Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.929
Filtrar
1.
Biochem Biophys Res Commun ; 715: 149957, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688057

RESUMO

Clostridioides difficile endolysin (Ecd09610) consists of an unknown domain at its N terminus, followed by two catalytic domains, a glucosaminidase domain and endopeptidase domain. X-ray structure and mutagenesis analyses of the Ecd09610 catalytic domain with glucosaminidase activity (Ecd09610CD53) were performed. Ecd09610CD53 was found to possess an α-bundle-like structure with nine helices, which is well conserved among GH73 family enzymes. The mutagenesis analysis based on X-ray structures showed that Glu405 and Asn470 were essential for enzymatic activity. Ecd09610CD53 may adopt a neighboring-group mechanism for a catalytic reaction in which Glu405 acted as an acid/base catalyst and Asn470 helped to stabilize the oxazolinium ion intermediate. Structural comparisons with the newly identified Clostridium perfringens autolysin catalytic domain (AcpCD) in the P1 form and a zymography analysis demonstrated that AcpCD was 15-fold more active than Ecd09610CD53. The strength of the glucosaminidase activity of the GH73 family appears to be dependent on the depth of the substrate-binding groove.


Assuntos
Domínio Catalítico , Clostridioides difficile , Endopeptidases , Clostridioides difficile/enzimologia , Clostridioides difficile/genética , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/metabolismo , Endopeptidases/genética , Modelos Moleculares , Hexosaminidases/química , Hexosaminidases/genética , Hexosaminidases/metabolismo , Mutagênese , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese Sítio-Dirigida , Domínios Proteicos
2.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979371

RESUMO

Chitotriosidase is an enzyme produced and secreted in large amounts by activated macrophages, especially macrophages loaded with phagocytozed glycosphingolipid in Gaucher disease. Macrophages phagocytose decayed blood cells that contain a lot of sphingolipid-rich cell membranes. In Gaucher disease, due to a deficit in beta-glucocerebrosidase activity, the phagocytozed substrate glucocerebroside cannot undergo further catabolism. In such a situation, macrophages secrete chitotriosidase in proportion to the degree of overload. Gaucher disease (GD) is a recessively inherited disorder resulting in storage of glucosylceramide (GlcCer) in lysosomes of tissue macrophages. It is directly caused by the deficiency of beta-glucocerebrosidase (GBA) activity. Chitotriosidase has been measured systematically each year in the same group of 49 patients with type 1 and 3 GD for over 20 years. Our analysis showed that chitotriosidase is very sensitive biomarker to enzyme replacement therapy (ERT). The response to treatment introduction is of an almost immediate nature, lowering pathologically high chitotriosidase levels by a factor of 2 in a time scale of 8 months, on average. Long term enzyme replacement therapy (ERT) brings chitotriosidase activity close to reference values. Finally, reducing the dose of ERT quickly boosts chitotriosidase activity, but restoring the initial dose of treatment brings chitotriosidase level of activity back onto the decreasing time trajectory.


Assuntos
Doença de Gaucher , Humanos , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/metabolismo , Glucosilceramidase , Estudos Longitudinais , Hexosaminidases/metabolismo , Hexosaminidases/uso terapêutico , Glucosilceramidas/metabolismo , Glucosilceramidas/uso terapêutico
3.
J Biol Chem ; 299(4): 103053, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813232

RESUMO

Simple organisms are often considered to have simple glycomes, but plentiful paucimannosidic and oligomannosidic glycans overshadow the less abundant N-glycans with highly variable core and antennal modifications; Caenorhabditis elegans is no exception. By use of optimized fractionation and assessing wildtype in comparison to mutant strains lacking either the HEX-4 or HEX-5 ß-N-acetylgalactosaminidases, we conclude that the model nematode has a total N-glycomic potential of 300 verified isomers. Three pools of glycans were analyzed for each strain: either PNGase F released and eluted from a reversed-phase C18 resin with either water or 15% methanol or PNGase Ar released. While the water-eluted fractions were dominated by typical paucimannosidic and oligomannosidic glycans and the PNGase Ar-released pools by glycans with various core modifications, the methanol-eluted fractions contained a huge range of phosphorylcholine-modified structures with up to three antennae, sometimes with four N-acetylhexosamine residues in series. There were no major differences between the C. elegans wildtype and hex-5 mutant strains, but the hex-4 mutant strains displayed altered sets of methanol-eluted and PNGase Ar-released pools. In keeping with the specificity of HEX-4, there were more glycans capped with N-acetylgalactosamine in the hex-4 mutants, as compared with isomeric chito-oligomer motifs in the wildtype. Considering that fluorescence microscopy showed that a HEX-4::enhanced GFP fusion protein colocalizes with a Golgi tracker, we conclude that HEX-4 plays a significant role in late-stage Golgi processing of N-glycans in C. elegans. Furthermore, finding more "parasite-like" structures in the model worm may facilitate discovery of glycan-processing enzymes occurring in other nematodes.


