Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 198: 106558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852754

RESUMO

Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.


Assuntos
Córtex Cerebral , Filaminas , Proteínas rac1 de Ligação ao GTP , Animais , Filaminas/metabolismo , Filaminas/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Camundongos , Córtex Cerebral/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Células Piramidais/metabolismo , Neurogênese/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Neurônios/metabolismo , Camundongos Transgênicos , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patologia , Neuropeptídeos/metabolismo , Neuropeptídeos/genética
2.
Science ; 376(6599): eabf9088, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709258

RESUMO

The centrosome provides an intracellular anchor for the cytoskeleton, regulating cell division, cell migration, and cilia formation. We used spatial proteomics to elucidate protein interaction networks at the centrosome of human induced pluripotent stem cell-derived neural stem cells (NSCs) and neurons. Centrosome-associated proteins were largely cell type-specific, with protein hubs involved in RNA dynamics. Analysis of neurodevelopmental disease cohorts identified a significant overrepresentation of NSC centrosome proteins with variants in patients with periventricular heterotopia (PH). Expressing the PH-associated mutant pre-mRNA-processing factor 6 (PRPF6) reproduced the periventricular misplacement in the developing mouse brain, highlighting missplicing of transcripts of a microtubule-associated kinase with centrosomal location as essential for the phenotype. Collectively, cell type-specific centrosome interactomes explain how genetic variants in ubiquitous proteins may convey brain-specific phenotypes.


Assuntos
Centrossomo , Células-Tronco Neurais , Neurogênese , Neurônios , Heterotopia Nodular Periventricular , Mapas de Interação de Proteínas , Processamento Alternativo , Animais , Encéfalo/anormalidades , Centrossomo/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Microtúbulos/metabolismo , Neurônios/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Proteoma/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Transcrição/metabolismo
3.
Semin Cell Dev Biol ; 111: 15-22, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32741653

RESUMO

Genetic studies identified multiple mutations associated with malformations of cortical development (MCD) in humans. When analyzing the underlying mechanisms in non-human experimental models it became increasingly evident, that these mutations accumulate in genes, which functions evolutionary progressed from rodents to humans resulting in an incomplete reflection of the molecular and cellular alterations in these models. Human brain organoids derived from human pluripotent stem cells resemble early aspects of human brain development to a remarkable extent making them an attractive model to investigate MCD. Here we review how human brain organoids enable the generation of fundamental new insight about the underlying pathomechanisms of MCD. We show how phenotypic features of these diseases are reflected in human brain organoids and discuss challenges and future considerations but also limitations for the use of human brain organoids to model human brain development and associated disorders.


Assuntos
Córtex Cerebral/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Organoides/metabolismo , Heterotopia Nodular Periventricular/genética , Diferenciação Celular , Córtex Cerebral/anormalidades , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiopatologia , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Humanos , Lisencefalia/metabolismo , Lisencefalia/patologia , Lisencefalia/fisiopatologia , Megalencefalia/metabolismo , Megalencefalia/patologia , Megalencefalia/fisiopatologia , Microcefalia/metabolismo , Microcefalia/patologia , Microcefalia/fisiopatologia , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Organoides/patologia , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patologia , Heterotopia Nodular Periventricular/fisiopatologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Cultura Primária de Células
4.
Nat Cell Biol ; 20(8): 942-953, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013108

