Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 924
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 75, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700529

RESUMO

Biogenic nanoparticles (NPs) have emerged as promising therapeutic formulations in effective drug delivery. Despite of various positive attributes, these NPs are often conjugated with various cytotoxic organic fluorophores for bioimaging, thereby reducing its effectiveness as a potential carrier. Herein, we aim to formulate biogenic fluorescent pigmented polyhydroxybutyrate (PHB) NPs from Rhodanobacter sp. strain KT31 (OK001852) for drug delivery. The bacterial strain produced 0.5 g L-1 of polyhydroxyalkanoates (PHAs) from 2.04 g L-1 of dry cell weight (DCW) under optimised conditions via submerged fermentation. Further, structural, thermal, and morphological charactersiation of the extracted PHAs was conducted using advance analytical technologies. IR spectra at 1719.25 cm-1 confirmed presence of C = O functional group PHB. NMR and XRD analysis validated the chemical structure and crystallinity of PHB. TG-DTA revealed Tm (168 °C), Td (292 °C), and Xc (35%) of the PHB. FE-SEM imaging indicated rough surface of the PHB film and the biodegradability was confirmed from open windro composting. WST1 assay showed no significant cell death (> 50%) from 100 to 500 µg/mL, endorsing non-cytotoxic nature of PHB. PHB NPs were uniform, smooth and spherical with size distribution and mean zeta potential 44.73 nm and 0.5 mV. IR and XRD peaks obtained at 1721.75 cm-1 and 48.42 Å denoted C = O and crystalline nature of PHB. Cell proliferation rate of PHB NPs was quite significant at 50 µg/mL, establishing the non-cytotoxic nature of NPs. Further, in vitro efficacy of the PHB NPs needs to be evaluated prior to the biomedical applications.


Assuntos
Nanopartículas , Poli-Hidroxialcanoatos , Proibitinas , Nanopartículas/química , Poli-Hidroxialcanoatos/química , Poli-Hidroxialcanoatos/metabolismo , Sistemas de Liberação de Medicamentos , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Humanos , Rhodospirillaceae/metabolismo , Rhodospirillaceae/química , Portadores de Fármacos/química
2.
J Hazard Mater ; 471: 134348, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38653138

RESUMO

This study ventures into the exploration of potential poly-3-hydroxybutyrate (PHB) degradation in alpine environments. PHB-degrading bacteria were identified in both campus soil, representing a residential area, and Mt. Kurodake soil, an alpine region in Hokkaido, Japan. Next-generation sequencing analysis indicated that the campus soil exhibited higher microbial diversity, while Ralstonia insidiosa C1, isolated from Mt. Kurodake soil, displayed the highest proficiency in PHB degradation. R. insidiosa C1 efficiently degraded up to 3% (w/v) of PHB and various films composed of other biopolymers at 14 °C. This bacterium synthesized homopolymers using substrates such as 3-hydroxybutyric acid, sugars, and acetic acid, while also produced copolymers using a mixture of fatty acids. The analysis results confirmed that the biopolymer synthesized by strain C1 using glucose was PHB, with physical properties comparable to commercial products. The unique capabilities of R. insidiosa C1, encompassing both the production and degradation of bioplastics, highlight its potential to establish a novel material circulation model.


Assuntos
Biodegradação Ambiental , Hidroxibutiratos , Poli-Hidroxialcanoatos , Ralstonia , Microbiologia do Solo , Ralstonia/metabolismo , Ralstonia/genética , Poli-Hidroxialcanoatos/metabolismo , Hidroxibutiratos/metabolismo , Hidroxibutiratos/química , Poliésteres/metabolismo , Poliésteres/química , Japão , Poli-Hidroxibutiratos
3.
Chemosphere ; 356: 141950, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599326

RESUMO

Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-ß-hydroxybutyrate and poly-ß-hydroxybutyrate-co-ß-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9-18 $ kg-1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.