Assuntos
Caenorhabditis elegans , beta-N-Acetil-Hexosaminidases , Animais , Acetilgalactosamina/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Caenorhabditis elegans/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Metanol , Polissacarídeos/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 960835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237185

RESUMO

Objective: To investigate the effects and mechanism of hyperinsulinemia on the metabolic switch to ß-hydroxybutyrate (BHB) absorption and utilization under a starvation or hypoxic environment in proximal tubular epithelial cells. Methods: A high-fat diet-induced hyperinsulinemia model in ZDF rats was used to test the expression of key enzymes/proteins of ketone body metabolism in the kidney. Notably, 12-week-old renal tubule SMCT1 specific knockout mice (SMCT1 flox/floxCre+) and control mice (SMCT1 flox/floxCre-) were used to confirm the roles of SMCT1 in kidney protection under starvation. The changes of key enzymes/proteins of energy metabolism, mitochondrial function, and albumin endocytosis in HK2 cells under low glucose/hypoxic environments with or without 50 ng/mL insulin were studied. Silent information regulation 2 homolog 3 (SIRT3) was overexpressed to evaluate the effect of hyperinsulinemia on the metabolic switch to BHB absorption and utilization through the SIRT3/SMCT1 pathway in HK2 cells. Results: In ZDF rats, the expression of HMGCS2 increased, the SMCT1 expression decreased, while SCOT remained unchanged. In renal tubule SMCT1 gene-specific knockout mice, starvation for 48 h induced an increase in the levels of urine retinol-binding protein, N-acetyl-ß-glucosaminidase, and transferrin, which reflected tubular damages. In HK2 cells under an environment of starvation and hypoxia, the levels of key enzymes related to fatty acid oxidation and ketone body metabolism were increased, whereas glucose glycolysis did not change. The addition of 2 mmol/l BHB improved ATP production, mitochondrial biosynthesis, and endocytic albumin function, while cell apoptosis was reduced in HK2 cells. The addition of 50 ng/ml insulin resulted in the decreased expression of SMCT1 along with an impaired mitochondrial function, decreased ATP production, and increased apoptosis. The overexpression of SIRT3 or SMCT1 reversed these alterations induced by a high level of insulin both in low-glucose and hypoxic environments. Conclusions: The increased absorption and utilization of BHB is part of the metabolic flexibility of renal tubular epithelial cells under starvation and hypoxic environments, which exhibits a protective effect on renal tubular epithelial cells by improving the mitochondrial function and cell survival. Moreover, hyperinsulinemia inhibits the absorption of BHB through the inhibition of the SIRT3/SMCT1 pathway.


Assuntos
Hiperinsulinismo , Sirtuína 3 , Inanição , Ácido 3-Hidroxibutírico , Trifosfato de Adenosina , Albuminas/metabolismo , Animais , Células Epiteliais/metabolismo , Glucose/metabolismo , Hexosaminidases/metabolismo , Insulina/metabolismo , Corpos Cetônicos , Camundongos , Camundongos Knockout , Ratos , Proteínas de Ligação ao Retinol , Sirtuína 3/metabolismo , Transferrinas
5.
Anal Chem ; 94(39): 13413-13421, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36137196

RESUMO

Cell death plays a vital role in body development, maintenance of tissue function, and homeostasis. Accurate evaluation of cell death types is of great importance for pharmacological and pathological research. However, there is a lack of efficient fluorescent probes to discriminate various cell states. Here, we design and synthesize a novel activatable fluorescent probe PNE-Lyso to detect intracellular pH and hexosaminidases with two kinds of fluorescence signals. PNE-Lyso could distinguish dead cells from healthy cells based on a dual-color mode by targeting the lysosome and evaluating lysosomal hexosaminidase activity. Significantly, PNE-Lyso could also discriminate apoptotic and necrotic cells through visualizing lysosome morphology that is adjusted by the integrity of the lysosome membrane. Moreover, probe PNE-Lyso was successfully applied to investigate the drug-induced cell death process. To the best of our knowledge, this work is the first time cell death types have been distinguished based on a single fluorescent probe.


