Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.148
Filtrar
1.
Int J Nanomedicine ; 19: 4045-4060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736656

RESUMO

Purpose: Dry eye disease (DED) is a multifactorial ocular surface disease with a rising incidence. Therefore, it is urgent to construct a reliable and efficient drug delivery system for DED treatment. Methods: In this work, we loaded C-dots nanozyme into a thermosensitive in situ gel to create C-dots@Gel, presenting a promising composite ocular drug delivery system to manage DED. Results: This composite ocular drug delivery system (C-dots@Gel) demonstrated the ability to enhance adherence to the corneal surface and extend the ocular surface retention time, thereby enhancing bioavailability. Furthermore, no discernible ocular surface irritation or systemic toxicity was observed. In the DED mouse model induced by benzalkonium chloride (BAC), it was verified that C-dots@Gel effectively mitigated DED by stabilizing the tear film, prolonging tear secretion, repairing corneal surface damage, and augmenting the population of conjunctival goblet cells. Conclusion: Compared to conventional dosage forms (C-dots), the C-dots@Gel could prolong exhibited enhanced retention time on the ocular surface and increased bioavailability, resulting in a satisfactory therapeutic outcome for DED.


Assuntos
Antioxidantes , Carbono , Córnea , Síndromes do Olho Seco , Hidrogéis , Animais , Síndromes do Olho Seco/tratamento farmacológico , Camundongos , Carbono/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Antioxidantes/administração & dosagem , Hidrogéis/química , Hidrogéis/administração & dosagem , Hidrogéis/farmacocinética , Córnea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Modelos Animais de Doenças , Disponibilidade Biológica , Lágrimas/efeitos dos fármacos , Lágrimas/química , Compostos de Benzalcônio/química , Compostos de Benzalcônio/administração & dosagem , Compostos de Benzalcônio/farmacocinética , Feminino , Masculino , Temperatura , Pontos Quânticos/química
2.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736654

RESUMO

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Assuntos
Cloridrato de Fingolimode , Hidrogéis , Células-Tronco Neurais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/terapia , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/administração & dosagem , Células-Tronco Neurais/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Ratos , Recuperação de Função Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Pontos Quânticos/química , Modelos Animais de Doenças , Feminino , Medula Espinal/efeitos dos fármacos
3.
J Orthop Surg Res ; 19(1): 274, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698396

RESUMO

OBJECTIVE: There are few effective osteoarthritis (OA) therapies. A novel injectable polyacrylamide hydrogel (iPAAG) previously demonstrated efficacy and safety up to week 26 in an open-label study of knee OA. Here we report longer-term effectiveness and safety data. METHODS: This multi-centre, open-label study included patients with symptomatic and radiographic knee OA. Primary outcome was WOMAC pain (0-100 scale) at 13 weeks, and patients continued to 26 weeks before entering a further 26-week extension phase. Secondary efficacy outcomes included WOMAC stiffness and function subscales, Patient Global Assessment (PGA) and proportion of OMERACT-OARSI responders. Safety outcomes were adverse events (AEs). RESULTS: 49 participants (31 women, mean age 70) received an ultrasound-guided, intra-articular injection of 6 ml iPAAG; 46 completed the extension phase to 52 weeks. There was a significant reduction in the WOMAC pain score from baseline to 52 weeks (- 17.7 points (95% CI - 23.1; - 12.4); p < 0.0001). Similar sustained improvements were observed for WOMAC stiffness (11.0 points; 95% CI - 17.0; - 4.9), physical function (18.0 points; 95% CI - 19.1; - 10.6), and PGA (16.3 points; 95% CI - 23.1; - 9.4). At 52 weeks 62.2% of patients were OMERACT-OARSI responders. From 26 to 52 weeks, 8 adverse effects (AE), including 1 serious AE (cerebrovascular accident) were reported in 5 subjects. None of the new adverse events were thought to be device related. CONCLUSION: This open-label study suggests persistent benefits and safety of iPAAG through 52 weeks after a single injection. TRIAL REGISTRATION: Clinicaltrials.gov NCT04179552.


