Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.608
Filtrar
1.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747836

RESUMO

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Assuntos
Desenho de Fármacos , Hidrazinas , Leishmania , Naftoquinonas , Tripanossomicidas , Trypanosoma cruzi , Naftoquinonas/farmacologia , Naftoquinonas/química , Naftoquinonas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomicidas/farmacologia , Tripanossomicidas/síntese química , Tripanossomicidas/química , Leishmania/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Antiprotozoários/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Testes de Sensibilidade Parasitária , Concentração Inibidora 50 , Relação Estrutura-Atividade , Cisteína Endopeptidases
2.
J Am Chem Soc ; 146(19): 13399-13405, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698691

RESUMO

Structural motifs containing nitrogen-nitrogen (N-N) bonds are prevalent in a large number of clinical drugs and bioactive natural products. Hydrazine (N2H4) serves as a widely utilized building block for the preparation of these N-N-containing molecules in organic synthesis. Despite its common use in chemical processes, no enzyme has been identified to catalyze the incorporation of free hydrazine in natural product biosynthesis. Here, we report that a hydrazine transferase catalyzes the condensation of N2H4 and an aromatic polyketide pathway intermediate, leading to the formation of a rare N-aminolactam pharmacophore in the biosynthesis of broad-spectrum antibiotic albofungin. These results expand the current knowledge on the biosynthetic mechanism for natural products with N-N units and should facilitate future development of biocatalysts for the production of N-N-containing chemicals.


Assuntos
Hidrazinas , Hidrazinas/química , Hidrazinas/metabolismo , Antibacterianos/química , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Streptomyces/enzimologia , Streptomyces/metabolismo , Lactamas/química , Lactamas/metabolismo , Farmacóforo
3.
J Inorg Biochem ; 256: 112546, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593611

RESUMO

Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.


Assuntos
Antineoplásicos , Complexos de Coordenação , Cobre , DNA , Cobre/química , DNA/química , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Hidrazinas/química , Hidrazinas/farmacologia , Linhagem Celular Tumoral , Piridinas/química , Piridinas/farmacologia , Simulação de Acoplamento Molecular , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química
4.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38666341

RESUMO

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Assuntos
Antineoplásicos , Complexos de Coordenação , DNA , Compostos Organofosforados , Vanádio , Humanos , Vanádio/química , Vanádio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , DNA/metabolismo , DNA/química , Sobrevivência Celular/efeitos dos fármacos , Hidrazinas/química , Hidrazinas/farmacologia , Animais , Simulação de Acoplamento Molecular , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Estrutura Molecular , Ligantes , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais
5.
Chembiochem ; 25(9): e202300874, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38458972

RESUMO

Nitrogen-Nitrogen (N-N) bond-containing functional groups in natural products and synthetic drugs play significant roles in exerting biological activities. The mechanisms of N-N bond formation in natural organic molecules have garnered increasing attention over the decades. Recent advances have illuminated various enzymatic and nonenzymatic strategies, and our understanding of natural N-N bond construction is rapidly expanding. A group of didomain proteins with zinc-binding cupin/methionyl-tRNA synthetase (MetRS)-like domains, also known as hydrazine synthetases, generates amino acid-based hydrazines, which serve as key biosynthetic precursors of diverse N-N bond-containing functionalities such as hydrazone, diazo, triazene, pyrazole, and pyridazinone groups. In this review, we summarize the current knowledge on hydrazine synthetase mechanisms and the various pathways employing this unique bond-forming machinery.