Assuntos
Biodegradação Ambiental , Poliésteres , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Poliésteres/química , Solventes/química , Hidroxibutiratos/química
4.
Biomolecules ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672520

RESUMO

Ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) is an important chiral intermediate in the synthesis of the cholesterol-lowering drug atorvastatin. Studying the use of SpyTag/SpyCatcher and SnoopTag/SnoopCatcher systems for the asymmetric reduction reaction and directed coupling coenzyme regeneration is practical for efficiently synthesizing (S)-CHBE. In this study, Spy and Snoop systems were used to construct a double-enzyme directed fixation system of carbonyl reductase (BsCR) and glucose dehydrogenase (BsGDH) for converting 4-chloroacetoacetate (COBE) to (S)-CHBE and achieving coenzyme regeneration. We discussed the enzymatic properties of the immobilized enzyme and the optimal catalytic conditions and reusability of the double-enzyme immobilization system. Compared to the free enzyme, the immobilized enzyme showed an improved optimal pH and temperature, maintaining higher relative activity across a wider range. The double-enzyme immobilization system was applied to catalyze the asymmetric reduction reaction of COBE, and the yield of (S)-CHBE reached 60.1% at 30 °C and pH 8.0. In addition, the double-enzyme immobilization system possessed better operational stability than the free enzyme, and maintained about 50% of the initial yield after six cycles. In summary, we show a simple and effective strategy for self-assembling SpyCatcher/SnoopCatcher and SpyTag/SnoopTag fusion proteins, which inspires building more cascade systems at the interface. It provides a new method for facilitating the rapid construction of in vitro immobilized multi-enzyme complexes from crude cell lysate.


Assuntos
Enzimas Imobilizadas , Glucose 1-Desidrogenase , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Biocatálise , Concentração de Íons de Hidrogênio , Hidroxibutiratos/química , Temperatura , Catálise , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Carbonil Redutase (NADPH)/metabolismo , Carbonil Redutase (NADPH)/química
5.
Int J Biol Macromol ; 266(Pt 2): 131199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574917

RESUMO

The objective of this study was to prepare biocomposites through the solution casting method followed by compression moulding in which bacterial cellulose (BC) deposited flax fabric (FF) produced through fermentation is coated with minimal amount of polylactic acid (PLA) and polyhydroxybutyrate (PHB). Biocomposites incorporated with 60 % of PLA or PHB (% w/w) show enhanced tensile strength. Cross-sectional morphology showed good superficial interaction of these biopolymers with fibres of FF thereby filling up the gaps present between the fibres. The tensile strength of biocomposites at 60 % PLA and 60 % PHB improved from 37.97 MPa (i.e., BC deposited FF produced in presence of honey) to 67.17 MPa and 56.26 MPa, respectively. Further, 0.25 % of nalidixic acid (NA) (% w/w) and 6 % of oleic acid (OA) (% w/w) incorporation into the biocomposites imparted prolonged antibacterial activity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The in vitro cytotoxicity of biocomposites was determined using L929 mouse fibroblast cells. The 3-(4,5-cime- thylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide cytotoxicity tests showed that the PHB derived biocomposites along with antibacterial compounds in it were non-toxic. In vitro degradation of biocomposites was measured for up to 8 weeks in the mimicked physiological environment that showed a gradual rate of degradation over the period.


Assuntos
Antibacterianos , Celulose , Linho , Hidroxibutiratos , Poliésteres , Poliésteres/química , Celulose/química , Celulose/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Animais , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Linho/química , Resistência à Tração , Têxteis , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Linhagem Celular
6.
Biotechnol Adv ; 72: 108340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38537879

RESUMO

As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.


Assuntos
Poli-Hidroxibutiratos , Polímeros , Polímeros/química , Fermentação , Carboidratos , Carbono/química , Hidroxibutiratos/análise , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo
7.
Int J Biol Macromol ; 266(Pt 1): 130990, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508553

RESUMO

This study investigated the effect of polymer blending of microbially produced poly[(R)-lactate-co-(R)-3-hydroxybutyrate] copolymers (LAHB) with poly(lactate) (PLA) on their mechanical, thermal, and biodegradable properties. Blending of high lactate (LA) content and high molecular weight LAHB significantly improved the tensile elongation of PLA up to more than 250 % at optimal LAHB composition of 20-30 wt%. Temperature-modulated differential scanning calorimetry and dynamic mechanical analysis revealed that PLA and LAHB were immiscible but interacted with each other, as indicated by the mutual plasticization effect. Detailed morphological characterization using scanning probe microscopy, small-angle X-ray scattering, and solid-state NMR confirmed that PLA and LAHB formed a two-phase structure with a characteristic length scale as small as 20 nm. Because of mixing in this order, the polymer blends were optically transparent. The biological oxygen demand test of the polymer blends in seawater indicated an enhancement of PLA biodegradation during biodegradation of the polymer blends.