Assuntos
Resinas Acrílicas , Osteoartrite do Joelho , Humanos , Feminino , Osteoartrite do Joelho/tratamento farmacológico , Resinas Acrílicas/administração & dosagem , Masculino , Idoso , Pessoa de Meia-Idade , Resultado do Tratamento , Seguimentos , Injeções Intra-Articulares , Fatores de Tempo , Hidrogéis/administração & dosagem , Idoso de 80 Anos ou mais
4.
Biomater Sci ; 12(10): 2460-2479, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38578143

RESUMO

Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.


Assuntos
Antibacterianos , Hidrogéis , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Cicatrização/efeitos dos fármacos , Animais , Doença Crônica , Bandagens
5.
Biomater Sci ; 12(10): 2561-2578, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38602364

RESUMO

The targeted delivery of pharmacologically active molecules, metabolites, and growth factors to the brain parenchyma has become one of the major challenges following the onset of neurodegeneration and pathological conditions. The therapeutic effect of active biomolecules is significantly impaired after systemic administration in the central nervous system (CNS) because of the blood-brain barrier (BBB). Therefore, the development of novel therapeutic approaches capable of overcoming these limitations is under discussion. Exosomes (Exo) are nano-sized vesicles of endosomal origin that have a high distribution rate in biofluids. Recent advances have introduced Exo as naturally suitable bio-shuttles for the delivery of neurotrophic factors to the brain parenchyma. In recent years, many researchers have attempted to regulate the delivery of Exo to target sites while reducing their removal from circulation. The encapsulation of Exo in natural and synthetic hydrogels offers a valuable strategy to address the limitations of Exo, maintaining their integrity and controlling their release at a desired site. Herein, we highlight the current and novel approaches related to the application of hydrogels for the encapsulation of Exo in the field of CNS tissue engineering.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos , Hidrogéis , Exossomos/química , Exossomos/metabolismo , Hidrogéis/química , Hidrogéis/administração & dosagem , Humanos , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Engenharia Tecidual , Portadores de Fármacos/química
6.
ACS Biomater Sci Eng ; 10(5): 3164-3172, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38671385

RESUMO

Intestinal adhesion is one of the complications that occurs more frequently after abdominal surgery. Postsurgical intestinal adhesion (PIA) can lead to a series of health problems, including abdominal pain, intestinal obstruction, and female infertility. Currently, hydrogels and nanofibrous films as barriers are often used for preventing PIA formation; however, these kinds of materials have their intrinsic disadvantages. Herein, we developed a dual-structure drug delivery patch consisting of poly lactic-co-glycolic acid (PLGA) nanofibers and a chitosan hydrogel (NHP). PLGA nanofibers loaded with deferoxamine mesylate (DFO) were incorporated into the hydrogel; meanwhile, the hydrogel was loaded with anti-inflammatory drug dexamethasone (DXMS). The rapid degradation of the hydrogel facilitated the release of DXMS at the acute inflammatory stage of the early injury and provided effective anti-inflammatory effects for wound sites. Moreover, PLGA composite nanofibers could provide sustained and stable release of DFO for promoting the peritoneal repair by the angiogenesis effects of DFO. The in vivo results indicated that NHP can effectively prevent PIA formation by restraining inflammation and vascularization, promoting peritoneal repair. Therefore, we believe that our NHP has a great potential application in inhibition of PIA.


