Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
J Med Chem ; 66(22): 15477-15492, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37934858

RESUMO

Metastases to the brain remain a significant problem in lung cancer, as treatment by most small-molecule targeted therapies is severely limited by efflux transporters at the blood-brain barrier (BBB). Here, we report the discovery of a selective, orally bioavailable, epidermal growth factor receptor (EGFR) inhibitor, 9, that exhibits high brain penetration and potent activity in osimertinib-resistant cell lines bearing L858R/C797S and exon19del/C797S EGFR resistance mutations. In vivo, 9 induced tumor regression in an intracranial patient-derived xenograft (PDX) murine model suggesting it as a potential lead for the treatment of localized and metastatic non-small-cell lung cancer (NSCLC) driven by activating mutant bearing EGFR. Overall, we demonstrate that an underrepresented functional group in medicinal chemistry, the trisubstituted hydroxylamine moiety, can be incorporated into a drug scaffold without the toxicity commonly surmised to accompany these units, all while maintaining potent biological activity and without the molecular weight creep common to drug optimization campaigns.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Barreira Hematoencefálica/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Hidroxilamina/metabolismo , Hidroxilamina/uso terapêutico , Hidroxilaminas/metabolismo , Hidroxilaminas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
2.
Reprod Toxicol ; 121: 108475, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37748715

RESUMO

Molnupiravir is a nucleoside analog antiviral that is authorized for use in the treatment of COVID-19. For its therapeutic action, molnupiravir is converted after ingestion to the active metabolite N4-hydroxycytidine, which is incorporated into the viral genome to cause lethal mutagenesis. Molnupiravir is not recommended for use during pregnancy, because preclinical animal studies suggest that it is hazardous to developing embryos. However, the mechanisms underlying the embryotoxicity of molnupiravir are currently unknown. To gain mechanistic insights into its embryotoxic action, the effects of molnupiravir and N4-hydroxycytidine were examined on the in vitro development of mouse preimplantation embryos. Molnupiravir did not prevent blastocyst formation even at concentrations that were much higher than the therapeutic plasma levels. By contrast, N4-hyroxycytidine exhibited potent toxicity, as it interfered with blastocyst formation and caused extensive cell death at concentrations below the therapeutic plasma levels. The adverse effects of N4-hydroxycytidine were dependent on the timing of exposure, such that treatment after the 8-cell stage, but not before it, caused embryotoxicity. Transcriptomic analysis of N4-hydroxycytidine-exposed embryos, together with the examination of eIF-2a protein phosphorylation level, suggested that N4-hydroxycytidine induced the integrated stress response. The adverse effects of N4-hydroxycytidine were significantly alleviated by the co-treatment with S-(4-nitrobenzyl)-6-thioinosine, suggesting that the embryotoxic potential of N4-hydroxycytidine requires the activity of nucleoside transporters. These findings show that the active metabolite of molnupiravir impairs preimplantation development at clinically relevant concentrations, providing mechanistic foundation for further studies on the embryotoxic potential of molnupiravir and other related nucleoside antivirals.


Assuntos
COVID-19 , Nucleosídeos , Gravidez , Feminino , Camundongos , Animais , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Blastocisto , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacologia , Antivirais/toxicidade
3.
Appl Environ Microbiol ; 89(8): e0217322, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37439697

