Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Pharmacol ; 919: 174792, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122869

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and eventually fatal lung disease with a complex etiology. Approved drugs, nintedanib and pirfenidone, modify disease progression, but IPF remains incurable and there is an urgent need for new therapies. We identified chitotriosidase (CHIT1) as new driver of fibrosis in IPF and a novel therapeutic target. We demonstrate that CHIT1 activity and expression are significantly increased in serum (3-fold) and induced sputum (4-fold) from IPF patients. In the lungs CHIT1 is expressed in a distinct subpopulation of profibrotic, disease-specific macrophages, which are only present in patients with ILDs and CHIT1 is one of the defining markers of this fibrosis-associated gene cluster. To define CHIT1 role in fibrosis, we used the therapeutic protocol of the bleomycin-induced pulmonary fibrosis mouse model. We demonstrate that in the context of chitinase induction and the macrophage-specific expression of CHIT1, this model recapitulates lung fibrosis in ILDs. Genetic inactivation of Chit1 attenuated bleomycin-induced fibrosis (decreasing the Ashcroft scoring by 28%) and decreased expression of profibrotic factors in lung tissues. Pharmacological inhibition of chitinases by OATD-01 reduced fibrosis and soluble collagen concentration. OATD-01 exhibited anti-fibrotic activity comparable to pirfenidone resulting in the reduction of the Ashcroft score by 32% and 31%, respectively. These studies provide a preclinical proof-of-concept for the antifibrotic effects of OATD-01 and establish CHIT1 as a potential new therapeutic target for IPF.


Assuntos
Hexosaminidases , Fibrose Pulmonar Idiopática , Inibidores de Proteínas Quinases , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Bleomicina , Modelos Animais de Doenças , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946697

RESUMO

Chitinases represent an alternative therapeutic target for opportunistic invasive mycosis since they are necessary for fungal cell wall remodeling. This study presents the design of new chitinase inhibitors from a known hydrolysis intermediate. Firstly, a bioinformatic analysis of Aspergillus fumigatus chitinase B1 (AfChiB1) and chitotriosidase (CHIT1) by length and conservation was done to obtain consensus sequences, and molecular homology models of fungi and human chitinases were built to determine their structural differences. We explored the octahydroisoindolone scaffold as a potential new antifungal series by means of its structural and electronic features. Therefore, we evaluated several synthesis-safe octahydroisoindolone derivatives by molecular docking and evaluated their AfChiB1 interaction profile. Additionally, compounds with the best interaction profile (1-5) were docked within the CHIT1 catalytic site to evaluate their selectivity over AfChiB1. Furthermore, we considered the interaction energy (MolDock score) and a lipophilic parameter (aLogP) for the selection of the best candidates. Based on these descriptors, we constructed a mathematical model for the IC50 prediction of our candidates (60-200 µM), using experimental known inhibitors of AfChiB1. As a final step, ADME characteristics were obtained for all the candidates, showing that 5 is our best designed hit, which possesses the best pharmacodynamic and pharmacokinetic character.


Assuntos
Antifúngicos/química , Aspergillus fumigatus/enzimologia , Quitinases , Inibidores Enzimáticos/química , Proteínas Fúngicas , Simulação de Acoplamento Molecular , Quitinases/antagonistas & inibidores , Quitinases/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/química
3.
ACS Sens ; 4(5): 1222-1229, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31001975

RESUMO

The development of effective detection methods for hexosaminidase is of great importance for the rapid screening of potential inhibitors in vitro and for the early diagnosis of related diseases ex vivo. In this study, the activatable fluorescent probes that are based on naphthalimide decorated with ethylene glycol units were synthesized using N-acetyl-ß-d-glucosaminide as a hexosaminidase-responsive group. When exposed to this enzyme, the glucoside-linked naphthalimide moiety of 1c can be cleaved quickly with significant changes in both color (from colorless to yellow) and fluorescence (from blue to green). Probe 1c shows better water-solubility and fluorescence properties than common substrate 4-methylumbelliferyl N-acetyl-ß-d-glucosaminide. Furthermore, the response mechanism of 1c to hexosaminidase was evaluated using HPLC analysis and TD-DFT calculations. Molecular docking was performed to investigate the interaction mode. In addition, 1c has successfully achieved the straightforward rapid discovery of effective hexosaminidase inhibitors. Fluorescence imaging experiments indicate that 1c has good cell safety and can be employed as a useful tool for detecting intracellular hexosaminidase activity.