Assuntos
Dexametasona , Sistemas de Liberação de Medicamentos , Hidrogéis , Nanofibras , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanofibras/química , Nanofibras/uso terapêutico , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Aderências Teciduais/prevenção & controle , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Dexametasona/farmacologia , Dexametasona/administração & dosagem , Dexametasona/uso terapêutico , Quitosana/química , Quitosana/farmacologia , Intestinos/efeitos dos fármacos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Ratos Sprague-Dawley , Camundongos , Feminino , Ratos
7.
J Cosmet Dermatol ; 23(6): 2125-2134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590107

RESUMO

OBJECTIVE: Salicylic acid (SA) has been used for treatment of acne of different severity levels. However, there are few researches about the safety and efficacy for treatment of mild to moderate acne, and the improvement of the skin condition by using 2% supramolecular salicylic acid (SSA) compared to Davuwen Adapaline gel. METHODS: A multicenter, randomized, assessor-blind and parallel-controlled study was conducted. A total of 500 patients (trial group: 249, control group: 251) with mild to moderate (grade I-II) facial acne vulgaris were recruited in this study over a 16-week trial period. Patients in the trial group were treated with Broda 2% SSA hydrogel, while control group treated with Davuwen Adapaline gel once a day. The number of inflammatory papules, comedones, and pustules were counted and the rate of lesion reduction was calculated pre- and post-treatment. Then, the skin physiological indicators, including L*a*b*, TEWL, skin sebum and hydration were measured. Statistical analysis was conducted using SAS 9.4. Significance was set at p = 0.05. RESULTS: At the end of 12 weeks' therapy, the regression and markedly improvement rate of the trail group and the control group were 51.01% and 43.10% respectively, and there was no significant difference in the improvement rate between two groups (p = 0.0831). Although, there was no difference in adverse events rate between two groups, the adverse events rate of the trail group was 0.40%, a little lower than the control group (0.80%). Moreover, there was a significant difference in the numbers of pores at T1 between two groups. CONCLUSION: Both 2% SSA and Adapaline gel were equally effective in the treatment of mild to moderate acne vulgaris. 2% SSA is worth the clinical promotion and application in mild to moderate acne vulgaris.


Assuntos
Acne Vulgar , Géis , Hidrogéis , Ácido Salicílico , Índice de Gravidade de Doença , Humanos , Acne Vulgar/tratamento farmacológico , Feminino , Masculino , Ácido Salicílico/administração & dosagem , Ácido Salicílico/efeitos adversos , Ácido Salicílico/uso terapêutico , Adulto Jovem , Adolescente , Adulto , Método Simples-Cego , Hidrogéis/administração & dosagem , Resultado do Tratamento , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/efeitos adversos , Administração Cutânea , Adapaleno/administração & dosagem , Adapaleno/efeitos adversos
8.
Expert Opin Drug Deliv ; 21(4): 573-591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588553

RESUMO

INTRODUCTION: Endotracheal intubation is a common procedure to maintain an open airway with risks for traumatic injury. Pathological changes resulting from intubation can cause upper airway complications, including vocal fold scarring, laryngotracheal stenosis, and granulomas and present with symptoms such as dysphonia, dysphagia, and dyspnea. Current intubation-related laryngotracheal injury treatment approaches lack standardized guidelines, relying on individual clinician experience, and surgical and medical interventions have limitations and carry risks. AREAS COVERED: The clinical and preclinical therapeutics for wound healing in the upper airway are described. This review discusses the current developments on local drug delivery systems in the upper airway utilizing particle-based delivery systems, including nanoparticles and microparticles, and bulk-based delivery systems, encompassing hydrogels and polymer-based approaches. EXPERT OPINION: Complex laryngotracheal diseases pose challenges for effective treatment, struggling due to the intricate anatomy, limited access, and recurrence. Symptomatic management often requires invasive surgical procedures or medications that are unable to achieve lasting effects. Recent advances in nanotechnology and biocompatible materials provide potential solutions, enabling precise drug delivery, personalization, and extended treatment efficacy. Combining these technologies could lead to groundbreaking treatments for upper airways diseases, significantly improving patients' quality of life. Research and innovation in this field are crucial for further advancements.