Assuntos
Poliésteres , Poliésteres/química , Poliésteres/metabolismo , Polímeros/química , Polímeros/metabolismo , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Temperatura , Peso Molecular , Biodegradação Ambiental
8.
ACS Appl Bio Mater ; 7(4): 2325-2337, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38483087

RESUMO

This article addresses the entire life cycle of the all-green fibrous materials based on poly(3-hydroxybutyrate) (PHB) containing a natural biocompatible additive Hemin (Hmi): from preparation, service life, and the end of life upon in-soil biodegradation. Fibrous PHB/Hmi materials with a highly developed surface and interconnected porosity were prepared by electrospinning (ES) from Hmi-containing feed solutions. Structural organization of the PHB/Hmi materials (porosity, uniform structure, diameter of fibers, surface area, distribution of Hmi within the PHB matrix, phase composition, etc.) is shown to be governed by the ES conditions: the presence of even minor amounts of Hmi in the PHB/Hmi (below 5 wt %) serves as a powerful tool for the control over their structure, performance, and biodegradation. Service characteristics of the PHB/Hmi materials (wettability, prolonged release of Hmi, antibacterial activity, breathability, and mechanical properties) were studied by different physicochemical methods (scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, contact angle measurements, antibacterial tests, etc.). The effect of the structural organization of the PHB/Hmi materials on their in-soil biodegradation at the end of life was analyzed, and key factors providing efficient biodegradation of the PHB/Hmi materials at all stages (from adaptation to mineralization) are highlighted (high surface area and porosity, thin fibers, release of Hmi, etc.). The proposed approach allows for target-oriented preparation and structural design of the functional PHB/Hmi nonwovens when their structural supramolecular organization with a highly developed surface area controls both their service properties as efficient antibacterial materials and in-soil biodegradation upon the end of life.


Assuntos
Materiais Biocompatíveis , Hemina , Animais , Materiais Biocompatíveis/química , Poli-Hidroxibutiratos , Hidroxibutiratos/química , Antibacterianos/química , Estágios do Ciclo de Vida , Morte , Solo
9.
Int J Biol Macromol ; 266(Pt 2): 131079, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537860

RESUMO

This study investigates the effects of SCG embedded into biodegradable polymer blends and aimed to formulate and characterise biomass-reinforced biocomposites using spent coffee ground (SCG) as reinforcement in PHB/PLA polymer blend. The effect of SCG filler loading and varying PHB/PLA ratios on the tensile properties and morphological characteristics of the biocomposites were examined. The results indicated that tensile properties reduction could be due to its incompatibility with the PHB/PLA matrixSCG aggregation at 40 wt% content resulted in higher void formation compared to lower content at 10 wt%. A PHB/PLA ratio of 50/50 with SCG loading 20 wt% was chosen for biocomposites with treated SCG. Biological treatment of SCG using Phanerochaete chrysosporium CK01 and Aspergillus niger DWA8 indicated P. chrysosporium CK01 necessitated a higher moisture content for optimum growth and enzyme production, whereas the optimal conditions for enzyme production (50-55 %, w/w) differed from those promoting A. niger DWA8 growth (40 %, w/w). SEM micrographs highlighted uniform distribution and effective wetting of treated SCG, resulting in improvements of tensile strength and modulus of biocomposites, respectively. The study demonstrated the effectiveness of sustainable fungal treatment in enhancing the interfacial adhesion between treated SCG and the PHB/PLA matrix.