Assuntos
Corantes Fluorescentes , Lisossomos , Morte Celular , Corantes Fluorescentes/metabolismo , Hexosaminidases/metabolismo , Lisossomos/metabolismo , Microscopia de Fluorescência
6.
Autophagy ; 18(10): 2333-2349, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35230915

RESUMO

TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) orchestrate the cellular response to a variety of stressors, including nutrient deprivation, oxidative stress and pathogens. Here we describe a novel interaction of TFEB and TFE3 with the FAcilitates Chromatin Transcription (FACT) complex, a heterodimeric histone chaperone consisting of SSRP1 and SUPT16H that mediates nucleosome disassembly and assembly, thus facilitating transcription. Extracellular stimuli, such as nutrient deprivation or oxidative stress, induce nuclear translocation and activation of TFEB and TFE3, which then associate with the FACT complex to regulate stress-induced gene transcription. Depletion of FACT does not affect TFEB activation, stability, or binding to the promoter of target genes. In contrast, reduction of FACT levels by siRNA or treatment with the FACT inhibitor curaxin, severely impairs induction of numerous antioxidant and lysosomal genes, revealing a crucial role of FACT as a regulator of cellular homeostasis. Furthermore, upregulation of antioxidant genes induced by TFEB over-expression is significantly reduced by curaxin, consistent with a role of FACT as a TFEB transcriptional activator. Together, our data show that chromatin remodeling at the promoter of stress-responsive genes by FACT is important for efficient expression of TFEB and TFE3 targets, thus providing a link between environmental changes, chromatin modifications and transcriptional regulation.Abbreviations: ADNP2, ADNP homeobox 2; ATP6V0D1, ATPase H+ transporting V0 subunit d1; ATP6V1A, ATPase H+ transporting V1 subunit A; ATP6V1C1, ATPase H+ transporting V1 subunit C1; CSNK2/CK2, casein kinase 2; CLCN7, chloride voltage-gated channel 7; CTSD, cathepsin D; CTSZ, cathepsin Z; EBSS, earle's balanced salt solution; FACT complex, facilitates chromatin transcription complex; FOXO3, forkhead box O3; HEXA, hexosaminidase subunit alpha; HIF1A, hypoxia inducible factor 1 subunit alpha; HMOX1, heme oxygenase 1; LAMP1, lysosomal associated membrane protein 1; MAFF, MAF bZIP transcription factor F; MAFG, MAF bZIP transcription factor G; MCOLN1, mucolipin TRP cation channel 1; MTORC1, mechanistic target of rapamycin kinase complex 1; NaAsO2, sodium arsenite; POLR2, RNA polymerase II; PPARGC1A, PPARG coactivator 1 alpha; PYROXD1, pyridine nucleotide-disulfide oxidoreductase domain 1; RRAGC, Ras related GTP binding C; SEC13, SEC13 homolog, nuclear pore and COPII coat complex component; SLC38A9, solute carrier family 38 member 9; SSRP1, structure specific recognition protein 1; SUPT16H, SPT16 homolog, facilitates chromatin remodeling subunit; TFEB, transcription factor EB; TFE3, transcription factor binding to IGHM enhancer 3; TXNRD1, thioredoxin reductase 1; UVRAG, UV radiation resistance associated; WDR59, WD repeat domain 59.


Assuntos
Antioxidantes , Canais de Potencial de Receptor Transitório , Adenosina Trifosfatases/metabolismo , Antioxidantes/metabolismo , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Caseína Quinase II/metabolismo , Catepsina D/metabolismo , Catepsina Z/genética , Catepsina Z/metabolismo , Cloretos/metabolismo , Cromatina/metabolismo , Dissulfetos , Guanosina Trifosfato/metabolismo , Heme Oxigenase-1/metabolismo , Hexosaminidases/genética , Hexosaminidases/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleossomos/metabolismo , Nucleotídeos/metabolismo , PPAR gama/genética , Piridinas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Sirolimo , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
7.
Eur J Pharmacol ; 919: 174792, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122869