Assuntos
Hidrazinas , Hidrazinas/química , Hidrazinas/metabolismo , Metionina tRNA Ligase/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Vias Biossintéticas
6.
ChemMedChem ; 19(9): e202300667, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38326914

RESUMO

Nagana and Human African Trypanosomiasis (HAT), caused by (sub)species of Trypanosoma, are diseases that impede human and animal health, and economic growth in Africa. The few drugs available have drawbacks including suboptimal efficacy, adverse effects, drug resistance, and difficult routes of administration. New drugs are needed. A series of 20 novel quinolone compounds with affordable synthetic routes was made and evaluated in vitro against Trypanosoma brucei and HEK293 cells. Of the 20 compounds, 12 had sub-micromolar potencies against the parasite (EC50 values=0.051-0.57 µM), and most were non-toxic to HEK293 cells (CC50 values>5 µM). Two of the most potent compounds presented sub-micromolar activities against other trypanosome (sub)species (T. cruzi and T. b. rhodesiense). Although aqueous solubility is poor, both compounds possess good logD values (2-3), and either robust or poor microsomal stability profiles. These varying attributes will be addressed in future reports.


Assuntos
Testes de Sensibilidade Parasitária , Quinolonas , Tripanossomicidas , Trypanosoma brucei brucei , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/química , Tripanossomicidas/síntese química , Células HEK293 , Trypanosoma brucei brucei/efeitos dos fármacos , Relação Estrutura-Atividade , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/síntese química , Estrutura Molecular , Hidrazinas/química , Hidrazinas/farmacologia , Hidrazinas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Relação Dose-Resposta a Droga
7.
Bioorg Med Chem ; 100: 117610, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306882

RESUMO

Clinically available antifungal drugs have therapeutic limitations due to toxicity, narrow spectrum of activity, and intrinsic or acquired drug resistance. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. In this context, we have successfully identified several highly promising lead compounds, i.e., aromatic N'-(salicylidene)carbohydrazides, exhibiting excellent antifungal activities against Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus and several other fungi both in vitro and in vivo. Building upon these highly promising results, 71 novel N'-(salicylidene)heteroarenecarbohydrazides 5 were designed, synthesized and their antifungal activities examined against fungi. Based on the SAR study, four highly promising lead compounds, i.e., 5.6a, 5.6b, 5.7b and 5.13a were identified, which exhibited excellent potency against C. neoformans, C. albicans and A. fumigatus, and displayed impressive time-kill profiles against C. neoformans with exceptionally high selectivity indices (SI ≥ 500). These four lead compounds also showed synergy with clinical antifungal drugs, fluconazole, caspofungin (CS) and amphotericin B against C. neoformans. For the SAR study, we also employed quantitative structure-activity relationship (QSAR) analysis by taking advantage of the accumulated data on a large number of aromatic and heteroaromatic N'-(salicylidene)carbohydrazides, which successfully led to rational design and selection of promising compounds for chemical synthesis and biological evaluation.


Assuntos
Antifúngicos , Cryptococcus neoformans , Hidrazinas , Anfotericina B , Antifúngicos/química , Candida albicans , Fluconazol , Testes de Sensibilidade Microbiana , Hidrazinas/química , Hidrazinas/farmacologia
8.
Methods Mol Biol ; 2763: 139-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347407

RESUMO

Mucin glycomic analysis is crucial owing to the participation of mucin O-glycans in several biological functions. Liquid chromatographic analysis of fluorescently labeled glycans is an effective tool for glycomic analysis. The first step of this analysis involves the release of O-glycans from mucins. As no enzyme is known to release all glycans, chemical methods are required for the process; therefore, hydrazine treatment is a commonly used chemical method. It enables the release of O-glycans from mucin while preserving the aldehyde group at the reducing end. This ensures that the reducing end can be modified using fluorescent reagents. However, it is also accompanied by the degradation of the glycans through a process called "peeling." Here, we describe a method for releasing glycans from mucins using hydrazine treatment with minimal "peeling."