Assuntos
Aspergillus niger , Café , Hidroxibutiratos , Poliésteres , Poliésteres/química , Hidroxibutiratos/química , Café/química , Aspergillus niger/efeitos dos fármacos , Resistência à Tração , Polímeros/química
10.
Microb Cell Fact ; 23(1): 59, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388436

RESUMO

BACKGROUND: Polyhydroxybutyrate is a biopolymer produced by bacteria and archaea under nitrogen-limiting conditions. PHB is an essential polymer in the bioplastic sector because of its biodegradability, eco-friendliness, and adaptability. The characterization of PHB is a multifaceted process for studying the structure and its properties. This entire aspect can assure the long-term viability and performance attributes of the PHB. The characteristics of PHB extracted from the halophile Brachybacterium paraconglomeratum were investigated with the objective of making films for application in healthcare. RESULTS: This was the first characterization study on PHB produced by a rare halophile, Brachybacterium paraconglomeratum (MTCC 13074). In this study, the strain produced 2.72 g/l of PHB for.5.1 g/l of biomass under optimal conditions. Methods are described for the determination of the physicochemical properties of PHB. The prominent functional groups CH3 and C = O were observed by FT-IR and the actual chemical structure of the PHB was deduced by NMR. GCMS detects the confirmation of four methyl ester derivatives of the extracted PHB in the sample. Mass spectrometry revealed the molecular weight of methyl 3-hydroxybutyric acid (3HB) present in the extract. The air-dried PHB films were exposed to TGA, DSC and a universal testing machine to determine the thermal profile and mechanical stability. Additionally, the essential property of biopolymers like viscosity was also assessed for the extracted PHB. CONCLUSIONS: The current study demonstrated the consistency and quality of B. paraconglomeratum PHB. Therefore, Brachybacterium sps are also a considerable source of PHB with desired characteristics for industrial production.


Assuntos
Actinobacteria , Actinomycetales , Poli-Hidroxibutiratos , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros , Biopolímeros , Hidroxibutiratos/química
11.
Int J Biol Macromol ; 261(Pt 2): 129649, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266847

RESUMO

The production of poly-3-hydroxybutyrate (PHB) on an industrial scale remains a major challenge due to its higher production cost compared to petroleum-based plastics. As a result, it is necessary to develop efficient fermentative processes using low-cost substrates and identify high-value-added applications where biodegradability and biocompatibility properties are of fundamental importance. In this study, grape residues, mainly grape skins, were used as the sole carbon source in Azotobacter vinelandii OP cultures for PHB production and subsequent nanoparticle synthesis based on the extracted polymer. The grape residue pretreatment showed a high rate of conversion into reducing sugars (fructose and glucose), achieving up to 43.3 % w w-1 without the use of acid or external heat. The cultures were grown in shake flasks, obtaining a biomass concentration of 2.9 g L-1 and a PHB accumulation of up to 37.7 % w w-1. PHB was characterized using techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The formation of emulsified PHB nanoparticles showed high stability, with a particle size between 210 and 240 nm and a zeta potential between -12 and - 15 mV over 72 h. Owing to these properties, the produced PHB nanoparticles hold significant potential for applications in drug delivery.


Assuntos
Poli-Hidroxibutiratos , Vitis , Carbono , Poliésteres/química , Polímeros , Hidroxibutiratos/química
12.
Bioresour Technol ; 394: 130277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176596

RESUMO

Traditional Chinese medicine residue (TCMR) was utilized as an inexpensive carbon source for the production of poly(3-hydroxybutyrate) (PHB) using the newly isolated Bacillus altitudinis HBU-SI7. The results showed that Yu Ping Feng TCMR could be directly hydrolysed by cellulase to obtain a high proportion of glucose (99 % of total sugar) without pretreatment, achieving an enzymatic hydrolysis rate of up to 89.2 %. B. altitudinis could grow and produce PHB when using enzymatically hydrolysed TCMR in a 5-L fermenter. After 20 h of fermentation, the maximum concentration of PHB was 11.2 g/L, and the highest cell dry weight (CDW) was 15.4 g/L, with 72.7 % of the PHB fraction in CDW. Moreover, this strain could utilize enzymatic hydrolysates from various herbal formulas to produce high levels of PHB. This novel approach aims to accumulate PHB from TCMR hydrolysates, offering an effective and environmentally friendly method to reduce production costs and achieve mass production.