Assuntos
Sistemas de Liberação de Medicamentos , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Animais , Intubação Intratraqueal/métodos , Qualidade de Vida , Nanopartículas , Hidrogéis/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Polímeros/química , Nanotecnologia , Doenças da Laringe/tratamento farmacológico , Traqueia/lesões
9.
Int J Pharm ; 656: 124099, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614431

RESUMO

Diabetic wounds (DWs) pose a significant health burden worldwide, with their management presenting numerous challenges. Biopolymeric formulations have recently gained attention as promising therapeutic approaches for diabetic wound healing. These formulations, composed of biocompatible and biodegradable polymers, offer unique properties such as controlled drug release, enhanced wound closure, and reduced scarring. In this review, we aim to provide a comprehensive overview of the current state of research and future prospects regarding the application of biopolymeric formulations for diabetic wound healing. The review begins by highlighting the underlying pathophysiology of DWs, including impaired angiogenesis, chronic inflammation, and compromised extracellular matrix (ECM) formation. It further explores the key characteristics of biopolymeric materials, such as their biocompatibility, biodegradability, and tunable physicochemical properties, which make them suitable for diabetic wound healing applications. The discussion further delves into the types of biopolymeric formulations utilized in the treatment of DWs. These include hydrogels, nanoparticles (NP), scaffolds, films, and dressings. Furthermore, the review addresses the challenges associated with biopolymeric formulations for diabetic wound healing. In conclusion, biopolymeric formulations present a promising avenue for diabetic wound healing. Their unique properties and versatility allow for tailored approaches to address the specific challenges associated with DWs. However, further research and developments are required to optimize their therapeutic efficacy, stability, manufacturing processes, and regulatory considerations. With continued advancements in biopolymeric formulations, the future holds great promise for improving the management and outcomes of DWs.


Assuntos
Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Biopolímeros/química , Biopolímeros/administração & dosagem , Animais , Diabetes Mellitus/tratamento farmacológico , Hidrogéis/química , Hidrogéis/administração & dosagem , Bandagens , Materiais Biocompatíveis/química , Materiais Biocompatíveis/administração & dosagem , Nanopartículas/química
10.
Int J Pharm ; 656: 124029, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38527566

RESUMO

α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.


Assuntos
Anti-Inflamatórios , Dermatite Atópica , Liberação Controlada de Fármacos , Hidrogéis , Camundongos Endogâmicos BALB C , Sesquiterpenos Monocíclicos , Nanocápsulas , Animais , Hidrogéis/química , Hidrogéis/administração & dosagem , Nanocápsulas/química , Dermatite Atópica/tratamento farmacológico , Sesquiterpenos Monocíclicos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Absorção Cutânea/efeitos dos fármacos , Tamanho da Partícula , Modelos Animais de Doenças , Camundongos , Administração Cutânea , Masculino , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Sesquiterpenos/administração & dosagem , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/farmacocinética , Feminino
11.
Biomater Sci ; 12(9): 2312-2320, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38497434

RESUMO

Postsurgical treatment comprehensively benefits from the application of tissue-adhesive injectable hydrogels, which reduce postoperative complications by promoting wound closure and tissue regeneration. Although various hydrogels have been employed as clinical tissue adhesives, many exhibit deficiencies in adhesive strength under wet conditions or in immunomodulatory functions. Herein, we report the development of reactive oxygen species (ROS) scavenging and tissue-adhesive injectable hydrogels composed of polyamine-modified gelatin crosslinked with the 4-arm poly (ethylene glycol) crosslinker. Polyamine-modified gelatin was particularly potent in suppressing the secretion of proinflammatory cytokines from stimulated primary macrophages. This effect is attributed to its ability to scavenge ROS and inhibit the nuclear translocation of nuclear factor kappa-B. Polyamine-modified gelatin-based hydrogels exhibited ROS scavenging abilities and enhanced tissue adhesive strength on collagen casing. Notably, the hydrogel demonstrated exceptional tissue adhesive properties in a wet environment, as evidenced by its performance using porcine small intestine tissue. This approach holds significant promise for designing immunomodulatory hydrogels with superior tissue adhesion strength compared to conventional medical materials, thereby contributing to advancements in minimally invasive surgical techniques.