Assuntos
Ensaios Enzimáticos/métodos , Hexosaminidases/química , Hexosaminidases/metabolismo , Espaço Intracelular/metabolismo , Naftalimidas/química , Imagem Óptica/métodos , Benzeno/química , Domínio Catalítico , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Glicosilação , Hexosaminidases/antagonistas & inibidores , Humanos , Cinética , Simulação de Acoplamento Molecular , Polietilenoglicóis/química
5.
Bioorg Med Chem Lett ; 28(3): 310-314, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29292229

RESUMO

This article describes our work towards the identification of a potent and selective inhibitor of mouse chitotriosidase (mCHIT1). A series of small molecule inhibitors of mCHIT1 and mAMCase have been developed from early lead compound 1. Examination of synthetized analogues led to discovery of several novel highly potent compounds. Among them compound 9 (OAT-2068) displays a remarkable 143-fold mCHIT1 vs. mAMCase selectivity. To explain the observed SAR molecular docking experiments were performed, which were in line with the experimental data from the enzymatic assays. Inhibitor 9 (OAT-2068) was found to have an excellent pharmacokinetic profile. This, together with high activity and selectivity, makes the compound an ideal and unique tool for studying the role of CHIT1 in biological models.


Assuntos
Descoberta de Drogas , Hexosaminidases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Hexosaminidases/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
6.
Chemistry ; 23(38): 9022-9025, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28548311

RESUMO

A set of multivalent polyhydroxylated acetamidoazepanes based on ethylene glycol, glucoside, or cyclodextrin scaffolds was prepared. The compounds were assessed against plant, mammalian, and therapeutically relevant hexosaminidases. Multimerization was shown to improve the inhibitory potency with synergy, and to fine tune the selectivity profile between related hexosaminidases.


Assuntos
Antibacterianos/química , Azepinas/química , Hexosaminidases/antagonistas & inibidores , Imino Açúcares/química , Animais , Antibacterianos/farmacologia , Azepinas/farmacologia , Ciclodextrinas/química , Inibidores Enzimáticos/metabolismo , Etilenoglicol/química , Glucosídeos/química , Imino Açúcares/farmacologia , Plantas/metabolismo
7.
Chem Commun (Camb) ; 52(51): 7943-6, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27253678

RESUMO

Mono-, di- and trisaccharide derivatives of 1,2-unsaturated N-acetyl-d-glucal have been synthesized and shown to function as tight-binding inhibitors/slow substrates of representative hexosaminidases. Turnover is slow and not observed in the thioamide analogue, allowing determination of the 3-dimensional structure of the complex. Inhibition is insensitive to pH and to mutation of key catalytic residues, consistent with the uncharged character of the inhibitor. These properties could render this inhibitor class less prone to development of resistance.


Assuntos
Desoxiglucose/análogos & derivados , Inibidores Enzimáticos/farmacologia , Hexosaminidases/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Biocatálise , Desoxiglucose/síntese química , Desoxiglucose/química , Desoxiglucose/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Hexosaminidases/metabolismo , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular
8.
Biochemistry ; 55(19): 2735-47, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27149221