RESUMO

An important role of nitric oxide (NO) as either a free intermediate in the NH3 oxidation pathway or a potential oxidant for NH3 or NH2OH has been proposed for ammonia-oxidizing bacteria (AOB) and archaea (AOA), respectively. However, tracing NO metabolism at low concentrations remains notoriously difficult. Here, we use electrochemical sensors and the mild NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) to trace apparent NO concentration and determine production rates at low micromolar concentrations in the model AOB strain Nitrosomonas europaea. In agreement with previous studies, we found that PTIO does not affect NH3 oxidation instantaneously in both Nitrosospira briensis and Nitrosomonas europaea, unlike inhibitors for ammonia oxidation such as allylthiourea and acetylene, although it effectively scavenged NO from the cell suspensions. Quantitative analysis showed that NO production by N. europaea amounted to 3.15% to 6.23% of NO2- production, whereas N. europaea grown under O2 limitation produced NO equivalent to up to 40% of NO2- production at high substrate concentrations. In addition, we found that PTIO addition to N. europaea grown under O2 limitation abolished N2O production. These results indicate different turnover rates of NO during NH3 oxidation under O2-replete and O2-limited growth conditions in AOB. The results suggest that NO may not be a free intermediate or remain tightly bound to iron centers of enzymes during hydroxylamine oxidation and that only NH3 saturation and adaptation to O2 limitation may lead to significant dissociation of NO from hydroxylamine dehydrogenase. IMPORTANCE Ammonia oxidation by chemolithoautotrophic ammonia-oxidizing bacteria (AOB) is thought to contribute significantly to global nitrous oxide (N2O) emissions and leaching of oxidized nitrogen, particularly through their activity in nitrogen (N)-fertilized agricultural production systems. Although substantial efforts have been made to characterize the N metabolism in AOB, recent findings suggest that nitric oxide (NO) may play an important mechanistic role as a free intermediate of hydroxylamine oxidation in AOB, further implying that besides hydroxylamine dehydrogenase (HAO), additional enzymes may be required to complete the ammonia oxidation pathway. However, the NO spin trap PTIO was found to not inhibit ammonia oxidation in AOB. This study provides a combination of physiological and spectroscopic evidence that PTIO indeed scavenges only free NO in AOB and that significant amounts of free NO are produced only during incomplete hydroxylamine oxidation or nitrifier denitrification under O2-limited growth conditions.


Assuntos
Betaproteobacteria , Óxido Nítrico , Óxido Nítrico/metabolismo , Amônia/metabolismo , Hidroxilamina/química , Hidroxilamina/metabolismo , Dióxido de Nitrogênio/metabolismo , Oxirredução , Óxido Nitroso/metabolismo , Archaea/metabolismo , Betaproteobacteria/metabolismo , Nitrogênio/metabolismo , Hidroxilaminas/metabolismo , Nitrificação
4.
Environ Res ; 235: 116664, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451572

RESUMO

The combination of partial denitrification (PD) and anaerobic ammonium oxidation (anammox) is a novel and promising nitrogen removal process. Regulating the synergistic reaction between denitrifiers and anammox bacteria (AnAOB) is the key to achieving stable and efficient PD-anammox performance. In this study, 10 mg/L of hydroxylamine (NH2OH) was considered to efficiently promote the bacterial activity, microbial energy flow, and the synergy of functional microflora. As a result, the nitrogen removal rate (NRR) significantly increased from 0.05 to 0.30 g N/L/d in parallel with an increase in the nitrogen loading rate (NLR) from 0.10 to 0.40 g N/L/d. However, the dual-edged effect of NH2OH was also confirmed. The long-term presence of NH2OH caused overgrowth of complete-denitrifying bacteria and decreased the NRR to 0.11 g N/L/d. Additionally, NH2OH enhanced nitrous oxide (N2O) emissions via chemical pathways as well as enhanced denitrification Fortunately, the inhibition caused by NH2OH was reversible by stopping the dosing, the reactor restored to stable operation with an NRR of 0.27 g N/L/d. Analysis of metabolic intensity and pathways revealed the effecting process and mechanism of NH2OH on the PD-anammox system. This study verified the dual-edged effects and mechanisms of NH2OH, therefore proving a theoretical basis and technical reference for the application of PD-anammox.


Assuntos
Compostos de Amônio , Desnitrificação , Hidroxilamina/metabolismo , Esgotos/microbiologia , Anaerobiose , Oxirredução , Reatores Biológicos/microbiologia , Hidroxilaminas/metabolismo , Bactérias/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo
5.
J Biol Chem ; 298(9): 102372, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970391