Assuntos
Gelatina , Hidrogéis , Espécies Reativas de Oxigênio , Adesivos Teciduais , Hidrogéis/química , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Animais , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Adesivos Teciduais/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Suínos , Gelatina/química , Polietilenoimina/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Polietilenoglicóis/química , Injeções , Citocinas/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos
12.
Biomater Sci ; 12(9): 2356-2368, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38497791

RESUMO

Corneal transplantation is the gold standard treatment for corneal-related blindness; however, this strategy faces challenges such as limited donor cornea, graft rejection, suture-related complications, and the need for specialized equipment and advanced surgical skills. Development of tissue adhesives for corneal regeneration is of great clinical value. However, currently available corneal tissue sealants pose challenges, such as lack of safety, biocompatibility, and desired mechanical properties. To meet these requirements simultaneously, a bovine stromal corneal extracellular matrix (dCor) was used to design a bioadhesive photocurable hydrogel based on gelatin methacrylate (GelMA) and polyethylene glycol diacrylate (PEGDA) hydrogels (dCor/Gel-PEG). Integration of dCor into the dual networks of GelMA and PEGDA (Gel-PEG) led to a bioadhesive hydrogel for curing corneal defects, which could be crosslinked by Irgacure 2959 within 5 min ultraviolet irradiation. The viability of corneal stromal stem cells (CSSCs) was improved on the dCor/Gel-PEG hydrogel in comparison to the Gel-PEG hydrogel. The gene expression profile supported the keratocyte differentiation of CSSCs seeded on dCor/Gel-PEG via increased KERA and ALDH, with inhibited myofibroblast transdifferentiation via decreased α-SMA due to the presence of dCor. Interestingly, the dCor/Gel-PEG hydrogel exhibited favorable mechanical performance in terms of elasticity and bioadherence to the host corneal stroma. Ex vivo and in vivo examinations proved the feasibility of this hydrogel for the sutureless reconstruction of deep anterior corneal defects with promising histopathological results.


Assuntos
Matriz Extracelular , Gelatina , Hidrogéis , Polietilenoglicóis , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/administração & dosagem , Bovinos , Polietilenoglicóis/química , Gelatina/química , Matriz Extracelular/química , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Adesivos Teciduais/administração & dosagem , Metacrilatos/química , Córnea , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
13.
Int J Biol Macromol ; 266(Pt 1): 131175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552696

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) significantly contributes to the high incidence of complications and mortality associated with acute myocardial infarction. Recently, injectable electroconductive hydrogels (IECHs) have emerged as promising tools for replicating the mechanical, electroconductive, and physiological characteristics of cardiac tissue. Herein, we aimed to develop a novel IECH by incorporating irbesartan as a drug delivery system (DDS) for cardiac repair. Our approach involved merging a conductive poly-thiophene derivative (PEDOT: PSS) with an injectable dual-network adhesive hydrogel (DNAH) comprising a catechol-branched polyacrylamide network and a chitosan-hyaluronic acid covalent network. The resulting P-DNAH hydrogel, benefitting from a high conducting polymer content, a chemically crosslinked network, a robust dissipative matrix, and dynamic oxidation of catechol to quinone exhibited superior mechanical strength, desirable conductivity, and robust wet-adhesiveness. In vitro experiments with the P-DNAH hydrogel carrying irbesartan (P-DNAH-I) demonstrated excellent biocompatibility by cck-8 kit on H9C2 cells and a rapid initial release of irbesartan. Upon injection into the infarcted hearts of MIRI mouse models, the P-DNAH-I hydrogel effectively inhibited the inflammatory response and reduced the infarct size. In conclusion, our results suggest that the P-DNAH hydrogel, possessing suitable mechanical properties and electroconductivity, serves as an ideal IECH for DDS, delivering irbesartan to promote heart repair.