Assuntos
Bacillus , Poli-Hidroxialcanoatos , Hidroxibutiratos/química , Medicina Tradicional Chinesa , Bacillus/metabolismo , Fermentação , Poliésteres/metabolismo
13.
Int J Biol Macromol ; 258(Pt 1): 128764, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103666

RESUMO

The continual rise in the consumption of petroleum-based synthetic polymers raised a significant environmental concern. Bacillus pseudomycoides SAS-B1 is a gram-positive rod-shaped halophilic bacterium capable of accumulating Polyhydroxybutyrate (PHB)-an intracellular biodegradable polymer. In the present study, the optimal conditions for cell cultivation in the seed media were developed. The optimal factors included a preservation age of 14 to 21 days (with 105 to 106 cells/mL), inoculum size of 0.1 % (w/v), 1 % (w/v) glucose, and growth temperature of 30 °C. The cells were then cultivated in a two-stage fermentation process utilizing glycerol and Corn Steep Liquor (CSL) as carbon and nitrogen sources, respectively. PHB yield was effectively increased from 2.01 to 9.21 g/L through intermittent feeding of glycerol and CSL, along with acrylic acid. FTIR, TGA, DSC, and XRD characterization studies were employed to enumerate the recovered PHB and determine its physicochemical properties. Additionally, the study assessed the cradle-to-gate Life Cycle Assessment (LCA) of PHB production, considering net CO2 generation and covering all major environmental impact categories. The production of 1000 kg of PHB resulted in lower stratospheric ozone depletion and comparatively reduced carbon dioxide emissions (2022.7 kg CO2 eq.) and terrestrial ecotoxicity (9.54 kg 1,4-DCB eq.) than typical petrochemical polymers.


Assuntos
Acrilatos , Bacillus , Glicerol , Hidroxibutiratos , Fermentação , Glicerol/metabolismo , Hidroxibutiratos/química , Dióxido de Carbono , Poli-Hidroxibutiratos , Polímeros/metabolismo , Poliésteres/metabolismo
14.
Int J Biol Macromol ; 253(Pt 8): 127632, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37884241

RESUMO

Biosynthesized poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) has emerged as a promising biodegradable polymer with a great potential to compete with traditional petroleum-based plastics, however, the poor crystallization ability makes it challenge to transform into high-performance products via common melt-processing methods. Herein, we demonstrate that N,N'-dicyclohexyl-2,6-naphthalenedicarboxamide (TMB) can serve as an efficient nucleating agent to significantly enhance the crystallization and resulting storage stability of PHBHHx. The results indicate that PHBHHx with small amounts of TMB (0.3-0.5 wt%) can crystallize completely even under a rapid cooling rate of 100 °C/min and the isothermal crystallization time is greatly reduced. As a result, the crystallinity of the injection-molded PHBHHx products is increased from 24.5 % to 39.5 %, without secondary crystallization after being stored at room temperature for 6 h. The products exhibit superior dimensional stability and the post-shrinkage can be decreased to as low as 0.1 %. Our work offers a feasible method to develop high-performance PHBHHx materials with remarkably enhanced crystallization ability.


Assuntos
Hidroxibutiratos , Polímeros , Ácido 3-Hidroxibutírico/química , Cristalização , Hidroxibutiratos/química , Caproatos/química
15.
Biomacromolecules ; 24(11): 4939-4957, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37819211