RESUMO

Mammalian ß-hexosaminidases have been shown to play essential roles in cellular physiology and health. These enzymes are responsible for the cleavage of the monosaccharides N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) from cellular substrates. One of these ß-hexosaminidases, hexosaminidase D (HexD), encoded by the HEXDC gene, has received little attention. No mechanistic studies have focused on the role of this unusual nucleocytoplasmically localized ß-hexosaminidase, and its cellular function remains unknown. Using a series of kinetic and mechanistic investigations into HexD, we define the precise catalytic mechanism of this enzyme and establish the identities of key enzymic residues. The preparation of synthetic aryl N-acetylgalactosaminide substrates for HexD in combination with measurements of kinetic parameters for wild-type and mutant enzymes, linear free energy analyses of the enzyme-catalyzed hydrolysis of these substrates, evaluation of the reaction by nuclear magnetic resonance, and inhibition studies collectively reveal the detailed mechanism of action employed by HexD. HexD is a retaining glycosidase that operates using a substrate-assisted catalytic mechanism, has a preference for galactosaminide over glucosaminide substrates, and shows a pH optimum in its second-order rate constant at pH 6.5-7.0. The catalytically important residues are Asp148 and Glu149, with Glu149 serving as the general acid/base residue and Asp148 as the polarizing residue. HexD is inhibited by Gal-NAG-thiazoline (Ki = 420 nM). The fundamental insights gained from this study will aid in the development of potent and selective probes for HexD, which will serve as useful tools to improve our understanding of the physiological role played by this unusual enzyme.


Assuntos
Inibidores Enzimáticos/química , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/química , Tiazolidinas/química , Catálise , Hexosaminidases/genética , Hexosaminidases/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética
9.
Eur J Med Chem ; 121: 926-938, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-26564401

RESUMO

Due to their capacity to inhibit hexosaminidases, 2-acetamido-1,2-dideoxy-iminosugars have been widely studied as potential therapeutic agents for various diseases. An efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc), the most potent inhibitor of human placenta ß-N-acetylglucosaminidase (ß-hexosaminidase) among the epimeric series, is here described. This novel procedure can be easily scaled up, providing enough material for structural modifications and further biological tests. Thus, two series of sp(2)-iminosugar conjugates derived from DAJNAc have been prepared, namely monocyclic DAJNAc-thioureas and bicyclic 2-iminothiazolidines, and their glycosidase inhibitory activity evaluated. The data evidence the utmost importance of developing diversity-oriented synthetic strategies allowing optimization of electrostatic and hydrophobic interactions to achieve high inhibitory potencies and selectivities among isoenzymes. Notably, strong differences in the inhibition potency of the compounds towards ß-hexosaminidase from human placenta (mature) or cultured fibroblasts (precursor form) were encountered. The ensemble of data suggests that the ratio between them, and not the inhibition potency towards the placenta enzyme, is a good indication of the chaperoning potential of TaySachs disease-associated mutant hexosaminidase.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hexosaminidases/antagonistas & inibidores , Imino Açúcares/química , 1-Desoxinojirimicina/síntese química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , Técnicas de Química Sintética , Inibidores Enzimáticos/síntese química , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
10.
J Microbiol Biotechnol ; 26(2): 347-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26597529

RESUMO

An exo-ß-D-glucosaminidase (AorCsxA) from Aspergillus oryzae FL402 was heterologously expressed and purified. The deduced amino acid sequence indicated that AorCsxA belonged to glycoside hydrolase family 2. AorCsxA digested colloid chitosan into glucosamine but not into chitosan oligosaccharides, demonstrating exo-ß-D-glucosaminidase (CsxA) activity. AorCsxA exhibited optimal activity at pH 5.5 and 50°C; however, the enzyme expressed in Pichia pastoris (PpAorCsxA) showed much stronger thermostability at 50°C than that expressed in Escherichia coli (EcAorCsxA), which may be related to glycosylation. AorCsxA activity was inhibited by EDTA and most of the tested metal ions. A single amino acid mutation (F769W) in AorCsxA significantly enhanced the specific activity and hydrolysis velocity as revealed by comparison of Vmax and kcat values with those of the wild-type enzyme. The three-dimensional structure suggested the tightened pocket at the active site of F769W enabled efficient substrate binding. The AorCsxA gene was heterologously expressed in P. pastoris, and one transformant was found to produce 222 U/ml activity during the high-cell-density fermentation. This AorCsxA-overexpressing P. pastoris strain is feasible for large-scale production of AorCsxA.