RESUMO

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a signalling network known as the unfolded protein response (UPR). Here, we identified filamin A as a major binding partner of the ER stress transducer IRE1α. Filamin A is an actin crosslinking factor involved in cytoskeleton remodelling. We show that IRE1α controls actin cytoskeleton dynamics and affects cell migration upstream of filamin A. The regulation of cytoskeleton dynamics by IRE1α is independent of its canonical role as a UPR mediator, serving instead as a scaffold that recruits and regulates filamin A. Targeting IRE1α expression in mice affected normal brain development, generating a phenotype resembling periventricular heterotopia, a disease linked to the loss of function of filamin A. IRE1α also modulated cell movement and cytoskeleton dynamics in fly and zebrafish models. This study unveils an unanticipated biological function of IRE1α in cell migration, whereby filamin A operates as an interphase between the UPR and the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/metabolismo , Movimento Celular , Endorribonucleases/metabolismo , Fibroblastos/metabolismo , Filaminas/metabolismo , Neurônios/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Endorribonucleases/deficiência , Endorribonucleases/genética , Evolução Molecular , Feminino , Filaminas/genética , Células HEK293 , Humanos , Cinética , Masculino , Camundongos , Camundongos Knockout , Neurônios/patologia , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patologia , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Resposta a Proteínas não Dobradas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Hum Mol Genet ; 26(21): 4278-4289, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973161

RESUMO

Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Adulto , Animais , Encéfalo/anormalidades , Córtex Cerebral/metabolismo , Drosophila melanogaster , Epilepsia/genética , Epilepsia/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Masculino , Malformações do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Linhagem , Heterotopia Nodular Periventricular/genética , Terminações Pré-Sinápticas , Ratos , Convulsões/metabolismo , Sinapses/metabolismo , Sequenciamento do Exoma
7.
Dev Cell ; 41(5): 481-495.e5, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28552558

RESUMO

Malformations of the cerebral cortex (MCCs) are devastating developmental disorders. We report here that mice with embryonic neural stem-cell-specific deletion of Llgl1 (Nestin-Cre/Llgl1fl/fl), a mammalian ortholog of the Drosophila cell polarity gene lgl, exhibit MCCs resembling severe periventricular heterotopia (PH). Immunohistochemical analyses and live cortical imaging of PH formation revealed that disruption of apical junctional complexes (AJCs) was responsible for PH in Nestin-Cre/Llgl1fl/fl brains. While it is well known that cell polarity proteins govern the formation of AJCs, the exact mechanisms remain unclear. We show that LLGL1 directly binds to and promotes internalization of N-cadherin, and N-cadherin/LLGL1 interaction is inhibited by atypical protein kinase C-mediated phosphorylation of LLGL1, restricting the accumulation of AJCs to the basolateral-apical boundary. Disruption of the N-cadherin-LLGL1 interaction during cortical development in vivo is sufficient for PH. These findings reveal a mechanism responsible for the physical and functional connection between cell polarity and cell-cell adhesion machineries in mammalian cells.


Assuntos
Encéfalo/anormalidades , Adesão Celular/fisiologia , Polaridade Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais/fisiologia , Heterotopia Nodular Periventricular/patologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Apoptose , Encéfalo/metabolismo , Encéfalo/patologia , Caderinas/genética , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Proteínas do Citoesqueleto , Células-Tronco Embrionárias/citologia , Feminino , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/citologia , Heterotopia Nodular Periventricular/metabolismo , Fosforilação
8.
J Neurochem ; 140(1): 82-95, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787898

RESUMO

We analyzed the role of a heterotrimeric G-protein, Gi2, in the development of the cerebral cortex. Acute knockdown of the α-subunit (Gαi2) with in utero electroporation caused delayed radial migration of excitatory neurons during corticogenesis, perhaps because of impaired morphology. The migration phenotype was rescued by an RNAi-resistant version of Gαi2. On the other hand, silencing of Gαi2 did not affect axon elongation, dendritic arbor formation or neurogenesis at ventricular zone in vivo. When behavior analyses were conducted with acute Gαi2-knockdown mice, they showed defects in social interaction, novelty recognition and active avoidance learning as well as increased anxiety. Subsequently, using whole-exome sequencing analysis, we identified a de novo heterozygous missense mutation (c.680C>T; p.Ala227Val) in the GNAI2 gene encoding Gαi2 in an individual with periventricular nodular heterotopia and intellectual disability. Collectively, the phenotypes in the knockdown experiments suggest a role of Gαi2 in the brain development, and impairment of its function might cause defects in neuronal functions which lead to neurodevelopmental disorders.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/fisiologia , Deficiência Intelectual/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animais , Aprendizagem da Esquiva/fisiologia , Células COS , Córtex Cerebral/diagnóstico por imagem , Chlorocebus aethiops , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/deficiência , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Heterotopia Nodular Periventricular/diagnóstico por imagem , Heterotopia Nodular Periventricular/genética , Gravidez
9.
Epilepsia ; 56(4): 626-35, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25752321