RESUMO

This work presents a comprehensive analysis of the biodegradation of polyhydroxybutyrate (PHB) and chemically modified PHB with different chemical and crystal structures in a soil environment. A polymer modification reaction was performed during preparation of the chemically modified PHB films, utilizing 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane as a free-radical initiator and maleic anhydride. Films of neat PHB and chemically modified PHB were prepared by extrusion and thermocompression. The biological agent employed was natural mixed microflora in the form of garden soil. The course and extent of biodegradation of the films was investigated by applying various techniques, as follows: a respirometry test to determine the production of carbon dioxide through microbial degradation; scanning electron microscopy (SEM); optical microscopy; fluorescence microscopy; differential scanning calorimetry (DSC); and X-ray diffraction (XRD). Next-generation sequencing was carried out to study the microbial community involved in biodegradation of the films. Findings from the respirometry test indicated that biodegradation of the extruded and chemically modified PHB followed a multistage (2-3) course, which varied according to the spatial distribution of amorphous and crystalline regions and their spherulitic morphology. SEM and polarized optical microscopy (POM) confirmed that the rate of biodegradation depended on the availability of the amorphous phase in the interspherulitic region and the width of the interlamellar region in the first stage, while dependence on the size of spherulites and thickness of spherulitic lamellae was evident in the second stage. X-ray diffraction revealed that orthorhombic α-form crystals with helical chain conformation degraded concurrently with ß-form crystals with planar zigzag conformation. The nucleation of PHB crystals after 90 days of biodegradation was identified by DSC and POM, a phenomenon which impeded biodegradation. Fluorescence microscopy evidenced that the crystal structure of PHB affected the physiological behavior of soil microorganisms in contact with the surfaces of the films.


Assuntos
Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Poliésteres/química , Solo
16.
Int J Biol Macromol ; 247: 125628, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392926

RESUMO

A strain of Bacillus that can tolerate 10 g/L acetic acid and use the volatile fatty acids produced by the hydrolysis and acidification of activated sludge to produce polyhydroxyalkanoate was screened from the activated sludge of propylene oxide saponification wastewater. The strain was identified by 16S rRNA sequencing and phylogenetic tree analysis and was named Bacillus cereus L17. Various characterization methods showed that the polymer synthesized by strain L17 is poly-ß-hydroxybutyrate, which has low crystallinity, good ductility and toughness, high thermal stability and a low polydispersity coefficient. It has wide thermoplastic material operating space as well as industrial and medicinal applications. The optimal fermentation conditions were determined by single factor optimization. Then, Plackett-Burman and Box-Behnken design experiments were carried out according to the single factor optimization results, and the response surface optimization was completed. The final results were: initial pH 6.7, temperature 25 °C, and loading volume 124 mL. The verification experiment showed that the yield of poly-ß-hydroxybutyrate after optimization increased by 35.2 % compared to that before optimization.


Assuntos
Bacillus cereus , Esgotos , Bacillus cereus/metabolismo , Ácido Acético , Carbono , RNA Ribossômico 16S/genética , Filogenia , Poliésteres/química , Fermentação , Hidroxibutiratos/química
17.
Int J Biol Macromol ; 244: 125355, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37327940

RESUMO

Composite films of Bacillus megaterium H16 derived PHB with 1%Poly-L-lactic acid (PLLA), 1%Poly-ε-caprolactone (PCL), and 0.3 % graphene nanoplatelets (GNP) were produced by solvent cast method. The composite films were characterized by SEM, DSC-TGA, XRD, and ATR-FTIR. The ultrastructure of PHB and its composites depicted an irregular surface morphology with pores after the evaporation of chloroform. The GNPs were seen to be integrated inside the pores. The B. megaterium H16 derived-PHB and its composites demonstrated good biocompatibility which was evaluated in vitro on HaCaT and L929 cells by MTT assay. The cell viability was best for PHB followed by PHB/PLLA/PCL > PHB/PLLA/GNP > PHB/PLLA. PHB and its composites were highly hemocompatible as it resulted in <1 % hemolysis. The PHB/PLLA/PCL and PHB/PLLA/GNP composites can serve as ideal biomaterials for skin tissue engineering.


