Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2021: 8861766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33506044

RESUMO

OBJECTIVE: SPHK1 and HAS2 have been reported to play important roles in tumorigenesis and development. However, their expression and prognostic value in pancreatic cancer (PC) remain unclear. This study is aimed at investigating the expression of SPHK1 and HAS2 on the prognosis of pancreatic cancer. MATERIALS AND METHODS: The expression of SPHK1 and HAS2 in pancreatic cancer tissues was analyzed through TCGA and GTEx databases and validated by qRT-PCR and Western blot in pancreatic cancer cell lines. χ 2 test was used to explore the correlation of the SPHK1 and HAS2 expressions with clinical characteristics. Kaplan-Meier survival analysis and ROC curve were used to evaluate the prognostic and diagnostic roles of SPHK1 and HAS2 in pancreatic cancer. Additionally, Spearman correlation analysis was applied to assess the correlation between the SPHK1 and HAS2 in pancreatic cancer. GO analysis and KEGG analysis were applied to explore the possible signaling pathway that SPHK1 and HAS2 coregulated genes mediated. RESULTS: The expression of SPHK1 and HAS2 was markedly upregulated in pancreatic cancer tissue and cell lines, respectively. Furthermore, there was a significant positive correlation between SPHK1 and HAS2 expressions. ROC curves showed that SPHK1 combine with HAS2 has good diagnostic value in pancreatic cancer patients with 85% sensitivity and 99.4% specificity. Kaplan-Meier analysis showed that increased expression of SPHK1 and HAS2 was significantly associated with short overall survival (OS) of pancreatic cancer patients. GO and KEGG results revealed that SPHK1 and HAS2 mainly involved cell proliferation and invasion mediated by extracellular matrix- (ECM-) receptor interaction, focal adhesion, and PI3K-AKT signaling pathways. CONCLUSIONS: Overexpression of SPHK1 and HAS2 could be important markers for the prognosis of pancreatic cancer.


Assuntos
Hialuronan Sintases/biossíntese , Hialuronan Sintases/genética , Neoplasias Pancreáticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hialuronan Sintases/metabolismo , Masculino , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Prognóstico , Curva ROC , Transdução de Sinais , Taxa de Sobrevida
2.
Fertil Steril ; 114(4): 888-898, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32762950

RESUMO

OBJECTIVE: To investigate the role(s) of hyaluronan synthase 2 (HAS2) and hyaluronan in disease progression of endometriosis and epidermal growth factor (EGF)-induced motility changes of endometriotic cells. DESIGN: A case-control experimental study and in vitro primary cell culture study. SETTING: University hospital-affiliated research centers. PATIENTS: A total of 21 women with stage I/II endometriosis, 33 women with stage III/IV endometriosis with endometrioma, and 32 women without endometriosis were included in our study. INTERVENTIONS: Serum, eutopic endometrial tissues, and/or ectopic endometriotic tissues were collected. Primary eutopic endometrial stromal cells (EuESCs) and ectopic ovarian endometriotic stromal cells (OvESCs) were isolated and cultured from women with ovarian endometrioma, and then treated with or without EGF. MAIN OUTCOME MEASURES: The concentrations of EGF and hyaluronan in serum were analyzed by enzyme-linked immunosorbent assay. The expressions and localizations of EGF receptor (EGFR), phosphorylated-(p)EGFR, HAS2, and hyaluronan receptor CD44 in tissues were examined by immunohistochemistry. The mRNA and protein levels of HAS2 in EuESCs and OvESCs were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot, respectively, and the concentrations of hyaluronan in conditioned medium were examined by enzyme-linked immunosorbent assay (ELISA). Cell motility was evaluated by transwell migration/invasion assays. RESULTS: Serum EGF and hyaluronan concentrations were higher in women with stage III/IV endometriosis than in women with stage I/II or without endometriosis. EGFR, pEGFR, HAS2, and CD44 were immunolocalized in eutopic endometrium and ectopic endometriotic lesions, and the expressions of pEGFR and HAS2 were elevated in ectopic endometriotic lesions compared to eutopic endometrium. Treatment with EGF upregulated HAS2 and hyaluronan expression as well as cell migration and invasion in both EuESCs and OvESCs, and pharmaceutical blocking of EGFR abolished these effects. In addition, knockdown of HAS2 by small interfering RNA attenuated both basal and EGF-induced hyaluronan expression and cell motility changes. Notably, ERK1/2 and AKT signaling pathways were shown to be downstream of EGF in regulating HAS2 and hyaluronan expression as well as cell migration and invasion. CONCLUSION: EGF increased the expression of endometriosis-associated hyaluronan and its synthase HAS2, both of which mediated EGF-induced stromal cell migration and invasion in women with endometriosis.