Assuntos
Aspergillus oryzae/enzimologia , Aspergillus oryzae/genética , Hexosaminidases/genética , Hexosaminidases/metabolismo , Sequência de Aminoácidos , Quitosana/metabolismo , Clonagem Molecular , Ácido Edético/farmacologia , Escherichia coli/enzimologia , Escherichia coli/genética , Fermentação , Expressão Gênica , Glicosilação , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Pichia/enzimologia , Pichia/genética , Pichia/crescimento & desenvolvimento , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
11.
Parasitol Int ; 64(6): 579-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26281757

RESUMO

Chitin metabolism has been shown to have a role in the development of parasitic nematodes including filarial parasites and the enzymes associated with chitin metabolism have been considered as potential vaccine and drug target. Chitinases are members of the enzyme superfamily of glycoside hydrolases, which are characterized by the ability to hydrolyze glycosidic bonds in chitin chain by either an endolytic or an exolytic mechanism. In the present study, we have demonstrated the chitinase (exochitinase and endochitinase) activity in different stages of Setaria cervi (bovine filarial parasite) and have also purified and characterized the endochitinase from microfilarial stage of the parasite. The chitinase activity has been detected in adult and microfilarial stages of S. cervi using the fluorescent substrates. The S. cervi adult stage was found to have high activity of exochitinase (28.72±0.25 nmol/min/mg) while microfilarial stage showed high activity of endochitinase (24.40±0.25 nmol/min/mg). Native polyacrylamide gel electrophoresis, followed by staining of enzyme activity with fluorescent substrates, revealed single isoenzymic form of exochitinase in adults and endochitinase in microfilariae of S. cervi. The endochitinase from S. cervi microfilariae was purified employing chitin affinity matrix and DEAE-Sephacel ion-exchange chromatography. The enzyme was purified about 55 fold with an enzyme recovery of 22.33%. The purified enzyme exhibited a doublet of protein bands on SDS-PAGE at 65-70 kDa. The closantel (chitinase inhibitor) strongly inhibited the enzyme activity of S. cervi microfilariae endochitinase with a Ki value of 4.3±0.18 µM.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Hexosaminidases/metabolismo , Setaria (Nematoide)/enzimologia , Animais , Quitinases/antagonistas & inibidores , Eletroforese em Gel de Poliacrilamida , Hexosaminidases/antagonistas & inibidores , Microfilárias/enzimologia , Microfilárias/metabolismo , Salicilanilidas/metabolismo , Setaria (Nematoide)/crescimento & desenvolvimento , Setaria (Nematoide)/metabolismo
12.
Carbohydr Res ; 409: 56-62, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-25950121

RESUMO

A ring-contraction strategy applied to ß-azido,γ-hydroxyazepanes yielded after functional group manipulation new tetrahydroxylated pyrrolidines displaying an acetamido moiety, one of these iminosugars demonstrating low micromolar inhibition on N-acetylglucosaminidases.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Hexosaminidases/antagonistas & inibidores , Imino Açúcares/química , Imino Açúcares/síntese química , Ativação Enzimática/efeitos dos fármacos , Estrutura Molecular , Pirrolidinas
13.
Environ Pollut ; 191: 119-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24832922

RESUMO

Polybrominated diphenyl ethers (PBDEs) are abundant in aquatic environment. However, only few studies have investigated their impacts on freshwater invertebrates. This work aimed to study the effects of BDE-47 and BDE-99 congeners on the chitobiase and chitinolytic enzymes activities of the freshwater amphipod Gammarus pulex, according to gender, PBDE concentration and time of exposure. In addition, the bioaccumulation of BDE-47 and BDE-99 were measured. Results revealed that females have bioaccumulated more PBDE than males, and BDE-99 was more accumulated than BDE-47. PBDE exposures for 96 h have caused chitobiase and chitinolytic enzymes inhibition. This study not only indicate the importance of taking into account various confounding factors (gender, congeners, concentration) to understand PBDE effects, but underline also disruptions of molting enzymes activities. These disturbances suggest effects on the gammarid development and reproduction, and consequently effects on the gammarid population, and on a larger scale, a dysfunction of the ecosystem.