RESUMO

Nitrogen (N2) gas in the atmosphere is partially replenished by microbial denitrification of ammonia. Recent study has shown that Alcaligenes ammonioxydans oxidizes ammonia to dinitrogen via a process featuring the intermediate hydroxylamine, termed "Dirammox" (direct ammonia oxidation). However, the unique biochemistry of this process remains unknown. Here, we report an enzyme involved in Dirammox that catalyzes the conversion of hydroxylamine to N2. We tested previously annotated proteins involved in redox reactions, DnfA, DnfB, and DnfC, to determine their ability to catalyze the oxidation of ammonia or hydroxylamine. Our results showed that none of these proteins bound to ammonia or catalyzed its oxidation; however, we did find DnfA bound to hydroxylamine. Further experiments demonstrated that, in the presence of NADH and FAD, DnfA catalyzed the conversion of 15N-labeled hydroxylamine to 15N2. This conversion did not happen under oxygen (O2)-free conditions. Thus, we concluded that DnfA encodes a hydroxylamine oxidase. We demonstrate that DnfA is not homologous to any known hydroxylamine oxidoreductases and contains a diiron center, which was shown to be involved in catalysis via electron paramagnetic resonance experiments. Furthermore, enzyme kinetics of DnfA were assayed, revealing a Km of 92.9 ± 3.0 µM for hydroxylamine and a kcat of 0.028 ± 0.001 s-1. Finally, we show that DnfA was localized in the cytoplasm and periplasm as well as in tubular membrane invaginations in HO-1 cells. To the best of our knowledge, we conclude that DnfA is the first enzyme discovered that catalyzes oxidation of hydroxylamine to N2.


Assuntos
Alcaligenes , Amônia , Hidroxilaminas , Oxirredutases , Alcaligenes/enzimologia , Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Hidroxilaminas/metabolismo , NAD/metabolismo , Nitrogênio/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio
6.
J Antibiot (Tokyo) ; 75(8): 472-479, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35650279

RESUMO

D-amino acids play an important role in cell wall peptidoglycan biosynthesis. Mycobacterium tuberculosis D-amino acid oxidase deletion led to reduced biofilm-forming ability. Other recent studies also suggest that the accumulation of D-amino acids blocks biofilm formation and could also disperse pre-formed biofilm. Biofilms are communities of bacterial cells protected by extracellular matrix and harbor drug-tolerant as well as persistent bacteria. In Mycobacterium tuberculosis, biofilm formation or its inhibition by D-amino acids is yet to be tested. In the present study, we used selected D-amino acids to study their role in the prevention of biofilm formation and also if D-cycloserine's activity was due to presence of D-Serine as a metabolite. It was observed that D-serine limits biofilm formation in Mycobacterium tuberculosis H37Ra (Mtb-Ra), but it shows no effect on pre-formed biofilm. Also, D-cycloserine and its metabolic product, hydroxylamine, individually and in combination, with D-Serine, limit biofilm formation in Mtb-Ra and also disrupts existing biofilm. In summary, we demonstrated that D-alanine, D-valine, D-phenylalanine, D-serine, and D-threonine had no disruptive effect on pre-formed biofilm of Mtb-Ra, either individually or in combination, and D-cycloserine and its metabolite hydroxylamine have potent anti-biofilm activity.


Assuntos
Mycobacterium tuberculosis , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Biofilmes , Ciclosserina/farmacologia , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacologia , Peptidoglicano/metabolismo
7.
Appl Environ Microbiol ; 88(8): e0247021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35384704

RESUMO

Ammonia-oxidizing archaea (AOA) and bacteria (AOB) perform key steps in the global nitrogen cycle, the oxidation of ammonia to nitrite. While the ammonia oxidation pathway is well characterized in AOB, many knowledge gaps remain about the metabolism of AOA. Hydroxylamine is an intermediate in both AOB and AOA, but homologues of hydroxylamine dehydrogenase (HAO), catalyzing bacterial hydroxylamine oxidation, are absent in AOA. Hydrazine is a substrate for bacterial HAO, while phenylhydrazine is a suicide inhibitor of HAO. Here, we examine the effect of hydrazines in AOA to gain insights into the archaeal ammonia oxidation pathway. We show that hydrazine is both a substrate and an inhibitor for AOA and that phenylhydrazine irreversibly inhibits archaeal hydroxylamine oxidation. Both hydrazine and phenylhydrazine interfered with ammonia and hydroxylamine oxidation in AOA. Furthermore, the AOA "Candidatus Nitrosocosmicus franklandus" C13 oxidized hydrazine into dinitrogen (N2), coupling this reaction to ATP production and O2 uptake. This study expands the known substrates of AOA and suggests that despite differences in enzymology, the ammonia oxidation pathways of AOB and AOA are functionally surprisingly similar. These results demonstrate that hydrazines are valuable tools for studying the archaeal ammonia oxidation pathway. IMPORTANCE Ammonia-oxidizing archaea (AOA) are among the most numerous living organisms on Earth, and they play a pivotal role in the global biogeochemical nitrogen cycle. Despite this, little is known about the physiology and metabolism of AOA. We demonstrate in this study that hydrazines are inhibitors of AOA. Furthermore, we demonstrate that the model soil AOA "Ca. Nitrosocosmicus franklandus" C13 oxidizes hydrazine to dinitrogen gas, and this reaction yields ATP. This provides an important advance in our understanding of the metabolism of AOA and expands the short list of energy-yielding compounds that AOA can use. This study also provides evidence that hydrazines can be useful tools for studying the metabolism of AOA, as they have been for the bacterial ammonia oxidizers.