Assuntos
Movimento Celular/fisiologia , Endometriose/metabolismo , Fator de Crescimento Epidérmico/biossíntese , Hialuronan Sintases/biossíntese , Ácido Hialurônico/biossíntese , Células Estromais/metabolismo , Adulto , Células Cultivadas , Endometriose/patologia , Feminino , Humanos , Células Estromais/patologia , Regulação para Cima/fisiologia
3.
J Biol Chem ; 295(21): 7274-7288, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32284328

RESUMO

Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that critically supports the physicochemical and mechanical properties of the skin. Here, we demonstrate that mycosporine-like amino acids (MAAs), which typically function as UV-absorbing compounds, can stimulate HA secretion from normal human fibroblasts. MAA-stimulated HA secretion was associated with significantly increased and decreased levels of mRNAs encoding HA synthase 2 (HAS2) and the HA-binding protein involved in HA depolymerization (designated HYBID), respectively. Using immunoblotting, we found that MAAs at 10 and at 25 µg/ml stimulate the phosphorylation of the mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase (ERK)/c-Jun, and mitogen- and stress-activated protein kinase 1 (MSK1) (at Thr-581, Ser-360, and Ser-376, respectively) and activation of cAMP-responsive element-binding protein (CREB) and activating transcription factor 2 (ATF2), but not phosphorylation of JUN N-terminal kinase (JNK) or NF-κB (at Ser-276 or Ser-536, respectively), and increased c-Fos protein levels. Moreover, a p38-specific inhibitor, but not inhibitors of MAPK/ERK kinase (MEK), JNK, or NF-κB, significantly abrogated the increased expression of HAS2 mRNA, accompanied by significantly decreased MAA-stimulated HA secretion. These results suggested that the p38-MSK1-CREB-c-Fos-transcription factor AP-1 (AP-1) or the p38-ATF2 signaling cascade is responsible for the MAA-induced stimulation of HAS2 gene expression. Of note, siRNA-mediated ATF2 silencing failed to abrogate MAA-stimulated HAS2 expression, and c-Fos silencing abolished the increased expression of HAS2 mRNA. Our findings suggest that MAAs stimulate HA secretion by up-regulating HAS2 mRNA levels through activation of an intracellular signaling cascade consisting of p38, MSK1, CREB, c-Fos, and AP-1.


Assuntos
Aminoácidos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hialuronan Sintases/biossíntese , Ácido Hialurônico/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Reprod Sci ; 27(4): 1058-1063, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32016803