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and eventually fatal lung disease with a complex etiology. Approved drugs, nintedanib and pirfenidone, modify disease progression, but IPF remains incurable and there is an urgent need for new therapies. We identified chitotriosidase (CHIT1) as new driver of fibrosis in IPF and a novel therapeutic target. We demonstrate that CHIT1 activity and expression are significantly increased in serum (3-fold) and induced sputum (4-fold) from IPF patients. In the lungs CHIT1 is expressed in a distinct subpopulation of profibrotic, disease-specific macrophages, which are only present in patients with ILDs and CHIT1 is one of the defining markers of this fibrosis-associated gene cluster. To define CHIT1 role in fibrosis, we used the therapeutic protocol of the bleomycin-induced pulmonary fibrosis mouse model. We demonstrate that in the context of chitinase induction and the macrophage-specific expression of CHIT1, this model recapitulates lung fibrosis in ILDs. Genetic inactivation of Chit1 attenuated bleomycin-induced fibrosis (decreasing the Ashcroft scoring by 28%) and decreased expression of profibrotic factors in lung tissues. Pharmacological inhibition of chitinases by OATD-01 reduced fibrosis and soluble collagen concentration. OATD-01 exhibited anti-fibrotic activity comparable to pirfenidone resulting in the reduction of the Ashcroft score by 32% and 31%, respectively. These studies provide a preclinical proof-of-concept for the antifibrotic effects of OATD-01 and establish CHIT1 as a potential new therapeutic target for IPF.


Assuntos
Hexosaminidases , Fibrose Pulmonar Idiopática , Inibidores de Proteínas Quinases , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Bleomicina , Modelos Animais de Doenças , Hexosaminidases/antagonistas & inibidores , Hexosaminidases/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Camundongos Endogâmicos C57BL , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
8.
Bioorg Chem ; 119: 105532, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34883361

RESUMO

Microbial polysaccharides composed of N-acetylglucosamine (GlcNAc), such as chitin, peptidoglycan and poly-ß-(1 â†’ 6)-GlcNAc (dPNAG), play a critical role in maintaining cell integrity or in facilitating biofilm formation in numerous fungal and bacterial pathogens. Glycosyl hydrolase enzymes that catalyze the degradation of these ß-GlcNAc containing polysaccharides play important roles in normal microbial cell physiology and can also be exploited as biocatalysts with applications as anti-fungal, anti-bacterial, or biofilm dispersal agents. Assays to rapidly detect and characterize the activity of such glycosyl hydrolase enzymes can facilitate their development as biocatalyst, however, currently available probes such as 4-methylumbelliferyl-ß-GlcNAc (4MU-GlcNAc) are not universally accepted as substrates, and their fluorescent signal is sensitive to changes in pH. Here, we present the development of a new multifunctional fluorescent substrate analog for the detection and characterization of hexosaminidase enzyme activity containing a 7-amino-4-methyl coumarin (AMC) carbamate aglycone. This probe is widely tolerated as a substrate for exo-acting ß-hexosaminidase, family 19 endo-chitinase, and the dPNAG hydrolase enzyme Dispersin B (DspB) and enables detection of hexosaminidase enzyme activity via either single wavelength fluorescent measurements or ratiometric fluorescent detection. We demonstrate the utility of this probe to screen for recombinant DspB activity in Escherichia coli cell lysates, and for the development of a high-throughput assay to screen for DspB inhibitors.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Hexosaminidases/análise , Cumarínicos/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Corantes Fluorescentes/síntese química , Hexosaminidases/metabolismo , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34768879

RESUMO

Oxidative stress plays an important role in the pathophysiology of acute kidney injury (AKI). Previously, we reported that vanin-1, which is involved in oxidative stress, is associated with renal tubular injury. This study was aimed to determine whether urinary vanin-1 is a biomarker for the early diagnosis of AKI in two experimental models: in vivo and in vitro. In a rat model of AKI, ischemic AKI was induced in uninephrectomized rats by clamping the left renal artery for 45 min and then reperfusing the kidney. On Day 1 after renal ischemia/reperfusion (I/R), serum creatinine (SCr) in I/R rats was higher than in sham-operated rats, but this did not reach significance. Urinary N-acetyl-ß-D-glucosaminidase (NAG) exhibited a significant increase but decreased on Day 2 in I/R rats. In contrast, urinary vanin-1 significantly increased on Day 1 and remained at a significant high level on Day 2 in I/R rats. Renal vanin-1 protein decreased on Days 1 and 3. In line with these findings, immunofluorescence staining demonstrated that vanin-1 was attenuated in the renal proximal tubules of I/R rats. Our in vitro results confirmed that the supernatant from HK-2 cells under hypoxia/reoxygenation included significantly higher levels of vanin-1 as well as KIM-1 and NGAL. In conclusion, our results suggest that urinary vanin-1 might be a potential novel biomarker of AKI induced by I/R.


