Animais Selvagens/crescimento & desenvolvimento , Ecossistema , Humanos , Índia , Modelos Teóricos
16.
Zoology (Jena) ; 118(3): 161-70, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25769813

RESUMO

In fishes, the evolution of herbivory has occured within a spectrum of digestive strategies, with two extremes on opposite ends: (i) a rate-maximization strategy characterized by high intake, rapid throughput of food through the gut, and little reliance on microbial digestion or (ii) a yield-maximization strategy characterized by measured intake, slower transit of food through the gut, and more of a reliance on microbial digestion in the hindgut. One of these strategies tends to be favored within a given clade of fishes. Here, we tested the hypothesis that rate or yield digestive strategies can arise in convergently evolved herbivores within a given lineage. In the family Stichaeidae, convergent evolution of herbivory occured in Cebidichthys violaceus and Xiphister mucosus, and despite nearly identical diets, these two species have different digestive physiologies. We found that C. violaceus has more digesta in its distal intestine than other gut regions, has comparatively high concentrations (>11 mM) of short-chain fatty acids (SCFA, the endpoints of microbial fermentation) in its distal intestine, and a spike in ß-glucosidase activity in this gut region, findings that, when coupled to long retention times (>20 h) of food in the guts of C. violaceus, suggest a yield-maximizing strategy in this species. X. mucosus showed none of these features and was more similar to its sister taxon, the omnivorous Xiphister atropurpureus, in terms of digestive enzyme activities, gut content partitioning, and concentrations of SCFA in their distal intestines. We also contrasted these herbivores and omnivores with other sympatric stichaeid fishes, Phytichthys chirus (omnivore) and Anoplarchus purpurescens (carnivore), each of which had digestive physiologies consistent with the consumption of animal material. This study shows that rate- and yield-maximizing strategies can evolve in closely related fishes and suggests that resource partitioning can play out on the level of digestive physiology in sympatric, closely related herbivores.


Assuntos
Evolução Biológica , Digestão/fisiologia , Herbivoria/classificação , Perciformes/classificação , Perciformes/fisiologia , Animais , Dieta , Enzimas/metabolismo , Intestinos/enzimologia , Perciformes/metabolismo , Filogenia
17.
J Anim Ecol ; 84(2): 364-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25279836

RESUMO

Incorporating the evolutionary history of species into community ecology enhances understanding of community composition, ecosystem functioning and responses to environmental changes. Phylogenetic history might partly explain the impact of fragmentation and land-use change on assemblages of interacting organisms and even determine potential cascading effects across trophic levels. However, it remains unclear whether phylogenetic diversity of basal resources is reflected at higher trophic levels in the food web. In particular, phylogenetic determinants of community structure have never been incorporated into habitat edge studies, even though edges are recognized as key factors affecting communities in fragmented landscapes. Here, we test whether phylogenetic diversity at different trophic levels (plants, herbivores and parasitoids) and signals of co-evolution (i.e. phylogenetic congruence) among interacting trophic levels change across an edge gradient between native and plantation forests. To ascertain whether there is a signal of co-evolution across trophic levels, we test whether related consumer species generally feed on related resource species. We found differences across trophic levels in how their phylogenetic diversity responded to the habitat edge gradient. Plant and native parasitoid phylogenetic diversity changed markedly across habitats, while phylogenetic variability of herbivores (which were predominantly native) did not change across habitats, though phylogenetic evenness declined in plantation interiors. Related herbivore species did not appear to feed disproportionately on related plant species (i.e. there was no signal of co-evolution) even when considering only native species, potentially due to the high trophic generality of herbivores. However, related native parasitoid species tended to feed on related herbivore species, suggesting the presence of a co-evolutionary signal at higher trophic levels. Moreover, this signal was stronger in plantation forests, indicating that this habitat may impose stresses on parasitoids that constrain them to attack only host species for which they are best adapted. Overall, changes in land use across native to plantation forest edges differentially affected phylogenetic diversity across trophic levels, and may also exert a strong selective pressure for particular co-evolved herbivore-parasitoid interactions.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Animais , Evolução Biológica , Cadeia Alimentar , Herbivoria/classificação , Larva/parasitologia , Lepidópteros/classificação , Lepidópteros/parasitologia , Nova Zelândia , Parasitos/classificação , Plantas/classificação , Plantas/parasitologia
18.
PLoS One ; 9(2): e89054, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551216