RESUMO

To characterize the effects of 4-methylumbelliferone (4-MU) on expression of the hyaluronic acid (HA) system and on attachment, migration, and invasion of endometrial epithelial (EECs) and stroma cells (ESCs) to peritoneal mesothelial cells (PMCs), this in vitro study was performed in an Academic Center. De-identified endometrial tissue samples used were from reproductive-aged women. EECs and ESCs isolated from menstrual endometrial biopsies were treated with 4-MU or vehicle. Real-time polymerase chain reaction and western blot were used to assess expression of HA synthases (HAS), hyaluronidase, and standard CD44. Established in vitro assays were used to assess attachment, migration, and invasion with and without treatment with 4-MU. Chi square and Student's t-test were used to analyze the results as appropriate. The addition of 4-MU decreased mRNA and protein expression of HAS 2, HAS 3, and CD44 in EECs and ESCs compared to control. Treatment with 4-MU also decreased attachment, migration, and invasion of EECs and ESCs to PMCs compared to control. 4-MU decreases endometrial cell adhesion, migration, and invasion to PMCs. This effect appears to be mediated by a decrease in HAS 2, HAS 3, and CD44. 4-MU is a potential treatment for endometriosis. Future in vivo studies are needed to evaluate 4-MU as a therapeutic agent for endometriosis.


Assuntos
Adesão Celular/efeitos dos fármacos , Endometriose/metabolismo , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Ácido Hialurônico/antagonistas & inibidores , Himecromona/administração & dosagem , Linhagem Celular , Movimento Celular , Endometriose/prevenção & controle , Feminino , Humanos , Receptores de Hialuronatos/biossíntese , Hialuronan Sintases/biossíntese , Ácido Hialurônico/biossíntese , Hialuronoglucosaminidase/biossíntese
5.
Arterioscler Thromb Vasc Biol ; 40(2): 350-364, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826652

RESUMO

OBJECTIVE: Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS: These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.


Assuntos
Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Glicocálix/metabolismo , Glicólise/fisiologia , Hialuronan Sintases/genética , Fatores de Transcrição Kruppel-Like/genética , Estresse Mecânico , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/patologia , Glicocálix/patologia , Hialuronan Sintases/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA/genética
6.
J Biol Chem ; 294(37): 13562-13579, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31270213

RESUMO

Osteoarthritis (OA) is a progressive degenerative disease of the joints caused in part by a change in the phenotype of resident chondrocytes within affected joints. This altered phenotype, often termed proinflammatory or procatabolic, features enhanced production of endoproteinases and matrix metallo-proteinases (MMPs) as well as secretion of endogenous inflammatory mediators. Degradation and reduced retention of the proteoglycan aggrecan is an early event in OA. Enhanced turnover of hyaluronan (HA) is closely associated with changes in aggrecan. Here, to determine whether experimentally increased HA production promotes aggrecan retention and generates a positive feedback response, we overexpressed HA synthase-2 (HAS2) in chondrocytes via an inducible adenovirus construct (HA synthase-2 viral overexpression; HAS2-OE). HAS2-OE incrementally increased high-molecular-mass HA >100-fold within the cell-associated and growth medium pools. More importantly, our results indicated that the HAS2-OE expression system inhibits MMP3, MMP13, and other markers of the procatabolic phenotype (such as TNF-stimulated gene 6 protein (TSG6)) and also enhances aggrecan retention. These markers were inhibited in OA-associated chondrocytes and in chondrocytes activated by interleukin-1ß (IL1ß), but also chondrocytes activated by lipopolysaccharide (LPS), tumor necrosis factor α (TNFα), or HA oligosaccharides. However, the enhanced extracellular HA resulting from HAS2-OE did not reduce the procatabolic phenotype of neighboring nontransduced chondrocytes as we had expected. Rather, HA-mediated inhibition of the phenotype occurred only in transduced cells. In addition, high HA biosynthesis rates, especially in transduced procatabolic chondrocytes, resulted in marked changes in chondrocyte dependence on glycolysis versus oxidative phosphorylation for their metabolic energy needs.