Assuntos
Anfípodes/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/metabolismo , Anfípodes/enzimologia , Animais , Quitinases/antagonistas & inibidores , Quitinases/metabolismo , Monitoramento Ambiental/métodos , Feminino , Água Doce , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/metabolismo , Masculino , Fatores Sexuais
14.
Korean J Intern Med ; 29(3): 281-90, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24851060

RESUMO

Pulmonary fibrosis is a fatal progressive disease with no effective therapy. Transforming growth factor (TGF)-ß1 has long been regarded as a central mediator of tissue fibrosis that involves multiple organs including skin, liver, kidney, and lung. Thus, TGF-ß1 and its signaling pathways have been attractive therapeutic targets for the development of antifibrotic drugs. However, the essential biological functions of TGF-ß1 in maintaining normal immune and cellular homeostasis significantly limit the effectiveness of TGF-ß1-directed therapeutic approaches. Thus, targeting downstream mediators or signaling molecules of TGF-ß1 could be an alternative approach that selectively inhibits TGF-ß1-stimulated fibrotic tissue response while preserving major physiological function of TGF-ß1. Recent studies from our laboratory revealed that TGF-ß1 crosstalk with epidermal growth factor receptor (EGFR) signaling by induction of amphiregulin, a ligand of EGFR, plays a critical role in the development or progression of pulmonary fibrosis. In addition, chitotriosidase, a true chitinase in humans, has been identified to have modulating capacity of TGF-ß1 signaling as a new biomarker and therapeutic target of scleroderma-associated pulmonary fibrosis. These newly identified modifiers of TGF-ß1 effector function significantly enhance the effectiveness and flexibility in targeting pulmonary fibrosis in which TGF-ß1 plays a significant role.


Assuntos
Pulmão/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Animais , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Terapia de Alvo Molecular , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptor Cross-Talk , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
15.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-62924

RESUMO

Pulmonary fibrosis is a fatal progressive disease with no effective therapy. Transforming growth factor (TGF)-beta1 has long been regarded as a central mediator of tissue fibrosis that involves multiple organs including skin, liver, kidney, and lung. Thus, TGF-beta1 and its signaling pathways have been attractive therapeutic targets for the development of antifibrotic drugs. However, the essential biological functions of TGF-beta1 in maintaining normal immune and cellular homeostasis significantly limit the effectiveness of TGF-beta1-directed therapeutic approaches. Thus, targeting downstream mediators or signaling molecules of TGF-beta1 could be an alternative approach that selectively inhibits TGF-beta1-stimulated fibrotic tissue response while preserving major physiological function of TGF-beta1. Recent studies from our laboratory revealed that TGF-beta1 crosstalk with epidermal growth factor receptor (EGFR) signaling by induction of amphiregulin, a ligand of EGFR, plays a critical role in the development or progression of pulmonary fibrosis. In addition, chitotriosidase, a true chitinase in humans, has been identified to have modulating capacity of TGF-beta1 signaling as a new biomarker and therapeutic target of scleroderma-associated pulmonary fibrosis. These newly identified modifiers of TGF-beta1 effector function significantly enhance the effectiveness and flexibility in targeting pulmonary fibrosis in which TGF-beta1 plays a significant role.