RESUMO

OBJECTIVE: Aberrations in brain development may lead to dysplastic structures such as periventricular nodules. Although these abnormal collections of neurons are often associated with difficult-to-control seizure activity, there is little consensus regarding the epileptogenicity of the nodules themselves. Because one common treatment option is surgical resection of suspected epileptic nodules, it is important to determine whether these structures in fact give rise, or essentially contribute, to epileptic activities. METHODS: To study the excitability of aberrant nodules, we have examined c-fos activation in organotypic hippocampal slice cultures generated from an animal model of periventricular nodular heterotopia created by treating pregnant rats with methylazoxymethanol acetate. Using this preparation, we have also attempted to assess tissue excitability when the nodule is surgically removed from the culture. We then compared c-fos activation in this in vitro preparation to c-fos activation generated in an intact rat treated with kainic acid. RESULTS: Quantitative analysis of c-fos activation failed to show enhanced nodule excitability compared to neocortex or CA1 hippocampus. However, when we compared cultures with and without a nodule, presence of a nodule did affect the excitability of CA1 and cortex, at least as reflected in c-fos labeling. Surgical removal of the nodule did not result in a consistent decrease in excitability as reflected in the c-fos biomarker. SIGNIFICANCE: Our results from the organotypic culture were generally consistent with our observations on excitability in the intact rat-as seen not only with c-fos but also in previous electrophysiologic studies. At least in this model, the nodule does not appear to be responsible for enhanced excitability (or, presumably, seizure initiation). Excitability is different in tissue that contains a nodule, suggesting altered network function, perhaps reflecting the abnormal developmental pattern that gave rise to the nodule.


Assuntos
Modelos Animais de Doenças , Genes fos/fisiologia , Hipocampo/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animais , Feminino , Hipocampo/patologia , Técnicas de Cultura de Órgãos , Heterotopia Nodular Periventricular/patologia , Gravidez , Ratos , Ratos Sprague-Dawley
10.
J Neurosci ; 35(2): 610-20, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589755

RESUMO

Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis.


Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Células-Tronco Neurais/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Animais , Proliferação de Células , Regulação para Baixo , Filaminas/genética , Filaminas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células-Tronco Neurais/fisiologia , Heterotopia Nodular Periventricular/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Biomed Res Int ; 2013: 805467, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24191251

RESUMO

Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.


Assuntos
Axônios , Cerebelo , Neuroglia , Heterotopia Nodular Periventricular , Animais , Axônios/metabolismo , Axônios/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Cerebelo/crescimento & desenvolvimento , Cerebelo/patologia , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/biossíntese , Neuroglia/metabolismo , Neuroglia/patologia , Fator de Transcrição 2 de Oligodendrócitos , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patologia , Ratos , Ratos Sprague-Dawley
12.
Epileptic Disord ; 14(4): 398-402, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23274163

RESUMO

AIM: The extracellular matrix glycoprotein reelin plays a crucial role in the control of neuronal migration and during development is expressed by Cajal-Retzius cells in the marginal zone. The purpose of this study was to investigate the possible involvement of reelin in the pathogenesis of human nodular heterotopia, a malformation of cortical development frequently associated with focal drug-resistant epilepsy. METHODS: Five patients presenting with subcortical nodular heterotopia and referred for epilepsy surgery, after a comprehensive presurgical investigation, were considered. The surgical specimens were studied by combining immunohistochemistry, double immunofluorescence, and in situ hybridisation procedures. RESULTS: The selected cases were characterised by the presence of multiple nodules presenting in the core cell-free zones, reminiscent of the cortical molecular layer. In all cases, small reelin-positive cells, without typical Cajal-Retzius cell features, were distributed inside the nodules and localised in these cell body-sparse regions. CONCLUSION: The presented data corroborate the hypothesis that reelin might be involved in human heterotopic nodular formation.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular/fisiologia , Epilepsias Parciais/etiologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Serina Endopeptidases/metabolismo , Adulto , Moléculas de Adesão Celular Neuronais/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Epilepsias Parciais/cirurgia , Proteínas da Matriz Extracelular/fisiologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Heterotopia Nodular Periventricular/complicações , Proteína Reelina , Serina Endopeptidases/fisiologia , Adulto Jovem
13.
Hum Mol Genet ; 21(5): 1004-17, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22076441