Assuntos
Condrócitos/metabolismo , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Agrecanas/metabolismo , Animais , Cartilagem Articular/metabolismo , Bovinos , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Humanos , Hialuronan Sintases/biossíntese , Hialuronan Sintases/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metabolômica/métodos , Osteoartrite/genética , Osteoartrite/metabolismo , Cultura Primária de Células
7.
Cartilage ; 10(4): 491-503, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29701083

RESUMO

OBJECTIVE: Chondrocytes are responsible for remodeling and maintaining the structural and functional integrity of the cartilage extracellular matrix. Because of the absence of a vascular supply, chondrocytes survive in a relatively hypoxic environment and thus have limited regenerative capacity during conditions of cellular stress associated with inflammation and matrix degradation, such as osteoarthritis (OA). Glucose is essential to sustain chondrocyte metabolism and is a precursor for key matrix components. In this study, we investigated the importance of glucose as a fuel source for matrix repair during inflammation as well as the effect of glucose on inflammatory mediators associated with osteoarthritis. DESIGN: To create an OA model, we used equine chondrocytes from 4 individual horses that were differentiated into cartilage pellets in vitro followed by interleukin-1ß (IL-1ß) stimulation for 72 hours. The cells were kept at either normoglycemic conditions (5 mM glucose) or supraphysiological glucose concentrations (25 mM glucose) during the stimulation with IL-1ß. RESULTS: We found that elevated glucose levels preserve glucose uptake, hyaluronan synthesis, and matrix integrity, as well as induce anti-inflammatory actions by maintaining low expression of Toll-like receptor-4 and low secretion of glutamate. CONCLUSIONS: Adequate supply of glucose to chondrocytes during conditions of inflammation and matrix degradation interrupts the detrimental inflammatory cycle and induces synthesis of hyaluronan, thereby promoting cartilage repair.


Assuntos
Condrócitos/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Ácido Hialurônico/biossíntese , Animais , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicólise/fisiologia , Cavalos , Hialuronan Sintases/biossíntese , Hialuronan Sintases/genética , Interleucina-1beta/imunologia
8.
J Biol Chem ; 293(52): 20214-20226, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30377255

RESUMO

Conophylline is a Vinca alkaloid from leaves of the tropical plant Ervatamia microphylla and has been shown to mimic the effect of the growth and differentiation factor activin A on pancreatic progenitor cells. However, activin A stimulates fibrosis of pancreatic stellate cells, whereas conophylline inhibits it, suggesting that this compound may serve as an antifibrotic drug. Here we investigated the effects of conophylline on human foreskin fibroblasts, especially focusing on extracellular matrix (ECM) proteins. A gene microarray analysis revealed that conophylline remarkably suppressed expression of the gene for hyaluronan synthase 2 (HAS2) and of its antisense RNA, whereas the expression of collagen genes was unaffected. Of note, immunostaining experiments revealed that conophylline substantially inhibits incorporation of versican and collagens into the ECM in cells treated with transforming growth factor ß (TGFß), which promotes collagen synthesis, but not in cells not treated with TGFß. Moreover, a protein biosynthesis assay disclosed that conophylline decreases collagen biosynthesis, concomitant with a decrease in total protein biosynthesis, indicating that conophylline-mediated inhibition of fibrosis is not specific to collagen synthesis. Conophylline affected neither TGFß-induced nuclear translocation of SMAD family member 2/3 (SMAD2/3) nor phosphorylation of SMAD2. However, conophylline substantially inhibited phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), suggesting that conophylline inhibits HAS2 expression via TGFß-mediated activation of the ERK1/2 pathway. Taken together, our results indicate that conophylline may be a useful inhibitor of ECM formation in fibrosis.