Assuntos
Injúria Renal Aguda/metabolismo , Amidoidrolases/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/fisiopatologia , Injúria Renal Aguda/urina , Amidoidrolases/urina , Animais , Biomarcadores/urina , Creatinina/análise , Creatinina/sangue , Diagnóstico Precoce , Hexosaminidases/metabolismo , Hexosaminidases/urina , Isquemia/metabolismo , Rim/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/fisiopatologia , Traumatismo por Reperfusão/urina , Sistema Urinário/metabolismo
10.
Turk J Med Sci ; 51(4): 2318-2323, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33819975

RESUMO

Background/aim: Chitotriosidase (ChT) is an enzyme secreted by activated macrophages and neutrophils in response to proinflammatory signals. There is growing evidence indicating that ChT activity reflects the systemic inflammatory status. This study aimed to investigate whether serum ChT activity increased in patients with psoriasis and related comorbidities. Materials and methods: This cross-sectional study included 53 (28 with associated comorbidities and 25 without comorbidities) patients with psoriasis and 52 healthy volunteers. All participants underwent laboratory investigations for serum ChT levels, complete blood count, erythrocyte sedimentation rate, C-reactive protein, and serum lipid levels. Results: The patients with psoriasis showed significantly higher levels of ChT activity as compared to the healthy controls (23.5 ± 11.4 vs. 17.5 ± 10.4 µmol/mL/hour; p = 0.015). Additionally, the ChT activity was significantly higher in patients with comorbidities than in those without (p = 0.042). Conclusion: Our data support the pathogenetic role of inflammatory processes induced by macrophage activation in patients with psoriasis and related comorbidities. We believe that high ChT activity in patients with psoriasis may serve as an early prediction of the possible related comorbidities.


Assuntos
Hexosaminidases/metabolismo , Inflamação/sangue , Psoríase/complicações , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Comorbidade , Estudos Transversais , Feminino , Hexosaminidases/sangue , Humanos , Inflamação/epidemiologia , Masculino , Pessoa de Meia-Idade , Psoríase/epidemiologia , Turquia/epidemiologia
11.
Mar Drugs ; 19(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673118

RESUMO

Genome mining of pigmented Pseudoalteromonas has revealed a large potential for the production of bioactive compounds and hydrolytic enzymes. The purpose of the present study was to explore this bioactivity potential in a potent antibiotic and enzyme producer, Pseudoalteromonas rubra strain S4059. Proteomic analyses (data are available via ProteomeXchange with identifier PXD023249) indicated that a highly efficient chitin degradation machinery was present in the red-pigmented P. rubra S4059 when grown on chitin. Four GH18 chitinases and two GH20 hexosaminidases were significantly upregulated under these conditions. GH19 chitinases, which are not common in bacteria, are consistently found in pigmented Pseudoalteromonas, and in S4059, GH19 was only detected when the bacterium was grown on chitin. To explore the possible role of GH19 in pigmented Pseudoalteromonas, we developed a protocol for genetic manipulation of S4059 and deleted the GH19 chitinase, and compared phenotypes of the mutant and wild type. However, none of the chitin degrading ability, secondary metabolite profile, or biofilm-forming capacity was affected by GH19 deletion. In conclusion, we developed a genetic manipulation protocol that can be used to unravel the bioactive potential of pigmented pseudoalteromonads. An efficient chitinolytic enzyme cocktail was identified in S4059, suggesting that this strain could be a candidate with industrial potential.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Hexosaminidases/metabolismo , Pseudoalteromonas/metabolismo , Quitinases/genética , Genoma Bacteriano , Hexosaminidases/genética , Proteômica , Pseudoalteromonas/genética , Metabolismo Secundário , Regulação para Cima
12.
Mol Microbiol ; 116(2): 366-380, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33735458

RESUMO

Chitin utilization by microbes plays a significant role in biosphere carbon and nitrogen cycling, and studying the microbial approaches used to degrade chitin will facilitate our understanding of bacterial strategies to degrade a broad range of recalcitrant polysaccharides. The early stages of chitin depolymerization by the bacterium Cellvibrio japonicus have been characterized and are dependent on one chitin-specific lytic polysaccharide monooxygenase and nonredundant glycoside hydrolases from the family GH18 to generate chito-oligosaccharides for entry into metabolism. Here, we describe the mechanisms for the latter stages of chitin utilization by C. japonicus with an emphasis on the fate of chito-oligosaccharides. Our systems biology approach combined transcriptomics and bacterial genetics using ecologically relevant substrates to determine the essential mechanisms for chito-oligosaccharide transport and catabolism in C. japonicus. Using RNAseq analysis we found a coordinated expression of genes that encode polysaccharide-degrading enzymes. Mutational analysis determined that the hex20B gene product, predicted to encode a hexosaminidase, was required for efficient utilization of chito-oligosaccharides. Furthermore, two gene loci (CJA_0353 and CJA_1157), which encode putative TonB-dependent transporters, were also essential for chito-oligosaccharides utilization. This study further develops our model of C. japonicus chitin metabolism and may be predictive for other environmentally or industrially important bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cellvibrio/metabolismo , Quitina/metabolismo , Glicosídeo Hidrolases/metabolismo , Hexosaminidases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Cellvibrio/genética , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/genética , Hexosaminidases/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/metabolismo , Oligossacarídeos/metabolismo , RNA-Seq , Transcriptoma/genética
13.
Int Immunopharmacol ; 94: 107394, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33582590