RESUMO

BACKGROUND: With world food demand expected to double by 2050, identifying farming systems that benefit both agricultural production and biodiversity is a fundamentally important challenge for the 21(st) century, but this has to be achieved in a sustainable way. Livestock grazing management directly influences both economic outputs and biodiversity on upland farms while contributing to potentially damaging greenhouse gas emissions, yet no study has attempted to address these impacts simultaneously. METHODS: Using a replicated, landscape-scale field experiment consisting of five management 'systems' we tested the effects of progressively altering elements within an upland farming system, viz i) incorporating cattle grazing into an upland sheep system, ii) integrating grazing of semi-natural rough grazing into a mixed grazing system based on improved pasture, iii) altering the stocking ratio within a mixed grazing system, and iv) replacing modern crossbred cattle with a traditional breed. We quantified the impacts on livestock productivity and numbers of birds and butterflies over four years. RESULTS CONCLUSION AND SIGNIFICANCE: We found that management systems incorporating mixed grazing with cattle improve livestock productivity and reduce methane emissions relative to sheep only systems. Systems that also included semi-natural rough grazing consistently supported more species of birds and butterflies, and it was possible to incorporate bouts of summer grazing of these pastures by cattle to meet habitat management prescriptions without compromising cattle performance overall. We found no evidence that the system incorporating a cattle breed popular as a conservation grazer was any better for bird and butterfly species richness than those based on a mainstream breed, yet methane emissions from such a system were predicted to be higher. We have demonstrated that mixed upland grazing systems not only improve livestock production, but also benefit biodiversity, suggesting a 'win-win' solution for farmers and conservationists.


Assuntos
Criação de Animais Domésticos/tendências , Biodiversidade , Conservação dos Recursos Naturais/tendências , Herbivoria/classificação , Altitude , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/organização & administração , Animais , Aves/fisiologia , Cruzamento/métodos , Borboletas/fisiologia , Bovinos , Conservação dos Recursos Naturais/métodos , Ecossistema , Herbivoria/fisiologia , Metano/biossíntese , Dinâmica Populacional , Estações do Ano , Ovinos , Reino Unido
19.
PLoS One ; 9(1): e85987, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465827

RESUMO

Climate change will have profound impacts on the distribution, abundance and ecology of all species. We used a multi-species transplant experiment to investigate the potential effects of a warmer climate on insect community composition and structure. Eight native Australian plant species were transplanted into sites approximately 2.5°C (mean annual temperature) warmer than their native range. Subsequent insect colonisation was monitored for 12 months. We compared the insect communities on transplanted host plants at the warmer sites with control plants transplanted within the species' native range. Comparisons of the insect communities were also made among transplanted plants at warmer sites and congeneric plant species native to the warmer transplant area. We found that the morphospecies composition of the colonising Coleoptera and Hemiptera communities differed markedly between transplants at the control compared to the warmer sites. Community structure, as described by the distribution of feeding guilds, was also found to be different between the controls and transplants when the entire Coleoptera and Hemiptera community, including non-herbivore feeding guilds, was considered. However, the structure of the herbivorous insect community showed a higher level of consistency between plants at control and warm sites. There were marked differences in community composition and feeding guild structure, for both herbivores and non-herbivores, between transplants and congenerics at the warm sites. These results suggest that as the climate warms, considerable turnover in the composition of insect communities may occur, but insect herbivore communities may retain elements of their present-day structure.


Assuntos
Mudança Climática , Ecossistema , Insetos/fisiologia , Plantas/parasitologia , Análise de Variância , Animais , Austrália , Clima , Besouros/classificação , Besouros/fisiologia , Comportamento Alimentar/fisiologia , Geografia , Hemípteros/classificação , Hemípteros/fisiologia , Herbivoria/classificação , Herbivoria/fisiologia , Interações Hospedeiro-Parasita , Insetos/classificação , Dinâmica Populacional , Temperatura , Fatores de Tempo
20.
PLoS One ; 8(7): e67182, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874409

RESUMO

Megaherbivorous dinosaur coexistence on the Late Cretaceous island continent of Laramidia has long puzzled researchers, owing to the mystery of how so many large herbivores (6-8 sympatric species, in many instances) could coexist on such a small (4-7 million km(2)) landmass. Various explanations have been put forth, one of which-dietary niche partitioning-forms the focus of this study. Here, we apply traditional morphometric methods to the skulls of megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta to infer the ecomorphology of these animals and to test the niche partitioning hypothesis. We find evidence for niche partitioning not only among contemporaneous ankylosaurs, ceratopsids, and hadrosaurids, but also within these clades at the family and subfamily levels. Consubfamilial ceratopsids and hadrosaurids differ insignificantly in their inferred ecomorphologies, which may explain why they rarely overlap stratigraphically: interspecific competition prevented their coexistence.


Assuntos
Dinossauros/anatomia & histologia , Fósseis , Crânio/anatomia & histologia , Adaptação Biológica/fisiologia , Alberta , Animais , Pesos e Medidas Corporais/veterinária , Canadá , Dinossauros/classificação , Dinossauros/fisiologia , Ecossistema , Herbivoria/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...