Assuntos
Matriz Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Alcaloides de Vinca/farmacologia , Células Cultivadas , Colágeno/metabolismo , Fibroblastos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Hialuronan Sintases/biossíntese , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Versicanas/metabolismo
9.
Pharmacol Rep ; 70(6): 1146-1149, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30317130

RESUMO

BACKGROUND: Lipopolysaccharide (LPS), the endotoxin of gram-negative bacteria, can impair female reproductive function. However, there is a little information about genotoxic stress in ovarian follicular cells as well as about the changes in oocyte developmental potential under endotoxemia. So the aim of our study was to investigate in vitro oocyte maturation, the DNA damage and expression of some developmental competence-related genes in follicular cells of mice treated with LPS. METHODS: LPS (3mg/kg) was intraperitoneally injected into the mice for 24h, and in vitro maturation of mouse oocyte was determined. The expression levels of genes in cumulus cells were detected by reverse transcriptase polymerase chain reaction. DNA damage in granulosa cells was assessed by the alkaline comet assay. RESULTS: LPS injection caused an impairment of oocyte maturation in vitro: the percentage of oocytes reaching metaphase I and metaphase II decreased markedly compared to vehicle control mice. At the same time we observed strong DNA damage in granulosa cells of LPS-treated animals. The endotoxemia resulted in significantly reduced mRNA expression levels for hyaluronan synthase 2 (HAS2), cyclooxygenase 2 (COX2) and Gremlin-1 (GREM1) genes compared with control. CONCLUSIONS: Our results obtained in a mouse model of endotoxin-induced female reproductive dysfunction suggest that LPS may affect oocyte quality through the induction of DNA damage and decreasing the cumulus expression of genes associated with cumulus expansion and oocyte maturation, such as HAS2, COX2 and GREM1.


Assuntos
Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Lipopolissacarídeos/toxicidade , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Animais , Células Cultivadas , Ciclo-Oxigenase 2/biossíntese , Feminino , Expressão Gênica , Hialuronan Sintases/antagonistas & inibidores , Hialuronan Sintases/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Camundongos , Folículo Ovariano/patologia
10.
Prep Biochem Biotechnol ; 48(8): 734-742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30265187

RESUMO

Hyaluronic acid (HA) is a natural biopolymer and has long been attracting the attention of biotechnology industry due to its various biological functions. HA production with natural producer Streptococcus equi subsp. zooepidemicus has not been preferred because it has many drawbacks due to its pathogenicity. Therefore, in the present study, Streptococcal hyaluronan synthase gene (hasA) was introduced and expressed in Lactococcus lactis, through the auto inducible NICE system and the effect of nisin amount on the production of HA was examined. Newly constructed plasmid was transformed into L. lactis CES15, produced 6.09 g/l HA in static flask culture after three hours of induction period with initial 7.5 ng/ml nisin concentration within total six hours of incubation. The highest HA titer value ever was reported for recombinant HA-producing L. lactis by examining the effect of initial nisin concentration. We have shown that initial nisin concentration, which used to initiate the auto-inducing mechanism of NICE system and consequently hyaluronan synthase expression, has a direct and significant effect on the produced HA amount. Recently constructed recombinant L. lactis CES15 strain provide significant advantages for industrial HA production than those in literature in terms of production time, energy demand, carbon usage, and safety status.


Assuntos
Ácido Hialurônico/biossíntese , Ácido Hialurônico/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Hialuronan Sintases/biossíntese , Hialuronan Sintases/genética , Streptococcus equi/enzimologia , Streptococcus equi/genética
11.
BMC Cancer ; 18(1): 664, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29914429