RESUMO

Black soybean hull extract (BSHE) exhibits a variety of biological activities. However, little is known about the effects of BSHE on immunoglobulin E (IgE)-mediated type I allergic reactions. The anti-allergic effect of BSHE was assessed with the degranulation assay using rat basophilic leukemia RBL-2H3 cells and the passive cutaneous anaphylaxis (PCA) reaction in mice. An active compound in BSHE was identified by ultra-performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry analysis. BSHE inhibited the release of ß-hexosaminidase and histamine in RBL-2H3 cells, and cyanidin-3-O-glucoside (C3G) was identified as one of its active compounds. Oral administering of 200 µmol/kg of C3G to IgE-sensitized mice prior to antigen injection suppressed the PCA reaction, as compared with control (p < 0.01). Intravenous administration of BSHE (C3G content, 5.4%) more strongly inhibited PCA responses at lower doses (100 mg/kg, p < 0.01) than oral administration (1,000 mg/kg, p = 0.059). Intravenous C3G also suppressed PCA response at a low dose (40 mg/kg, p < 0.05), showing the same trend as BSHE. This information can be useful to design appropriate formulations of anthocyanin-based drug products to suppress allergic reactions. This study provides evidence for the potential use of BSHE and C3G for the prevention or the treatment of type I allergies.


Assuntos
Antocianinas/farmacologia , Antocianinas/uso terapêutico , Degranulação Celular/efeitos dos fármacos , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Animais , Linhagem Celular , Hexosaminidases/metabolismo , Liberação de Histamina/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Extratos Vegetais , Ratos , Glycine max
14.
Poult Sci ; 100(2): 926-937, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518146

RESUMO

Herein, we investigated the effect of Chlorella vulgaris as ingredient (10% of incorporation) in broiler diets, supplemented or not with 2 formulations of Carbohydrate-Active enZymes (CAZymes; Rovabio Excel AP and a mixture of recombinant CAZymes, composed by an exo-ß-glucosaminidase, an alginate lyase, a peptidoglycan N-acetylmuramic acid deacetylase and a lysozyme), on growth performance, meat quality, fatty acid composition, oxidative stability, and sensory traits. One hundred twenty 1-day-old Ross 308 male birds were randomly assigned to one of the 4 experimental diets (n = 30): corn-soybean meal-basal diet (control), basal diet with 10% C. vulgaris (CV), CV supplemented with 0.005% of a commercial CAZyme cocktail (Rovabio Excel AP), (CV + R), and CV supplemented with 0.01% of a 4-CAZyme mixture previously selected (CV + M) during the experimental period lasted from day 21 to day 35. Body weight gain and feed conversion rate of broilers were not affected by C. vulgaris but digesta viscosity increased more than 2-fold (P < 0.001) relative to the control. In addition, neither cooking loss, shear force, juiciness, flavor nor off-flavor was impaired by dietary treatments (P > 0.05). By contrast, the dietary C. vulgaris increased tenderness, yellowness (b∗) and total carotenoids in breast and thigh meats. However, no additional protective effect against lipid oxidation was observed in meat with the inclusion of microalga. Chlorella vulgaris, independently of CAZymes, had a minor impact on meat fatty acid composition but improved the proportion of some beneficial fatty acids. In summary, our data indicate a slight improvement of broiler meat quality and lipid nutritional value, without impairment of broilers' growth performance, thus supporting the usefulness of this microalga in poultry diets, up to this high level of incorporation. By contrast, the selected CAZyme mixtures used do not significantly improve the release of microalga nutrients in poultry diets, through the disruption of microalga cell wall, which warrants further research.