Assuntos
Animais , Humanos , Desenho de Fármacos , Hexosaminidases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Terapia de Alvo Molecular , Fibrose Pulmonar/tratamento farmacológico , Receptor Cross-Talk , Receptores ErbB/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais , Fator de Crescimento Transformador beta1/antagonistas & inibidores
16.
J Bone Joint Surg Am ; 95(22): e171, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24257671

RESUMO

BACKGROUND: Staphylococcus aureus infections remain a major complication of orthopaedic surgery. Although serum C-reactive protein is useful for diagnosis, there are no specific tests for host immunity that can assess a patient's risk for serious infection. On the basis of the identification of glucosaminidase as a potentially protective antigen in animal models, we tested the hypotheses that anti-glucosaminidase IgG (immunoglobulin G) levels vary in sera of mice and orthopaedic patients with Staphylococcus aureus infections and that physical and neutralizing titers correlate. METHODS: In vitro ELISAs (enzyme-linked immunosorbent assays) were developed to quantify binding (physical) and enzyme-neutralizing (functional) anti-glucosaminidase IgG titers. The assays were validated with use of sera from naive, Staphylococcus aureus-challenged, and glucosaminidase-immunized mice. The physical, functional, and isotype titers of anti-glucosaminidase IgG were measured in sera from twenty-four patients with a confirmed Staphylococcus aureus infection following orthopaedic surgery and in sera from twenty noninfected patients. The specificity of the anti-glucosaminidase assay was evaluated by means of linear regression and receiver-operator characteristic curve analysis. RESULTS: In mice, the analytic range of the physical titer assay for anti-glucosaminidase IgG was determined to be 1 ng/mL to 1 µg/mL, and physical titers correlated with functional titers (p < 0.002). Although all patients had measurable anti-glucosaminidase IgG, the physical titers in the infected patients were significantly higher by a factor of two compared with those in the healthy controls (p = 0.015). The physical titers were significantly correlated with the functional titers (p < 0.0001). Receiver-operator characteristic curve analysis demonstrated a diagnostic specificity of 0.72 (p = 0.014) for the assay. The anti-glucosaminidase titer in almost every patient was dominated by the IgG1 isotype. CONCLUSIONS: Humoral immunity against glucosaminidase varied in mammals with Staphylococcus aureus osteomyelitis. Anti-glucosaminidase titers in sera were a potential biomarker of infection and have the potential to assess the quality of host immunity against Staphylococcus aureus. CLINICAL RELEVANCE: Staphylococcus aureus infections can be challenging to diagnose, and there is no diagnostic test for host immunity. We demonstrated a cost-effective assay for determining the anti-glucosaminidase titer, which can be readily combined with conventional serology to improve diagnosis and to assess host immunity against Staphylococcus aureus.


Assuntos
Hexosaminidases/antagonistas & inibidores , Hexosaminidases/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Animais , Artroplastia de Substituição , Biomarcadores/sangue , Feminino , Fraturas Ósseas/complicações , Fraturas Ósseas/microbiologia , Fraturas Ósseas/cirurgia , Humanos , Artropatias/complicações , Artropatias/microbiologia , Artropatias/cirurgia , Camundongos , Camundongos Endogâmicos BALB C , Infecções Estafilocócicas/complicações
17.
Chembiochem ; 14(15): 1973-81, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24009110

RESUMO

The increasing incidence of inducible chromosomal AmpC ß-lactamases within the clinic is a growing concern because these enzymes deactivate a broad range of even the most recently developed ß-lactam antibiotics. As a result, new strategies are needed to block the action of this antibiotic resistance enzyme. Presented here is a strategy to combat the action of inducible AmpC by inhibiting the ß-glucosaminidase NagZ, which is an enzyme involved in regulating the induction of AmpC expression. A divergent route facilitating the rapid synthesis of a series of N-acyl analogues of 2-acetamido-2-deoxynojirimycin is reported here. Among these compounds are potent NagZ inhibitors that are selective against functionally related human enzymes. These compounds reduce minimum inhibitory concentration values for ß-lactams against a clinically relevant Gram-negative bacterium bearing inducible chromosomal AmpC ß-lactamase, Pseudomonas aeruginosa. The structure of a NagZ-inhibitor complex provides insight into the molecular basis for inhibition by these compounds.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/enzimologia , Hexosaminidases/antagonistas & inibidores , beta-Lactamas/farmacologia , Hexosaminidases/química , Hexosaminidases/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptidoglicano/metabolismo , Conformação Proteica
18.
ChemMedChem ; 8(4): 658-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23468173