RESUMO

BACKGROUND: Diffusely infiltrating astrocytomas originate from astrocytic glial cells or their precursor cells and are the most common type of brain tumors in adults. In this retrospective study, we investigated the content of hyaluronan, its cell surface receptor, CD44 and the expression of hyaluronan metabolizing enzymes, in these aggressive tumors. Hyaluronan is the main component of extracellular matrix in the brain. In many tumors, aberrant hyaluronan metabolism implicates aggressive disease progression and metastatic potential. METHODS: Our material consisted of 163 diffusely infiltrating astrocytomas (WHO grades II-IV). Tumor samples were processed into tissue microarray (TMA) blocks. The TMA sections were stained for hyaluronan, CD44, hyaluronan synthases 1-3 (HAS1-3) and hyaluronidase 2 (HYAL2). The immunostaining results were compared with χ2 -test or with Kruskal-Wallis test for correlation with clinicopathological parameters and survival analyses were done with Kaplan-Meier log rank test and Cox regression. RESULTS: Hyaluronan and CD44 were strongly expressed in astrocytic gliomas but their expression did not correlate with WHO grade or any other clinicopathological parameters whereas high HAS2 staining intensity was observed in IDH1 negative tumors (p = 0.003). In addition, in non-parametric tests increased HAS2 staining intensity correlated with increased cell proliferation (p = 0.013) and in log rank test with decreased overall survival of patients (p = 0.001). In the Cox regression analysis HAS2 expression turned out to be a significant independent prognostic factor (p = 0.008). CONCLUSIONS: This study indicates that elevated expression of HAS2 is associated with glioma progression and suggests that HAS2 has a prognostic significance in diffusely infiltrating astrocytomas.


Assuntos
Astrocitoma/enzimologia , Biomarcadores Tumorais/análise , Neoplasias Encefálicas/enzimologia , Hialuronan Sintases/biossíntese , Adulto , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Progressão da Doença , Feminino , Humanos , Receptores de Hialuronatos/análise , Receptores de Hialuronatos/biossíntese , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos
12.
Am J Physiol Cell Physiol ; 314(3): C268-C277, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141921

RESUMO

MicroRNAs (miRNAs) have been established as important regulators of gene expression in the mammalian ovary. A previous screen of small RNA in the porcine ovary identified the downregulation of miR-574 during oocyte maturation, although its role during this process was not established. Here, we found that miR-574 directly targets the transcript for hyaluronan synthase 2 protein (HAS2), a key enzyme in the production of extracellular matrix by the surrounding cumulus cells. Inhibiting this miRNA during in vitro maturation (IVM) increased HAS2 levels along with several markers of oocyte quality. Furthermore, inhibiting miR-574 increased oocyte meiotic progression. We then stably overexpressed miR-574 using a lentiviral vector to transduce cumulus cells during IVM. This gain-of-function approach resulted in a 50% decrease in HAS2 expression and nearly 20% reduction in oocyte progression through meiosis. To confirm the specific targeting of HAS2 by miR-574, we constructed several luciferase vectors harboring the HAS2 3'-untranslated region. Cotransfection of the reporter and miR-574 attenuated luciferase activity. After mutating the putative miR-574 binding site, however, this effect was abolished and luciferase activity remained high. Our results show that the direct targeting of HAS2 by miR-574 negatively impacts oocyte quality during IVM and that inhibiting miR-574 derepresses HAS2 expression and subsequently improves oocyte maturation. Taken together, we help to elucidate a mechanism of posttranscriptional regulation by miRNA in the mammalian ovary.


Assuntos
Células do Cúmulo/enzimologia , Hialuronan Sintases/biossíntese , Técnicas de Maturação in Vitro de Oócitos , MicroRNAs/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Indução Enzimática , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hialuronan Sintases/genética , MicroRNAs/genética , Partenogênese , Transdução de Sinais , Sus scrofa
13.
Am J Respir Cell Mol Biol ; 57(6): 702-710, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28787175