Assuntos
Amônia , Archaea , Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Humanos , Hidrazinas/metabolismo , Hidrazinas/farmacologia , Hidroxilaminas/metabolismo , Nitrificação , Fenil-Hidrazinas/metabolismo , Microbiologia do Solo
9.
Int J Mol Sci ; 23(3)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163429

RESUMO

In this work, we report in-depth computational studies of three plausible tautomeric forms, generated through the migration of two acidic protons of the N4-hydroxylcytosine fragment, of molnupiravir, which is emerging as an efficient drug to treat COVID-19. The DFT calculations were performed to verify the structure of these tautomers, as well as their electronic and optical properties. Molecular docking was applied to examine the influence of the structures of the keto-oxime, keto-hydroxylamine and hydroxyl-oxime tautomers on a series of the SARS-CoV-2 proteins. These tautomers exhibited the best affinity behavior (-9.90, -7.90, and -9.30 kcal/mol, respectively) towards RdRp-RTR and Nonstructural protein 3 (nsp3_range 207-379-MES).


Assuntos
Citidina/análogos & derivados , Hidroxilaminas/química , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacocinética , Antivirais/química , COVID-19/metabolismo , Biologia Computacional/métodos , Citidina/química , Citidina/metabolismo , Citidina/farmacocinética , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Tratamento Farmacológico da COVID-19
10.
Chem Res Toxicol ; 35(2): 303-314, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35089032

RESUMO

Apurinic/apyrimidinic (AP) sites appear in DNA spontaneously and as intermediates of base excision DNA repair. AP sites are noninstructive lesions: they strongly block DNA polymerases, and if bypassed, the nature of the incorporated dNMP is mostly guided by the interactions within the polymerase-DNA active site. Many DNA polymerases follow the "A-rule", preferentially incorporating dAMP opposite to natural AP sites. Methoxyamine (MX), a small molecule, efficiently reacts with the aldehyde moiety of natural AP sites, thereby preventing their cleavage by APEX1, the major human AP endonuclease. MX is currently regarded as a possible sensitizer of cancer cells toward DNA-damaging drugs. To evaluate the mutagenic potential of MX, we have studied the utilization of various dNTPs by five DNA polymerases of different families encountering MX-AP adducts in the template in comparison with the natural aldehydic AP site. The Klenow fragment of Escherichia coli DNA polymerase I strictly followed the A-rule with both natural AP and MX-adducted AP sites. Phage RB69 DNA polymerase, a close relative of human DNA polymerases δ and ε, efficiently incorporated both dAMP and dGMP. DNA polymerase ß mostly incorporated dAMP and dCMP, preferring dCMP opposite to the natural AP site and dAMP opposite to the MX-AP site, while DNA polymerase λ was selective for dGMP, apparently via the primer misalignment mechanism. Finally, translesion DNA polymerase κ also followed the A-rule for MX-AP and additionally incorporated dCMP opposite to a natural AP site. Overall, the MX-AP site, despite structural differences, was similar to the natural AP site in terms of the dNMP misincorporation preference but was bypassed less efficiently by all polymerases except for Pol κ.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Hidroxilaminas/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos
11.
Arch Biochem Biophys ; 726: 109115, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34986418

RESUMO

This commentary describes a highly cited paper by Yasuhisa Kono that appeared in Archive. Biochem. Biophys. He established the basic mechanism that involves the autooxidation of hydroxylamine for the assay of superoxide dismutase activity and contributed to the development and progress that has been made in the enzyme assay systems.


Assuntos
Hidroxilaminas , Superóxido Dismutase , Superóxidos , Hidroxilaminas/metabolismo , Cinética , Oxirredução , Superóxido Dismutase/metabolismo
12.
Nat Struct Mol Biol ; 28(9): 740-746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34381216

RESUMO

Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, ß-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.