RESUMO

The formation from D-glucose of both enantiomers of 2,4-dideoxy-2,4-iminoribonic acid is the first chemical synthesis of unprotected 3-hydroxyazetidine carboxylic acids. The long-term stability of 3-hydroxyazetidine amides is established at acidic and neutral pH and implies their value as non-proteinogenic amino acid components of peptides, providing medicinal chemists with a new class of peptide isosteres. The structure of N,3-O-dibenzyl-2,4-dideoxy-2,4-imino-D-ribonic acid was established by X-ray crystallographic analysis. An N-methylazetidine amide derivative is a specific inhibitor of ß-hexosaminidases at the micromolar level, and is only the second example of potent inhibition of any glycosidase by an amide of a sugar amino acid related to an iminosugar.


Assuntos
Aminoácidos/química , Ácido Azetidinocarboxílico/química , Azetidinas/química , Amidas/química , Animais , Ácido Azetidinocarboxílico/síntese química , Ácido Azetidinocarboxílico/metabolismo , Azetidinas/síntese química , Azetidinas/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/metabolismo , Humanos , Imino Açúcares/química , Conformação Molecular , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
19.
Chemistry ; 18(30): 9341-59, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22736508

RESUMO

The efficient scalable syntheses of 2-acetamido-1,2-dideoxy-D-galacto-nojirimycin (DGJNAc) and 2-acetamido-1,2-dideoxy-D-gluco-nojirimycin (DNJNAc) from D-glucuronolactone, as well as of their enantiomers from L-glucuronolactone, are reported. The evaluation of both enantiomers of DNJNAc and DGJNAc, along with their N-alkyl derivatives, as glycosidase inhibitors showed that DGJNAc and its N-alkyl derivatives were all inhibitors of α-GalNAcase but that none of the epimeric DNJNAc derivatives inhibited this enzyme. In contrast, both DGJNAc and DNJNAc, as well as their alkyl derivatives, were potent inhibitors of ß-GlcNAcases and ß-GalNAcases. Neither of the L-enantiomers showed any significant inhibition of any of the enzymes tested. Correlation of the in vitro inhibition with the cellular data, by using a free oligosaccharide analysis of the lysosomal enzyme inhibition, revealed the following structure-property relationship: hydrophobic side-chains preferentially promoted the intracellular access of iminosugars to those inhibitors with more-hydrophilic side-chain characteristics.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Acetamidas/química , Acetamidas/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glucuronatos/química , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/química , Imino Piranoses/química , Oligossacarídeos/química , 1-Desoxinojirimicina/síntese química , 1-Desoxinojirimicina/química , Alquilação , Interações Hidrofóbicas e Hidrofílicas , Estereoisomerismo , Relação Estrutura-Atividade
20.
Chem Biol ; 17(11): 1250-5, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095575

RESUMO

Posttranslational modification of metazoan nucleocytoplasmic proteins with N-acetylglucosamine (O-GlcNAc) is essential, dynamic, and inducible and can compete with protein phosphorylation in signal transduction. Inhibitors of O-GlcNAcase, the enzyme removing O-GlcNAc, are useful tools for studying the role of O-GlcNAc in a range of cellular processes. We report the discovery of nanomolar OGA inhibitors that are up to 900,000-fold selective over the related lysosomal hexosaminidases. When applied at nanomolar concentrations on live cells, these cell-penetrant molecules shift the O-GlcNAc equilibrium toward hyper-O-GlcNAcylation with EC50 values down to 3 nM and are thus invaluable tools for the study of O-GlcNAc cell biology.


Assuntos
Inibidores Enzimáticos/química , Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Acetilglucosamina/química , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Hexosaminidases/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...