Assuntos
Resinas Acrílicas , Quitosana , Hidrogéis , Traumatismo por Reperfusão Miocárdica , Irbesartana/administração & dosagem , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Quitosana/administração & dosagem , Quitosana/química , Resinas Acrílicas/administração & dosagem , Resinas Acrílicas/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Hidrogéis/toxicidade , Condutividade Elétrica , Elasticidade , Injeções , Linhagem Celular , Animais , Ratos , Modelos Animais de Doenças , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Sobrevivência Celular/efeitos dos fármacos
14.
Nature ; 623(7985): 58-65, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914945

RESUMO

To construct tissue-like prosthetic materials, soft electroactive hydrogels are the best candidate owing to their physiological mechanical modulus, low electrical resistance and bidirectional stimulating and recording capability of electrophysiological signals from biological tissues1,2. Nevertheless, until now, bioelectronic devices for such prostheses have been patch type, which cannot be applied onto rough, narrow or deep tissue surfaces3-5. Here we present an injectable tissue prosthesis with instantaneous bidirectional electrical conduction in the neuromuscular system. The soft and injectable prosthesis is composed of a biocompatible hydrogel with unique phenylborate-mediated multiple crosslinking, such as irreversible yet freely rearrangeable biphenyl bonds and reversible coordinate bonds with conductive gold nanoparticles formed in situ by cross-coupling. Closed-loop robot-assisted rehabilitation by injecting this prosthetic material is successfully demonstrated in the early stage of severe muscle injury in rats, and accelerated tissue repair is achieved in the later stage.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Próteses e Implantes , Ferimentos e Lesões , Animais , Ratos , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Condutividade Elétrica , Ouro/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Hidrogéis/uso terapêutico , Nanopartículas Metálicas/química , Músculos/lesões , Músculos/inervação , Robótica , Ferimentos e Lesões/reabilitação , Ferimentos e Lesões/cirurgia
15.
ACS Biomater Sci Eng ; 9(9): 5332-5346, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642176

RESUMO

Periodontitis is an inflammatory disease characterized by tooth loss and alveolar bone resorption. Bacteria are the original cause of periodontitis, and excess reactive oxygen species (ROS) encourage and intensify inflammation. In this study, a mussel-inspired and MnO2 NPs-reinforced adhesive hydrogel capable of alleviating periodontitis with improved antibacterial and antioxidant abilities was developed. The hydrogel was created by combining polyvinyl alcohol (PVA), 3,4-dihydroxy-d-phenylalanine (DOPA), and MnO2 nanoparticles (NPs) (named PDMO hydrogel). The hydrogel was demonstrated to be able to scavenge various free radicals (including total ROS─O2•- and OH•) and relieve the hypoxia in an inflammatory microenvironment by scavenging excess ROS and generating O2 due to its superoxide dismutase (SOD)/catalase (CAT)-like activity. Besides, under 808 nm near-infrared (NIR) light, the photothermal performance of the PDMO hydrogel displayed favorable antibacterial and antibiofilm effects toward Escherichia coli, Staphylococcus aureus, and Porphyromonas gingivalis (up to nearly 100% antibacterial rate). Furthermore, the PDMO hydrogel exhibited favorable therapeutic efficacy in alleviating gingivitis in Sprague-Dawley rats, even comparable to or better than the commercial PERIO. In addition, in the periodontitis models, the PDMO2 group showed the height of the residual alveolar bone and the smallest shadow area of low density among other groups, indicating the positive role of the PDMO2 hydrogel in bone regeneration. Finally, the biosafety of the PDMO hydrogel was comprehensively investigated, and the hydrogel was demonstrated to have good biocompatibility. Therefore, the developed PDMO hydrogel provided an effective solution to resolve biofilm recolonization and oxidative stress in periodontitis and could be a superior candidate for local drug delivery system in the clinical management of periodontitis with great potential for future clinical translation.


Assuntos
Hidrogéis , Periodontite , Periodontite/tratamento farmacológico , Hidrogéis/administração & dosagem , Hidrogéis/síntese química , Hidrogéis/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Animais , Ratos , Ratos Sprague-Dawley , Regeneração Óssea/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
16.
Adv Drug Deliv Rev ; 200: 115028, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517778

RESUMO

Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.