Assuntos
Mucinas , Polissacarídeos , Mucinas/metabolismo , Polissacarídeos/química , Cromatografia Líquida , Hidrazinas/química
9.
Chem Biodivers ; 21(2): e202301275, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194339

RESUMO

Betulinic acid and its derivatives comprehend an immense prospective toward the development of cytotoxic, antiviral, antimicrobial and antioxidant agents. Cisplatin (cytotoxic drug) divert the attentions to develop organometallic compounds with pronounced biological activities. The current study was aimed for the first time to synthesize, characterize and evaluate biologically a series of metal (Fe, Cu, Zn, Sn and Sb) complexes of betulinic acid hydrazide. First step involved the formation of hydrazide derivative of betulinic acid (ligand) by modification at C-28 carboxylic acid moiety of betulinic acid with hydrazine followed by the synthesis of its metal complexes using salts of different metals (Fe, Cu, Zn, Sn and Sb). Physical state, melting point, Fourier-transform infrared (FT-IR) and 1 H nuclear magnetic resonance (1 H-NMR) spectral techniques were used to characterized the ligand and its metal complexes. Agar well diffusion method and agar tube dilution assay were performed to evaluate its antibacterial and antifungal activities respectively. DPPH assay was carried out to develop antioxidant properties by the reported methods.


Assuntos
Antioxidantes , Complexos de Coordenação , Antioxidantes/química , Complexos de Coordenação/química , Ácido Betulínico , Espectroscopia de Infravermelho com Transformada de Fourier , Ligantes , Ágar , Estudos Prospectivos , Antibacterianos/química , Hidrazinas/farmacologia , Hidrazinas/química , Bioensaio , Testes de Sensibilidade Microbiana
10.
Biomacromolecules ; 25(2): 990-996, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38262046

RESUMO

Hydrazine-mediated formation of 1,4-phthalazinedione analogues from phthalimide-like components has been utilized to formulate fluorescent probe NorTh. A turn-on fluorescent process has been evaluated to detect hydrazine in a highly selective manner by a small molecular probe NorTh and its homopolymer Poly-NorTh. Both these probes have been evaluated as excellent candidates for nanomolar level detection of hydrazine with a time frame of <15 min, which is rapid in terms of real application. Due to the reaction-based detection process, we have achieved high selectivity for our probes toward the identification of hydrazine in the presence of metal ions, anions, amino acids, and various amines. Limit of detection values are 16 and 35 nM for NorTh and Poly-NorTh, respectively, which are well below the permissible limit given by WHO and EPA. Poly-NorTh has been utilized to detect hydrazine in environmental water samples, soil samples, and biological samples to establish the applicability of our probes in real-field scenarios. We introduce an easy-to-synthesize, cheap, and small molecular probe and its polymer for ultrafast, highly selective, and sensitive detection of hydrazine in all possible mediums to counter the hydrazine toxicity through fluorescence turn-on signal output.


Assuntos
Corantes Fluorescentes , Hidrazinas , Plásticos , Corantes Fluorescentes/química , Hidrazinas/química , Sondas Moleculares , Espectrometria de Fluorescência
11.
Talanta ; 269: 125448, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029607

RESUMO

As an important chemical raw material, hydrazine brings convenience to people's lives and provides opportunities for human development. However, the misuse or leakage of hydrazine has brought pollution to the environment, including water, soil and living organisms. At the same time, hydrazine poses a potential threat to human health as a carcinogen. Despite the enormous challenges, it is crucial to develop an effective method to detect hydrazine in environmental samples. In this work, we have synthesized a series of probes based on phenothiazine fluorophore by the introduction of different substituents and developed a novel probe for the detection of hydrazine. The probe is capable of detecting hydrazine in aqueous solutions with high sensitivity and selectivity, and can be easily fabricated into paper test strips for use in in situ samples. In addition, the probe is effective in detecting hydrazine in water, soil, cells, and zebrafish, providing an excellent tool for detecting hydrazine in the environment.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Humanos , Corantes Fluorescentes/química , Hidrazinas/química , Fenotiazinas , Água , Solo , Espectrometria de Fluorescência
12.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139308