Assuntos
Galinhas , Chlorella vulgaris , Lipídeos/análise , Carne/normas , Amidoidrolases/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais , Endopeptidases/metabolismo , Hexosaminidases/metabolismo , Masculino , Carne/análise , Muramidase/metabolismo , Polissacarídeo-Liases/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-33293459

RESUMO

Chitinases are hydrolytic enzymes widely distributed in nature. Despite their physiologic and pathophysiologic roles are not well understood, chitinases are emerging as biomarkers in a broad range of neurologic disorders, where in many cases, protein levels measured in the CSF have been shown to correlate with disease activity and progression. In this review, we will summarize the structural features of human chitinases and chitinase-like proteins and their potential physiologic and pathologic functions in the CNS. We will also review existing evidence for the role of chitinases and chitinase-like proteins as diagnostic and prognostic biomarkers in inflammatory, neurodegenerative diseases, and psychiatric disorders. Finally, we will comment on future perspectives of chitinase studies in neurologic conditions.


Assuntos
Biomarcadores/metabolismo , Quitinases/metabolismo , Hexosaminidases/metabolismo , Doenças do Sistema Nervoso/enzimologia , Humanos
16.
Commun Biol ; 3(1): 695, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219282

RESUMO

After bacterial cell division, the daughter cells are still covalently interlinked by the peptidoglycan network which is resolved by specific hydrolases (autolysins) to release the daughter cells. In staphylococci, the major autolysin (Atl) with its two domain enzymes, N-acetylmuramyl-L-alanine amidase (AmiA) and ß-N-acetylglucosaminidase (GlcA), resolves the peptidoglycan to release the daughter cells. Internal deletions in each of the enzyme domains revealed defined morphological alterations such as cell cluster formation in ΔamiA, ΔglcA and Δatl, and asymmetric cell division in the ΔglcA. A most important finding was that GlcA activity requires the prior removal of the stem peptide by AmiA for its activity thus the naked glycan strand is its substrate. Furthermore, GlcA is not an endo-ß-N-acetylglucosaminidase but an exo-enzyme that cuts the glycan backbone to disaccharides independent of its O-acetylation modification. Our results shed new light into the sequential peptidoglycan hydrolysis by AmiA and GlcA during cell division in staphylococci.


Assuntos
Amidoidrolases/metabolismo , Hexosaminidases/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus aureus/enzimologia , Amidoidrolases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Hexosaminidases/genética , Muramidase/genética , Muramidase/metabolismo , Mutação , N-Acetil-Muramil-L-Alanina Amidase/genética
17.
Biochemistry ; 59(48): 4581-4590, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33213137

RESUMO

Chito-oligosaccharides (CHOS) are homo- or hetero-oligomers of N-acetylglucosamine (GlcNAc, A) and d-glucosamine (GlcN, D). Production of well-defined CHOS-mixtures, or even pure CHOS, with specific lengths and sugar compositions, is of great interest since these oligosaccharides have interesting bioactivities. While direct chemical synthesis of CHOS is not straightforward, chemo-enzymatic approaches have shown some promise. We have used engineered glycoside hydrolases to catalyze oligomerization of activated DA building blocks through transglycosylation reactions. The building blocks were generated from readily available (GlcNAc)2-para-nitrophenol through deacetylation of the nonreducing end sugar with a recombinantly expressed deacetylase from Aspergillus niger (AnCDA9). This approach, using a previously described hyper-transglycosylating variant of ChiA from Serratia marcescens (SmChiA) and a newly generated transglycosylating variant of Chitinase D from Serratia proteamaculans (SpChiD), led to production of CHOS containing up to ten alternating D and A units [(DA)2, (DA)3, (DA)4, and (DA)5]. The most abundant compounds were purified and characterized. Finally, we demonstrate that (DA)3 generated in this study may serve as a specific inhibitor of the human chitotriosidase. Inhibition of this enzyme has been suggested as a therapeutic strategy against systemic sclerosis.


Assuntos
Quitina/análogos & derivados , Oligossacarídeos/biossíntese , Oligossacarídeos/síntese química , Acetilglucosamina/química , Aspergillus niger/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Quitina/biossíntese , Quitina/síntese química , Quitinases/genética , Quitinases/metabolismo , Cristalografia por Raios X , Glucosamina/química , Hexosaminidases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligossacarídeos/química , Serratia/enzimologia , Serratia/genética , Serratia marcescens/enzimologia , Serratia marcescens/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Int J Biol Macromol ; 164: 2895-2902, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853624

RESUMO

Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been attracting research interest due to their involvement in various pathological conditions such as Gaucher's disease and asthma, respectively. Both enzymes are highly expressed in mice, while the level of AMCase mRNA was low in human tissues. In addition, the chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. Here, we revealed a substantially higher chitinolytic and transglycosylation activity of human Chit1 against artificial and natural chitin substrates as compared to the mouse enzyme. We found that the substitution of leucine (L) by tryptophan (W) at position 218 markedly reduced both activities in human Chit1. Conversely, the L218W substitution in mouse Chit1 increased the activity of the enzyme. These results suggest that Chit1 may compensate for the low of AMCase activity in humans, while in mice, highly active AMCase may supplements low Chit1 activity.