Assuntos
Portadores de Fármacos , Vesículas Extracelulares , Hidrogéis , Lipossomos , Dermatopatias , Humanos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Polissacarídeos/química , Dermatopatias/tratamento farmacológico , Lipossomos/administração & dosagem
17.
ACS Appl Bio Mater ; 6(2): 445-457, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36633203

RESUMO

Recently, injectable hydrogels have attracted much interest in tissue engineering (TE) applications because of their controlled flowability, adaptability, and easy handling properties. This work emphasizes the synthesis and characterizations of bioactive glass (BAG) nanoparticle-reinforced poly(ethylene glycol) (PEG)- and poly(N-vinylcarbazole) (pNVC)-based minimally invasive composite injectable hydrogel suitable for bone regeneration. First, the copolymer was synthesized from a combination of PEG and pNVC through reversible addition-fragmentation chain-transfer (RAFT) polymerization and nanocomposite hydrogel constructs were subsequently prepared by conjugating BAG particles at varying loading concentrations. Gel permeation chromatography (GPC) analysis confirmed the controlled nature of the polymer. Various physicochemical characterization results confirmed the successful synthesis of copolymer and nanocomposite hydrogels that showed good gelling and injectability properties. Our optimal nanocomposite hydrogel formulation showed excellent swelling properties in comparison to the copolymeric hydrogel due to the presence of hydrophilic BAG particles. The bone cell proliferation rate was found to be evidently higher in the nanocomposite hydrogel than in the copolymeric hydrogel. Moreover, the enhanced level of ALP activity and apatite mineralization for the nanocomposite in comparison to that for the copolymeric hydrogel indicates accelerated in vitro osteogenesis. Overall, our study findings indicate BAG particle-conjugated nanocomposite hydrogels can be used as promising grafting materials in orthopedic reconstructive surgeries complementary to conventional bone graft substitutes in cancellous bone defects due to their 3D porous framework, minimal invasiveness, and ability to form any desired shape to match irregular bone defects.


Assuntos
Substitutos Ósseos , Vidro , Nanogéis , Engenharia Tecidual , Substitutos Ósseos/síntese química , Hidrogéis/administração & dosagem , Hidrogéis/química , Nanogéis/administração & dosagem , Nanogéis/química , Osteogênese , Polietilenoglicóis/química , Engenharia Tecidual/métodos
18.
Acta Biomater ; 146: 107-118, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35545186

RESUMO

The development of degradable hydrogel fillers with high antibacterial activity and wound-healing property is urgently needed for the treatment of infected wounds. Herein, an injectable, degradable, photoactivated antibacterial hydrogel (MPDA-BNN6@Gel) was developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration, MPDA-BNN6@Gel created local hyperthermia and released large quantities of NO gas to treat methicillin-resistant Staphylococcus aureus infection under the stimulation of an 808 nm laser. Experiments confirmed that the bacteria were eradicated through irreversible damage to the cell membrane, genetic metabolism, and material energy. Furthermore, in the absence of laser irradition, the fibrin and small amount of NO that originated from MPDA-BNN6@Gel promoted wound healing in vivo. This work indicates that MPDA-BNN6@Gel is a promising alternative for the treatment of infected wounds and provides a facile tactic to design a photoregulated bactericidal hydrogel for accelerating infected wound healing. STATEMENT OF SIGNIFICANCE: The development of a degradable hydrogel with high antibacterial activity and wound-healing property is an urgent need for the treatment of infected wounds. Herein, an injectable, degradable, and photo-activated antibacterial hydrogel (MPDA-BNN6@Gel) has been developed by incorporating BNN6-loaded mesoporous polydopamine nanoparticles (MPDA-BNN6 NPs) into a fibrin-based hydrogel. After administration of MPDA-BNN6@Gel, the MPDA-BNN6@Gel could generate local hyperthermia and release large quantities of NO gas to treat the methicillin-resistant Staphylococcus aureus infection under the irradiation of 808 nm laser. Furthermore, in the absence of a laser, the fibrin and a small amount of NO originating from MPDA-BNN6@Gel could promote wound healing in vivo.