Assuntos
COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/metabolismo , Mutagênese/genética , RNA Viral/genética , SARS-CoV-2/genética , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Sequência de Bases , COVID-19/virologia , Citidina/química , Citidina/metabolismo , Citidina/farmacologia , Humanos , Hidroxilaminas/química , Hidroxilaminas/farmacologia , Modelos Moleculares , Estrutura Molecular , Mutagênese/efeitos dos fármacos , Mutação/efeitos dos fármacos , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Tratamento Farmacológico da COVID-19
13.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396638

RESUMO

The current study was designed to explore the in vitro nephrotoxic potential of four 3,5-dichloroaniline (3,5-DCA) metabolites (3,5-dichloroacetanilide, 3,5-DCAA; 3,5-dichlorophenylhydroxylamine, 3,5-DCPHA; 2-amino-4,6-dichlorophenol, 2-A-4,6-DCP; 3,5-dichloronitrobenzene, 3,5-DCNB) and to determine the renal metabolism of 3,5-DCA in vitro. In cytotoxicity testing, isolated kidney cells (IKC) from male Fischer 344 rats (~4 million/mL, 3 mL) were exposed to a metabolite (0-1.5 mM; up to 90 min) or vehicle. Of these metabolites, 3,5-DCPHA was the most potent nephrotoxicant, with 3,5-DCNB intermediate in nephrotoxic potential. 2-A-4,6-DCP and 3,5-DCAA were not cytotoxic. In separate experiments, 3,5-DCNB cytotoxicity was reduced by pretreating IKC with antioxidants and cytochrome P450, flavin monooxygenase and peroxidase inhibitors, while 3,5-DCPHA cytotoxicity was attenuated by two nucleophilic antioxidants (glutathione and N-acetyl-L-cysteine). Incubation of IKC with 3,5-DCA (0.5-1.0 mM, 90 min) produced only 3,5-DCAA and 3,5-DCNB as detectable metabolites. These data suggest that 3,5-DCNB and 3,5-DCPHA are potential nephrotoxic metabolites and may contribute to 3,5-DCA induced nephrotoxicity in vivo. In addition, the kidney can bioactivate 3,5-DCNB to toxic metabolites, and 3,5-DCPHA appears to generate reactive metabolites to contribute to 3,5-DCA nephrotoxicity. In vitro, N-oxidation of 3,5-DCA appears to be the primary mechanism of bioactivation of 3,5-DCA to nephrotoxic metabolites.


Assuntos
Compostos de Anilina/toxicidade , Hidroxilaminas/toxicidade , Rim/efeitos dos fármacos , Compostos de Anilina/metabolismo , Animais , Biotransformação , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Hidroxilaminas/metabolismo , Rim/citologia , Rim/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Ratos Endogâmicos F344
14.
Food Chem Toxicol ; 136: 110964, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31730879

RESUMO

Processed meats are classified by the International Agency for Research on Cancer (IARC) as carcinogenic to humans. However, information on the responsible agents and the influence of industrial processing on the increased risk of cancer is still lacking. This study aimed to use cultures of Lactobacillus delbrueckii subsp. bulgaricus LB-UFSC 01 to biodegrade harmful C-nitrous, N-nitro, and C-nitro compounds in processed meat matrix. Firstly, positive results for ethylnitrolic acid (ENA) (>5.00 µg kg-1) and 2-methyl-1,4-dinitro-pyrrole (DNMP) (>12.0 µg kg-1) were obtained in mortadellas produced under different experimental conditions employing preservatives and antioxidants. Mortadellas containing nitrite and sorbate in the ratio of 8:1 (w/w) yielded the highest concentrations of mutagens. However, the treatment with the LB-UFSC 01 culture was able to modulate the harmful compounds in the mortadella samples. Several analytical methods employing liquid chromatography coupled to mass spectrometry and statistical models were employed to identify the metabolites and reaction routes during microbial biotransformation. For the first time, relevant information regarding the formation and degradation of ENA and DNMP in a processed meat model simulating real conditions was presented.