RESUMO

In this research, twenty-four hydrazide-hydrazones of 2,4-dihydroxybenzoic acid were designed, synthesized, and subjected to in vitro and in vivo bioactivity studies. The chemical structure of the obtained compounds was confirmed by spectral methods. Antimicrobial activity screening was performed against a panel of microorganisms for all synthesized hydrazide-hydrazones. The performed assays revealed the interesting antibacterial activity of a few substances against Gram-positive bacterial strains including MRSA-Staphylococcus aureus ATCC 43300 (compound 18: 2,4-dihydroxy-N-[(2-hydroxy-3,5-diiodophenyl)methylidene]benzohydrazide-Minimal Inhibitory Concentration, MIC = 3.91 µg/mL). In addition, we performed the in vitro screening of antiproliferative activity and also assessed the acute toxicity of six hydrazide-hydrazones. The following human cancer cell lines were used: 769-P, HepG2, H1563, and LN-229, and the viability of the cells was assessed using the MTT method. The HEK-293 cell line was used as a reference line. The toxicity was tested in vivo on Danio rerio embryos using the Fish Embryo Acute Toxicity (FET) test procedure according to OECD No. 236. The inhibitory concentration values obtained in the in vitro test showed that N-[(4-nitrophenyl)methylidene]-2,4-dihydroxybenzhydrazide (21) inhibited cancer cell proliferation the most, with an extremely low IC50 (Inhibitory Concentration) value, estimated at 0.77 µM for LN-229. In addition, each of the compounds tested was selective against cancer cell lines. The compounds with a nitrophenyl substituent were the most promising in terms of inhibition cancer cell proliferation. The toxicity against zebrafish embryos and larvae was also very low or moderate.


Assuntos
Antineoplásicos , Hidrazonas , Animais , Humanos , Hidrazonas/farmacologia , Hidrazinas/farmacologia , Hidrazinas/química , Células HEK293 , Peixe-Zebra , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Antineoplásicos/química
13.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005353

RESUMO

Although hydrazine (N2H4) is a versatile chemical used in many applications, it is toxic, and its leakage may pose a threat to both human health and environments. Consequently, the monitoring of N2H4 is significant. This study reports a one-step synthesis for coumarin-based ratiometric fluorescent probe (FP) CHAC, with acetyl as the recognition group. Selected deprotection of the acetyl group via N2H4 released the coumarin fluorophore, which recovered the intramolecular charge transfer process, which caused a prominent fluorescent, ratiometric response. CHAC demonstrated the advantages of high selectivity, a strong capacity for anti-interference, a low limit of detection (LOD) (0.16 µM), a large linear detection range (0-500 µM), and a wide effective pH interval (6-12) in N2H4 detection. Furthermore, the probe enabled quantitative N2H4 verifications in environmental water specimens in addition to qualitative detection of N2H4 in various soils and of gaseous N2H4. Finally, the probe ratiometrically monitored N2H4 in living cells having low cytotoxicity.


Assuntos
Cumarínicos , Corantes Fluorescentes , Humanos , Corantes Fluorescentes/química , Células HeLa , Cumarínicos/química , Limite de Detecção , Hidrazinas/química , Espectrometria de Fluorescência
14.
Chem Biodivers ; 20(11): e202301132, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37743325

RESUMO

A novel Schiff base namely 3,5-di-tert-butyl-6-((2-(perfluorophenyl)hydrazono)methyl)phenol was successfully synthesized and characterized using FT-IR and 1 H-NMR, 13 C-NMR, and 19 F-NMR. The crystal structure analysis of the Schiff base compound was also characterized with single crystal X-ray diffraction studies and supported the spectroscopic results. The cytotoxicity, anti-bacterial properties, and enzyme inhibition of the compound were also investigated. The molecular docking studies were performed in order to explain the interactions of the synthesized compound with target enzymes. The newly synthesized hydrazone derivative Schiff base compound showed high cellular toxicity on MCF-7 and PC-3 cells. Also, this compound caused low antibacterial effect on E. coli and S. aureus. Besides, the compound exhibited the inhibitory effect against pancreatic cholesterol esterase and carbonic anhydrase isoenzyme I, II with IC50 values 63, 99, and 188 µM, respectively. Consequently, it has been determined that the prepared Schiff base is an active compound in terms of cytotoxicity, enzyme inhibition, and anti-bacterial properties. These results provide preliminary information for some biological features of the compound and can play a major role in drug applications of the Schiff base compound.