Assuntos
Antibacterianos , Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Óxido Nítrico , Infecção dos Ferimentos , Antibacterianos/administração & dosagem , Antibacterianos/química , Fibrina/administração & dosagem , Fibrina/química , Hidrogéis/administração & dosagem , Hidrogéis/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/administração & dosagem , Nanopartículas/química , Óxido Nítrico/administração & dosagem , Óxido Nítrico/química , Fenilenodiaminas/administração & dosagem , Fenilenodiaminas/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
19.
Adv Sci (Weinh) ; 9(20): e2200281, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524641

RESUMO

Emerging evidence indicates that a vicious cycle between inflammation and microthrombosis catalyzes the pathogenesis of inflammatory bowel disease (IBD). Over-stimulated inflammation triggers a coagulation cascade and leads to microthrombosis, which further complicates the injury through tissue hypoxia and ischemia. Herein, an injectable protein hydrogel with anti-thrombosis and anti-inflammation competency is developed to impede this cycle, cross-linked by silver ion mediated metal-ligand coordination and electronic interaction with sulfhydryl functionalized bovine serum albumin and heparin, respectively. The ex vivo experiments show that the hydrogel, HEP-Ag-BSA, exhibits excellent self-healing ability, injectability, biocompatibility, and sustained drug release. HEP-Ag-BSA also demonstrates anti-coagulation and anti-inflammation abilities via coagulation analysis and lipopolysaccharide stimulation assay. The in vivo imaging confirms the longer retention time of HEP-Ag-BSA at inflammatory sites than in normal mucosa owing to electrostatic interactions. The in vivo study applying a mouse model with colitis also reveals that HEP-Ag-BSA can robustly inhibit inflammatory microthrombosis with reduced bleeding risk. This versatile protein hydrogel platform can definitively hinder the "inflammation and microthrombosis" cycle, providing a novel integrated approach against IBD.


Assuntos
Heparina , Hidrogéis , Inflamação , Doenças Inflamatórias Intestinais , Soroalbumina Bovina , Trombose , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/uso terapêutico , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Heparina/administração & dosagem , Heparina/uso terapêutico , Hidrogéis/administração & dosagem , Hidrogéis/uso terapêutico , Inflamação/terapia , Doenças Inflamatórias Intestinais/terapia , Injeções , Camundongos , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/uso terapêutico , Trombose/terapia
20.
ACS Biomater Sci Eng ; 8(4): 1726-1734, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35302761

RESUMO

Acute kidney injury (AKI) has emerged as a major public health problem affecting millions of people worldwide without specific and satisfactory therapies due to the lack of an effective delivery approach. In the past few decades, hydrogels present infinite potential in localized drug delivery, while their poor adhesion to moist tissue and isotropic diffusion character always restrict the therapeutic efficiency and may lead to unwanted side effects. Herein, we proposed a novel therapeutic strategy for AKI via a customizable artificial kidney capsule (AKC) together with a mesenchymal stem cell (MSC)-laden hydrogel. Specifically, an elastic capsule owning an inner chamber with the same size and shape as the kidney is designed and fabricated through three-dimensional (3D) modeling and printing, serving as an outer wrap for kidney and cell-laden hydrogels. According to the in vitro experiment, the excellent biocompatibility of gelatin-based hydrogel ensures viability and proliferation of MSCs. In vivo mice experiments proved that this concept of AKC-assisted kidney drug delivery could efficiently reduce epithelial cell apoptosis and minimize the damage of the renal tubular structure for mice suffering AKI. Such a strategy not only provides a promising alternative in the treatment of AKI but also offers a feasible and versatile approach for the repair and recovery of other organs.


Assuntos
Injúria Renal Aguda/terapia , Hidrogéis/uso terapêutico , Rins Artificiais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Rabdomiólise/complicações , Injúria Renal Aguda/etiologia , Animais , Humanos , Hidrogéis/administração & dosagem , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Impressão Tridimensional , Rabdomiólise/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...