Assuntos
Hidroxilaminas/metabolismo , Lactobacillus delbrueckii/metabolismo , Produtos da Carne/microbiologia , Mutagênicos/metabolismo , Nitrilas/metabolismo , Pirróis/metabolismo , Antioxidantes/química , Ácido Ascórbico/química , Microbiologia de Alimentos , Conservantes de Alimentos/química , Nitrito de Sódio/química , Ácido Sórbico/química
15.
J Biosci Bioeng ; 127(2): 160-168, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30316697

RESUMO

The gas chromatography/mass spectrometry (GC/MS)-based metabolomics requires a two-step derivatization procedure consisting of oximation and silylation. However, due to the incomplete derivatization and degeneration of the metabolites, good repeatability is difficult to obtain during the batch derivatization, as the time between completing the derivatization process and GC analysis differs from sample to sample. In this research, we successfully obtained good repeatability for the peak areas of 52 selected metabolites by sequential derivatization and interval injection, in which the oximation and silylation times were maintained at constant values. In addition, the derivatization times and amount of reagents employed were varied to confirm that the optimal derivatization conditions differed for the various metabolites. In conventional batch derivatization, six metabolites, viz. glutamine, glutamic acid, histidine, alanine, asparagine, and tryptophan, exhibited fluctuations in their peak areas. Indeed, we found that for all six metabolites these differences originated from the silylation process, while the variations for glutamine and glutamic acid were related to the oximation process.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidroxilaminas/metabolismo , Metabolômica/métodos , Compostos de Trimetilsilil/metabolismo , Catálise , Hidroxilaminas/química , Indicadores e Reagentes , Metaboloma , Compostos de Trimetilsilil/química
16.
Behav Neurol ; 2018: 6583267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30159100

RESUMO

OBJECTIVES: To investigate the role of Scriptaid in reducing brain injury after intracerebral hemorrhage (ICH) in mice. METHODS: An ICH model was constructed by injecting autologous blood into the right basal ganglia in mice. The animals were administered 3.5 mg/kg of Scriptaid intraperitoneally after ICH. The hematoma volume and hemoglobin level were measured to examine hematoma resolution. A behavior test and brain edema and white matter injury examinations indicated brain injury after ICH. RESULTS: Scriptaid treatment promoted hematoma resolution and reduced the hematoma volume 7 d after ICH compared with the vehicle group (P < 0.05). Scriptaid treatment also alleviated the brain water content in the ipsilateral basal ganglia (P < 0.05) and cortex (P < 0.01) 3 d after ICH. In addition, Scriptaid improved neurological function recovery and alleviated white matter injury 35 d after ICH. CONCLUSIONS: Scriptaid can protect against brain injury after ICH and may be considered a new medical therapy method for ICH.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Hidroxilaminas/farmacologia , Quinolinas/farmacologia , Animais , Gânglios da Base/fisiopatologia , Encéfalo/fisiopatologia , Edema Encefálico , Lesões Encefálicas/tratamento farmacológico , Modelos Animais de Doenças , Hematoma/tratamento farmacológico , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Hidroxilaminas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinolinas/metabolismo
17.
Eur Rev Med Pharmacol Sci ; 22(4): 950-960, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29509243

RESUMO

OBJECTIVE: Endometrial cancer is increasingly prevalent in western societies and affects mainly postmenopausal women; notably incidence rates have been rising by 1.9% per year on average since 2005. Although the early-stage endometrial cancer can be effectively managed with surgery, more advanced stages of the disease require multimodality treatment with varying results. In recent years, endometrial cancer has been extensively studied at the molecular level in an attempt to develop effective therapies. Recently, a family of compounds that alter epigenetic expression, namely histone deacetylase inhibitors, have shown promise as possible therapeutic agents in endometrial cancer. The present review aims to discuss the therapeutic potential of these agents. MATERIALS AND METHODS: This literature review was performed using the MEDLINE database; the search terms histone, deacetylase, inhibitors, endometrial, targeted therapies for endometrial cancer were employed to identify relevant studies. We only reviewed English language publications and also considered studies that were not entirely focused on endometrial cancer. Ultimately, sixty-four articles published until January 2018 were incorporated into our review. RESULTS: Studies in cell cultures have demonstrated that histone deacetylase inhibitors exert their antineoplastic activity by promoting expression of p21WAF1 and p27KIP1, cyclin-dependent kinase inhibitors, that have important roles in cell cycle regulation; importantly, the transcription of specific genes (e.g., E-cadherin, PTEN) that are commonly silenced in endometrial cancer is also enhanced. In addition to these abstracts effects, novel compounds with histone deacetylase inhibitor activity (e.g., scriptaid, trichostatin, entinostat) have also demonstrated significant antineoplastic activity both in vitro and in vivo, by liming tumor growth, inducing apoptosis, inhibiting angiogenesis and potentiating the effects of chemotherapy. CONCLUSIONS: The applications of histone deacetylase inhibitors in endometrial cancer appear promising; nonetheless, additional trials are necessary to establish the therapeutic role, clinical utility, and safety of these promising compounds.