RESUMO

Periventricular nodular heterotopia (PH) is a human brain malformation caused by defective neuronal migration that results in ectopic neuronal nodules lining the lateral ventricles beneath a normal appearing cortex. Most affected patients have seizures and their cognitive level varies from normal to severely impaired. Mutations in the Filamin-A (or FLNA) gene are the main cause of PH, but the underlying pathological mechanism remains unknown. Although two FlnA knockout mouse strains have been generated, none of them showed the presence of ectopic nodules. To recapitulate the loss of FlnA function in the developing rat brain, we used an in utero RNA interference-mediated knockdown approach and successfully reproduced a PH phenotype in rats comparable with that observed in human patients. In FlnA-knockdown rats, we report that PH results from a disruption of the polarized radial glial scaffold in the ventricular zone altering progression of neural progenitors through the cell cycle and impairing migration of neurons into the cortical plate. Similar alterations of radial glia are observed in human PH brains of a 35-week fetus and a 3-month-old child, harboring distinct FLNA mutations not previously reported. Finally, juvenile FlnA-knockdown rats are highly susceptible to seizures, confirming the reliability of this novel animal model of PH. Our findings suggest that the disorganization of radial glia is the leading cause of PH pathogenesis associated with FLNA mutations. Rattus norvegicus FlnA mRNA (GenBank accession number FJ416060).


Assuntos
Córtex Cerebral/metabolismo , Proteínas Contráteis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neuroglia/fisiologia , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patologia , Animais , Movimento Celular , Proliferação de Células , Córtex Cerebral/embriologia , Córtex Cerebral/patologia , Ventrículos Cerebrais/patologia , Proteínas Contráteis/genética , Modelos Animais de Doenças , Feminino , Filaminas , Humanos , Lactente , Proteínas dos Microfilamentos/genética , Dados de Sequência Molecular , Neocórtex/embriologia , Neocórtex/metabolismo , Neocórtex/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Neurônios/fisiologia , Interferência de RNA , Ratos , Convulsões/etiologia
14.
Anat Sci Int ; 85(1): 38-45, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19582544

RESUMO

In order to elucidate the regeneration properties of serotonergic fibers in the hippocampus of methylazoxymethanol acetate (MAM)-induced micrencephalic rats (MAM rats), we examined serotonergic regeneration in the hippocampus following neonatal intracisternal 5,7-dihydroxytryptamine (5,7-DHT) injection. Prenatal exposure to MAM resulted in the formation of hippocampal heterotopia in the dorsal hippocampus. Immunohistochemical and neurochemical analyses revealed hyperinnervation of serotonergic fibers in the hippocampus of MAM rats. After neonatal 5,7-DHT injection, most serotonergic fibers in the hippocampus of 2-week-old MAM rats had degenerated, while a small number of serotonergic fibers in the stratum lacunosum-moleculare (SLM) of the hippocampus and in the hilus adjacent to the granular cell layer of the dentate gyrus (DG) had not. Regenerating serotonergic fibers from the SLM first extended terminals into the hippocampal heterotopia, then fibers from the hilus reinnervated the DG and some fibers extended to the heterotopia. These findings suggest that the hippocampal heterotopia exerts trophic target effects for regenerating serotonergic fibers in the developmental period in micrencephalic rats.