Assuntos
Escherichia coli , Bases de Schiff , Simulação de Acoplamento Molecular , Raios X , Bases de Schiff/farmacologia , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Hidrazinas/farmacologia , Hidrazinas/química , Estrutura Molecular
15.
Luminescence ; 38(11): 1968-1976, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37653643

RESUMO

Broadly, the industrial applications of hydrazine cause environmental pollution and damage to living organisms because of the high toxicity of hydrazine. Therefore, monitoring hydrazine in the environmental system is of great significance to human health. Here, a new fluorescent probe PC-N2 H4 based on corrole dye was developed for the detection of hydrazine that had excellent specificity, low limit of detection (LOD: 88 nM), and a wide pH range (6-12). Upon addition of hydrazine into the probe solution, the strong red fluorescence was 'turned on' centred at 653 nm with a 127-fold fluorescence intensity enhancement. The detection mechanism was proved using ESI-MS, 1 H NMR, and density functional theoretical calculations. Importantly, the probe was utilized to fabricate a ready-to-use test strip to realize the visual inspection of hydrazine. Furthermore, PC-N2 H4 was successfully applied for practical detection of hydrazine in water samples with satisfactory recoveries ranging from 96.2% to 105.0%, and indicating that the designed PC-N2 H4 is highly promising for hydrazine detection in an aqueous environment. Considering the diverse toxicological functions of hydrazine, PC-N2 H4 was also successfully used to image exogenous hydrazine in HeLa cells and zebrafish.


Assuntos
Hidrazinas , Peixe-Zebra , Animais , Humanos , Células HeLa , Espectrometria de Fluorescência , Hidrazinas/química , Corantes Fluorescentes/química , Água
16.
Sci Adv ; 9(33): eadh4327, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585520

RESUMO

Tissue adhesives have garnered extensive interest as alternatives and supplements to sutures, whereas major challenges still remain, including weak tissue adhesion, inadequate biocompatibility, and uncontrolled biodegradation. Here, injectable and biocompatible hydrogel adhesives are developed via catalyst-free o-phthalaldehyde/amine (hydrazide) cross-linking reaction. The hydrogels demonstrate rapid and firm adhesion to various tissues, and an o-phthalaldehyde-mediated tissue adhesion mechanism is established. The hydrogel adhesives show controlled degradation profiles of 6 to 22 weeks in vivo through the incorporation of disulfide bonds into hydrogel network. In liver and blood vessel injury, the hydrogels effectively seal the incisions and rapidly stop bleeding. In rat and rabbit models of full-thickness skin incision, the hydrogel adhesives quickly close the incisions and accelerate wound healing, which exhibit efficacies superior to those of commercially available fibrin glue and cyanoacrylate glue. Thus, the hydrogel adhesives show great potential for sutureless wound closure, hemostasis sealing, and prevention of leakage in surgical applications.


Assuntos
Aderências Teciduais , Cicatrização , Adesividade , Hidrogéis/química , Dissulfetos/química , Animais , Ratos , Coelhos , Suínos , Pele/lesões , Hidrazinas/química , Polietilenoglicóis/química
17.
J Agric Food Chem ; 71(22): 8297-8316, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249236

RESUMO

Hydrazides are present in many bioactive molecules and exhibit a variety of biological activities, such as insecticidal, herbicidal, antifungal, antitumor, and antiviral effects. In this Review, we review the application of hydrazide and its derived structures in the agricultural fungicidal field, including monohydrazides, diacylhydrazines, hydrazide-hydrazones, and sulfonyl hydrazides. In addition, the antifungal mechanism of action of the hydrazide derivatives was analyzed and summarized, mainly involving succinate dehydrogenase inhibitors, laccase inhibitors, and targeting plasma membranes. Finally, based on the structural analysis of the novel fungicidal lead compounds, the structure-activity relationship of the hydrazide derivatives was constructed and the development trend of hydrazide structures in fungicidal applications was prospected. It is hoped that this Review can provide some significant guidance for the development of new hydrazide fungicides in the future.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Hidrazinas/farmacologia , Hidrazinas/química , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Hidrazonas/química , Antibacterianos/farmacologia
18.
Top Curr Chem (Cham) ; 381(3): 12, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029841