Assuntos
Substituição de Aminoácidos , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Glicosilação , Hexosaminidases/genética , Hexosaminidases/metabolismo , Humanos , Camundongos , Proteínas Recombinantes/metabolismo
19.
Nat Commun ; 11(1): 4017, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32782292

RESUMO

The thick mucus layer of the gut provides a barrier to infiltration of the underlying epithelia by both the normal microbiota and enteric pathogens. Some members of the microbiota utilise mucin glycoproteins as a nutrient source, but a detailed understanding of the mechanisms used to breakdown these complex macromolecules is lacking. Here we describe the discovery and characterisation of endo-acting enzymes from prominent mucin-degrading bacteria that target the polyLacNAc structures within oligosaccharide side chains of both animal and human mucins. These O-glycanases are part of the large and diverse glycoside hydrolase 16 (GH16) family and are often lipoproteins, indicating that they are surface located and thus likely involved in the initial step in mucin breakdown. These data provide a significant advance in our knowledge of the mechanism of mucin breakdown by the normal microbiota. Furthermore, we also demonstrate the potential use of these enzymes as tools to explore changes in O-glycan structure in a number of intestinal disease states.


Assuntos
Microbioma Gastrointestinal , Hexosaminidases/metabolismo , Glicoproteínas de Membrana/metabolismo , Mucinas/metabolismo , Animais , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hexosaminidases/química , Hexosaminidases/genética , Humanos , Glicoproteínas de Membrana/química , Estrutura Molecular , Mucinas/química , Filogenia , Polissacarídeos/química , Polissacarídeos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
20.
J Neuroinflammation ; 17(1): 232, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762702

RESUMO

BACKGROUND: Cerebrospinal fluid from amyotrophic lateral sclerosis patients (ALS-CSF) induces neurodegenerative changes in motor neurons and gliosis in sporadic ALS models. Search for identification of toxic factor(s) in CSF revealed an enhancement in the level and enzyme activity of chitotriosidase (CHIT-1). Here, we have investigated its upregulation in a large cohort of samples and more importantly its role in ALS pathogenesis in a rat model. METHODS: CHIT-1 level in CSF samples from ALS (n = 158), non-ALS (n = 12) and normal (n = 48) subjects were measured using ELISA. Enzyme activity was also assessed (ALS, n = 56; non-ALS, n = 10 and normal-CSF, n = 45). Recombinant CHIT-1 was intrathecally injected into Wistar rat neonates. Lumbar spinal cord sections were stained for Iba1, glial fibrillary acidic protein and choline acetyl transferase to identify microglia, astrocytes and motor neurons respectively after 48 h of injection. Levels of tumour necrosis factor-α and interleukin-6 were measured by ELISA. FINDINGS: CHIT-1 level in ALS-CSF samples was increased by 20-fold and it can distinguish ALS patients with a sensitivity of 87% and specificity of 83.3% at a cut off level of 1405.43 pg/ml. Enzyme activity of CHIT-1 was also 15-fold higher in ALS-CSF and has a sensitivity of 80.4% and specificity of 80% at cut off value of 0.1077989 µmol/µl/min. Combining CHIT-1 level and activity together gave a positive predictive value of 97.78% and negative predictive value of 100%. Administration of CHIT-1 increased microglial numbers and astrogliosis in the ventral horn with a concomitant increase in the levels of pro-inflammatory cytokines. Amoeboid-shaped microglial and astroglial cells were also present around the central canal. CHIT-1 administration also resulted in the reduction of motor neurons. CONCLUSIONS: CHIT-1, an early diagnostic biomarker of sporadic ALS, activates glia priming them to attain a toxic phenotype resulting in neuroinflammation leading to motor neuronal death.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encefalite/metabolismo , Hexosaminidases/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo , Adulto , Esclerose Lateral Amiotrófica/patologia , Animais , Biomarcadores/metabolismo , Encefalite/patologia , Feminino , Humanos , Masculino , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Neurônios Motores/patologia , Degeneração Neural/patologia , Ratos , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...