Assuntos
Antineoplásicos/metabolismo , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Hidroxilaminas/metabolismo , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Quinolinas/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico
18.
Biodegradation ; 29(3): 245-258, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29546497

RESUMO

Sulfamethoxazole (SMX) has frequently been detected in aquatic environments. In natural environment, not only individual microorganism but also microbial consortia are involved in some biotransformation of pollutants. The competition for space under consortia causing cell-cell contact inhibition changes the cellular behaviors. Herein, the membrane bioreactor system (MBRS) was applied to improve SMX elimination thorough exchanging the cell-free broths (CFB). The removal efficiency of SMX was increased by more than 24% whether under the pure culture of A. faecalis or under the co-culture of A. faecalis and P. denitrificans with MBRS. Meanwhile, MBRS significantly inhibited the formation of HA-SMX, and Ac-SMX from parent compound. Additionally, the cellular growth under MBRS was obviously enhanced, indicating that the increases in the cellular growth under MBRS are possibly related to the decreases in the levels of HA-SMX and Ac-SMX compared to that without MBRS. The intracellular NADH/NAD+ ratios of A. faecalis under MBRS were increased whether thorough itself-recycle of CFB or exchanging CFB between the pure cultures of A. faecalis and P. denitrificans, suggesting that the enhancement in the bioremoval efficiencies of SMX under MBRS by A. faecalis is likely related to the increases in the NADH/NAD+ ratio. Taken together, the regulation of cell-to-cell communication is preferable strategy to improve the bioremoval efficiency of SMX.


Assuntos
Reatores Biológicos/microbiologia , Hidroxilaminas/metabolismo , Membranas Artificiais , Sulfametoxazol/análogos & derivados , Acetilação , Alcaligenes/crescimento & desenvolvimento , Alcaligenes/metabolismo , Biodegradação Ambiental , Biotransformação , NAD/metabolismo , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/metabolismo , Sulfametoxazol/metabolismo
19.
Sci Rep ; 6: 28880, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27353382

RESUMO

For the application of biofilm processes, a better understanding of nitrous oxide (N2O) formation within the biofilm is essential for design and operation of biofilm reactors with minimized N2O emissions. In this work, a previously established N2O model incorporating both ammonia oxidizing bacteria (AOB) denitrification and hydroxylamine (NH2OH) oxidation pathways is applied in two structurally different biofilm systems to assess the effects of co- and counter-diffusion on N2O production. It is demonstrated that the diffusion of NH2OH and oxygen within both types of biofilms would form an anoxic layer with the presence of NH2OH and nitrite ( ), which would result in a high N2O production via AOB denitrification pathway. As a result, AOB denitrification pathway is dominant over NH2OH oxidation pathway within the co- and counter-diffusion biofilms. In comparison, the co-diffusion biofilm may generate substantially higher N2O than the counter-diffusion biofilm due to the higher accumulation of NH2OH in co-diffusion biofilm, especially under the condition of high-strength ammonium influent (500 mg N/L), thick biofilm depth (300 µm) and moderate oxygen loading (~1-~4 m(3)/d). The effect of co- and counter-diffusion on N2O production from the AOB biofilm is minimal when treating low-strength nitrogenous wastewater.


Assuntos
Biofilmes , Reatores Biológicos , Óxido Nitroso/metabolismo , Difusão , Hidroxilaminas/metabolismo , Nitrificação , Óxido Nitroso/análise , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo
20.
Free Radic Biol Med ; 89: 1014-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453925

RESUMO

Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes.


Assuntos
Óxidos N-Cíclicos/metabolismo , Hidroxilaminas/metabolismo , Pisum sativum/metabolismo , Superóxidos/metabolismo , Tilacoides/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Superóxidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...