Assuntos
Bacillus megaterium , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Poliésteres/química , Pele , Hidroxibutiratos/química
18.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175689

RESUMO

Developing biodegradable materials based on polymer blends with a programmable self-destruction period in the environmental conditions of living systems is a promising direction in polymer chemistry. In this work, novel non-woven fibrous materials obtained by electrospinning based on the blends of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) were developed. The kinetics of biodegradation was studied in the aquatic environment of the inoculum of soil microorganisms. Oxidative degradation was studied under the ozone gaseous medium. The changes in chemical composition and structure of the materials were studied by optical microscopy, DSC, TGA, and FTIR-spectroscopy. The disappearance of the structural bands of PHB in the IR-spectra of the blends and a significant decrease in the enthalpy of melting after 90 days of exposure in the inoculum indicated the biodegradation of PHB while PLA remained stable. It was shown that the rate of ozonation was higher for PLA and the blends with a high content of PLA. The lower density of the amorphous regions of the blends determined an increased rate of their oxidation by ozone compared to homopolymers. The optimal composition in terms of degradation kinetics is a fibrous material based on the blend of 30PLA/70PHB that can be used as an effective ecosorbent, for biopackaging, and as a highly porous covering material for agricultural purposes.


Assuntos
Hidroxibutiratos , Poliésteres , Ácido 3-Hidroxibutírico , Hidroxibutiratos/química , Poliésteres/química , Polímeros/química , Estresse Oxidativo
19.
Int J Biol Macromol ; 239: 124371, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028635

RESUMO

The avocado processing industry produces up to 1.3M tons of agro-waste annually. Chemical analysis of avocado seed waste (ASW) revealed that it is rich in carbohydrates (464.7 ± 21.4 g kg-1) and proteins (37.2 ± 1.5 g kg-1). Optimized microbial cultivation of Cobetia amphilecti using an acid hydrolysate of ASW, generated poly(3-hydroxybutyrate) (PHB) in a 2.1 ± 0.1 g L-1 concentration. The PHB productivity of C. amphilecti cultivated on ASW extract was 17.5 mg L-1 h-1. The process in which a novel ASW substrate was utilized has been further augmented by using ethyl levulinate as a sustainable extractant. This process achieved 97.4 ± 1.9 % recovery yield and 100 ± 1 % purity (measured by TGA, NMR, and FTIR) of the target PHB biopolymer, along with a high and relatively uniform PHB molecular weight (Mw = 1831 kDa, Mn = 1481 kDa, Mw/Mn = 1.24) (measured by gel permeation chromatography), compared to PHB polymer extracted by chloroform (Mw = 389 kDa, Mn = 297 kDa, Mw/Mn = 1.31). This is the first example of ASW utilization as a sustainable and inexpensive substrate for PHB biosynthesis and ethyl levulinate as an efficient and green extractant of PHB from a single bacterial biomass.


Assuntos
Persea , Poliésteres , Ácido 3-Hidroxibutírico , Poliésteres/química , Hidroxibutiratos/química
20.
Int J Biol Macromol ; 242(Pt 1): 124626, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119884

RESUMO

Fruit residues are attractive substrates for the production of bacterial polyhydroxyalkanoates due to the high contents of fermentable sugars and the fast, simple, and efficient pretreatment methods required. In this study, apple residues, mainly apple peel, were used as the sole carbon source in cultures of the bacterium Azotobacter vinelandii OP to produce poly-3-hydroxybutyrate (P3HB). Conversion from the residue to total sugars was highly effective, achieving conversions of up to 65.4 % w w-1 when using 1 % v v-1 sulfuric acid and 58.3 % w w-1 in the absence of acid (only water). The cultures were evaluated at the shake-flask scale and in 3-L bioreactors using a defined medium under nitrogen starvation conditions. The results showed the production of up to 3.94 g L-1 P3HB in a bioreactor, reaching an accumulation of 67.3 % w w-1 when using apple residues. For the PHB obtained from the cultures with apple residues, a melting point of 179.99 °C and a maximum degradation temperature of 274.64 °C were calculated. A P3HB production strategy is shown using easily hydrolysable fruit residues to achieve production yields comparable to those obtained with pure sugars under similar cultivation conditions.


Assuntos
Azotobacter vinelandii , Malus , Poli-Hidroxialcanoatos , Azotobacter vinelandii/metabolismo , Malus/metabolismo , Reatores Biológicos/microbiologia , Poliésteres/química , Hidroxibutiratos/química , Açúcares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...