RESUMO

It has been established that pyrazolines and their analogs are pharmacologically active scaffolds. The pyrazoline moiety is present in several marketed molecules with a wide range of uses, which has established its importance in pharmaceutical and agricultural sectors, as well as in industry. Due to its broad-spectrum utility, scientists are continuously captivated by pyrazolines and their derivatives to study their chemistry. Pyrazolines or their analogs can be prepared by several synthesis strategies, and the focus will always be on new greener and more economical ways for their synthesis. Among these methods, chalcones, hydrazines, diazo compounds, and hydrazones are most commonly applied under different reaction conditions for the synthesis of pyrazoline and its analogs. However, there is scope for other molecules such as Huisgen zwitterions, different metal catalysts, and nitrile imine to be used as starting reagents. The present article consists of recently reported synthetic protocols, pharmacological activities, and the structure-activity relationship of pyrazoline and its derivatives, which will be very useful to researchers.


Assuntos
Chalconas , Relação Estrutura-Atividade , Chalconas/química , Hidrazonas , Hidrazinas/farmacologia , Hidrazinas/química
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122692, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37023655

RESUMO

Hydrazine (N2H4) is a widely used raw material in the chemical industry, but at the same time hydrazine has extremely high toxicity. Therefore, the development of efficient detection methods is crucial for monitoring hydrazine in the environment and evaluating the biological toxicity of hydrazine. This study reports a near-infrared ratiometric fluorescent probe (DCPBCl2-Hz) for the detection of hydrazine by coupling a chlorine-substituted D-π-A fluorophore (DCPBCl2) to the recognition group acetyl. Due to the halogen effect of chlorine substitution, the fluorophore has an elevated fluorescence efficiency and a lowered pKa value and is suitable for physiological pH conditions. Hydrazine can specifically react with the acetyl group of the fluorescent probe to release the fluorophore DCPBCl2, so the fluorescence emission of the probe system significantly shifted from 490 nm to 660 nm. The fluorescent probe has many advantages, such as good selectivity, high sensitivity, large Stokes shift, and wide applicable pH range. The probe-loaded silica plates can realize convenient sensing gaseous hydrazine with content down to 1 ppm (mg/m3). Subsequently, DCPBCl2-Hz was successfully applied to detect hydrazine in soils. In addition, the probe can also penetrate living cells and allow the visualization of intracellular hydrazine. It can be anticipated that probe DCPBCl2-Hz will be a useful tool for sensing hydrazine in biological and environmental applications.


Assuntos
Corantes Fluorescentes , Gases , Humanos , Corantes Fluorescentes/química , Células HeLa , Espectrometria de Fluorescência , Cloro , Hidrazinas/química
20.
Luminescence ; 38(2): 159-165, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36601685

RESUMO

Hydrazine (N2 H4 ) is a highly toxic and harmful chemical reagent. Fluorescent probes are simple and efficient tools for sensitive monitoring of N2 H4 enrichment in the environment, humans, animals, and plants. In this work, a ratiometric fluorescent probe (FP-1) containing coumarin was used for hydrazine detection. The proposed FP-1 probe had a linear detection range of 0-250 µM and a limit of detection (LOD) of 0.059 µM (1.89 ppb). A large red Stokes shift was observed in fluorescence and UV-vis absorption spectra due to the hydrolysis of ester bonds between FP-1 and hydrazine. The hydrazine detection mechanism of FP-1 was also investigated using density functional theory (DFT) calculations. Finally, FP-1 could sensitively and selectively monitor hydrazine in actual water samples and BEAS-2B cells. Therefore, it has great application potential in environmental monitoring and disease diagnosis.


Assuntos
Corantes Fluorescentes , Água , Humanos , Corantes Fluorescentes/química , Fluoresceína , Espectrometria de Fluorescência , Hidrazinas/química , Cumarínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...