RESUMO

Hyaluronan (HA), a major component of the extracellular matrix, is secreted by airway structural cells. Airway fibroblasts in allergic asthma secrete elevated levels of HA in association with increased HA synthase 2 (HAS2) expression. Thus, we hypothesized that HA accumulation in the airway wall may contribute to airway remodeling and hyperresponsiveness in allergic airways disease. To examine this hypothesis, transgenic mice in which the α-smooth muscle actin (α-SMA) promoter drives HAS2 expression were generated. Mixed male and female α-SMA-HAS2 mice (HAS2+ mice, n = 16; HAS2- mice, n = 13) were sensitized via intraperitoneal injection and then chronically challenged with aerosolized ovalbumin (OVA) for 6 weeks. To test airway responsiveness, increasing doses of methacholine were delivered intravenously and airway resistance was measured using the forced oscillation technique. HA, cytokines, and cell types were analyzed in bronchoalveolar lavage fluid, serum, and whole lung homogenates. Lung sections were stained using antibodies specific for HA-binding protein (HABP) and α-SMA, as well as Masson's trichrome stain. Staining of lung tissue demonstrated significantly increased peribronchial HA, α-SMA, and collagen deposition in OVA-challenged α-SMA-HAS2+ mice compared with α-SMA-HAS2- mice. Unexpectedly, OVA-challenged α-SMA-HAS2+ mice displayed significantly reduced airway responsiveness to methacholine compared with similarly treated α-SMA-HAS2- mice. The total numbers of inflammatory cell types in the bronchoalveolar lavage fluid did not differ significantly between OVA-challenged α-SMA-HAS2+ mice and α-SMA-HAS2- mice. We conclude that allergen-challenged mice that overexpress HAS2 in myofibroblasts and smooth muscle cells develop increased airway fibrosis, which lessens airway hyperresponsiveness to bronchoconstrictors.


Assuntos
Asma/enzimologia , Regulação Enzimológica da Expressão Gênica , Hialuronan Sintases/biossíntese , Pulmão/enzimologia , Miócitos de Músculo Liso/enzimologia , Miofibroblastos/enzimologia , Actinas/biossíntese , Actinas/genética , Alérgenos/toxicidade , Animais , Asma/induzido quimicamente , Asma/genética , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/genética , Doença Crônica , Humanos , Hialuronan Sintases/genética , Pulmão/patologia , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/patologia , Miofibroblastos/patologia
14.
Mol Reprod Dev ; 84(1): 67-75, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27862569

RESUMO

Growth factors synthesized by ovarian somatic cells affect cumulus cell expansion and oocyte maturation in vitro. Fibroblast growth factor 10 (FGF10), for example, is a known regulator of mammalian cumulus-oocyte complex maturation. In this study, we investigated the effects of 0, 5, 10, 50, and 100 ng/mL FGF10 (5F, 10F, 50F, and 100F, respectively) on in vitro cumulus cell expansion, oocyte maturation, and embryo development. The percentage of fully expanded cumulus cells at the oocyte's metaphase-II (MII) stage was significantly higher in the 10F-treated group than in the control. Transcript abundance of the cumulus cell expansion-related gene encoding hyaluronian synthase 2 (HAS2) in cumulus cells at oocyte germinal vesicle breakdown (GVBD) was significantly higher in the 10F- and 50F-treated groups compared to untreated controls, whereas the mRNA abundance of the protease cathepsin B (CTSB) at the oocyte MII stage was remarkably decreased in the 10F-treated group. The percentage of oocytes with normal spindles was greater in the 10F- and 50F-treated group at GVBD than in the other groups; the 5F-, 10F-, and 100F-treated groups were higher than the control; and the 50F-treated group was highest at MII. The abundance of GDF9 and BMP15 transcript at GVBD and BMP15 and CCNB1 transcripts at MII increased in the 10F-treated group. Cleavage rate, blastocyst formation rate, and total cell number were significantly higher in the 5F- to 50F-treated groups. These results demonstrate that FGF10 markedly improves cumulus cell expansion, oocyte maturation, and subsequent embryo development. Mol. Reprod. Dev. 84: 67-75, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Células do Cúmulo/metabolismo , Fator 10 de Crescimento de Fibroblastos/farmacologia , Oócitos/metabolismo , Animais , Proteína Morfogenética Óssea 15/biossíntese , Catepsina B/biossíntese , Células Cultivadas , Células do Cúmulo/citologia , Feminino , Fator 9 de Diferenciação de Crescimento/biossíntese , Hialuronan Sintases/biossíntese , Oócitos/citologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...