Assuntos
5,6-Di-Hidroxitriptamina/análogos & derivados , Creatinina/análogos & derivados , Hipocampo/efeitos dos fármacos , Microcefalia/fisiopatologia , Fibras Nervosas Amielínicas/fisiologia , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Serotonina/metabolismo , 5,6-Di-Hidroxitriptamina/farmacologia , Fatores Etários , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão , Creatinina/farmacologia , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Imuno-Histoquímica , Masculino , Acetato de Metilazoximetanol/análogos & derivados , Microcefalia/induzido quimicamente , Microcefalia/metabolismo , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/metabolismo , Neurônios/fisiologia , Heterotopia Nodular Periventricular/induzido quimicamente , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley
15.
Epilepsia ; 49(5): 826-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18363710

RESUMO

BACKGROUND: Alpha-[11C]methyl-L-tryptophan (alpha-MTrp) positron emission tomography (PET) is a promising tool in the localization of the epileptogenic area in selected group of focal epilepsy patients. Electrophysiological evidence suggests the involvement of the neocortex in periventricular nodular heterotopia (PVNH). PURPOSE: To determine whether alpha-MTrp PET can detect neocortical changes in patients with PVNH. METHODS: Four patients (2 male, mean age 28, range 23-35 years) with PVNH and intractable seizures were studied. The functional image in each patient was compared with those from 21 healthy controls (mean age 34.6 +/- 14.2 years) by using statistical parametric mapping (SPM). The location of increased alpha-MTrp uptake was compared with the location of the EEG focus. A significant cluster was defined as a cluster with a height p = 0.005 and an extent threshold 100. RESULTS: Alpha-MTrp PET revealed increased cortical uptake in two of four patients. The area of increased alpha-MTrp uptake in one patient was widespread. In the other patient, the area of increased uptake did not include the region where most seizures were generated on EEG. alpha-MTrp PET did not show increased uptake in the heterotopic nodules in any of the patients. CONCLUSIONS: Alpha-MTrp PET suggests abnormal metabolism of tryptophan in the neocortex. The increased uptake may be diffuse and may not co-localize with the EEG focus. This preliminary study suggests that alpha-MTrp PET may be useful, in conjunction with other evaluations, in localizing epileptic focus in patients with PVNH and refractory seizures.


Assuntos
Radioisótopos de Carbono , Epilepsia/diagnóstico por imagem , Heterotopia Nodular Periventricular/diagnóstico por imagem , Triptofano/análogos & derivados , Adulto , Mapeamento Encefálico , Radioisótopos de Carbono/metabolismo , Grupos Controle , Eletroencefalografia/estatística & dados numéricos , Epilepsia/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neocórtex/metabolismo , Neocórtex/fisiopatologia , Heterotopia Nodular Periventricular/metabolismo , Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Serotonina/metabolismo , Triptofano/metabolismo
16.
Trends Neurosci ; 31(2): 54-61, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18201775

RESUMO

Postmitotic cortical neurons that fail to initiate migration can remain near their site of origin and form persistent periventricular nodular heterotopia (PH). In human telencephalon, this malformation is most commonly associated with Filamin-A (FLNa) mutations. The lack of genetic animal models that reliably produce PH has delayed our understanding of the underlying molecular mechanisms. This review examines PH pathogenesis using a new mouse model. Although PH have not been observed in Flna-deficient mice generated thus far, the loss of MEKK4, a regulator of Flna, produces striking PH in mice and offers insight into the mechanisms involved in neuronal migration initiation. Elucidating the basic functions of FLNa and associated molecules is crucial for understanding the causes of PH and for developing prevention for at-risk patients.


Assuntos
Movimento Celular/genética , Córtex Cerebral/crescimento & desenvolvimento , MAP Quinase Quinase Quinase 4/genética , Heterotopia Nodular Periventricular/genética , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas Contráteis/genética , Proteínas Contráteis/metabolismo , Modelos Animais de Doenças , Filaminas , Humanos , MAP Quinase Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...