Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Cancer Genomics Proteomics ; 21(4): 380-387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944425

RESUMO

BACKGROUND/AIM: Patients with hypoxic bladder cancer benefit from hypoxia modification added to radiotherapy, but no biomarkers exist to identify patients with hypoxic tumours. We, herein, aimed to implement oxygen-enhanced MRI (OE-MRI) in xenografts derived from muscle-invasive bladder cancer (MIBC) for future hypoxia biomarker discovery work; and generate gene expression data for future biomarker discovery. MATERIALS AND METHODS: The flanks of female CD-1 nude mice inoculated with HT1376 MIBC cells. Mice with small (300 mm3) or large (700 mm3) tumours were imaged, breathing air then 100% O2, 1 h post injection with pimonidazole in an Agilant 7T 16cm bore magnet interfaced to a Bruker Avance III console with a T2-TurboRARE sequence using a dynamic MPRAGE acquisition. Dynamic Spoiled Gradient Recalled Echo images were acquired for 5 min, with 0.1mmol/kg Gd-DOTA (Dotarem, Guerbet, UK) injected after 60 s (1 ml/min). Voxel size and field of view of dynamic contrast enhanced (DCE)-MRI and OE-MRI scans were matched. The voxels considered as perfused with significant post-contrast enhancement (p<0.05) in DCE-MRI scans and tissue were further split into pOxyE (normoxic) and pOxyR (hypoxic) regions. Tumours harvested in liquid N2, sectioned, RNA was extracted and transcriptomes analysed using Clariom S microarrays. RESULTS: Imaged hypoxic regions were greater in the larger versus smaller tumour. Expression of known hypoxia-inducible genes and a 24 gene bladder cancer hypoxia score were higher in pimonidazole-high versus -low regions: CA9 (p=0.012) and SLC2A1 (p=0.012) demonstrating expected transcriptomic behaviour. CONCLUSION: OE-MRI was successfully implemented in MIBC-derived xenografts. Transcriptomic data derived from hypoxic and non-hypoxic xenograft regions will be useful for future studies.


Assuntos
Imageamento por Ressonância Magnética , Oxigênio , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Neoplasias da Bexiga Urinária/patologia , Animais , Humanos , Camundongos , Imageamento por Ressonância Magnética/métodos , Feminino , Oxigênio/metabolismo , Projetos Piloto , Camundongos Nus , Genômica/métodos , Hipóxia/diagnóstico por imagem , Hipóxia/genética , Hipóxia Tumoral/genética , Linhagem Celular Tumoral , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
BMC Cancer ; 24(1): 744, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890593

RESUMO

BACKGROUND: Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS: A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS: Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS: Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.


Assuntos
Metilação de DNA , Epigênese Genética , Nitroimidazóis , Prostatectomia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/metabolismo , Idoso , Pessoa de Meia-Idade , Hipóxia Tumoral/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Administração Oral
3.
Hum Cell ; 37(4): 1141-1155, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700744

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor in East Asia. Hypoxia, a hallmark of solid tumors, significantly alters redox homeostasis inside tumor microenvironment. This alteration drives tumor proliferation, invasion, and metastasis, leading to poor prognostic outcomes. However, the role of hypoxia-related genes in ESCC remains poorly understood. We employed RNA sequencing to identify differentially expressed genes in ESCC. Clinical data, transcriptome profiles, and a hypoxia-related gene set were extracted from open-source databases. A prognostic model was constructed using least absolute shrinkage and selection operator (LASSO) regression, which was then validated through Cox regression analysis. Within this prognostic model, we pinpointed and investigated a key hypoxia-related gene affecting prognosis. The gene's expression was validated using real-time PCR and immunohistochemistry in both esophageal carcinoma and normal tissues. Tumor proliferation was examined through in vitro and in vivo assays, including the Cell Counting Kit-8, EdU, colony formation, and subcutaneous tumor models. A robust four-gene prognostic model (VBP1, BGN, CDKN1A, and PPFIA1) was successfully constructed and validated. Among these, VBP1 emerged as a key gene, exhibiting high expression levels that correlated with poor prognosis in ESCC. Functional experiments confirmed that VBP1 significantly accelerated tumor proliferation both in vitro and in vivo. VBP1 is identified as a pivotal gene within the hypoxia-related prognostic signature, and it significantly promotes tumor proliferation in ESCC.


Assuntos
Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Hipóxia/genética , Prognóstico , Transcriptoma/genética , Hipóxia Tumoral/genética
4.
Cancer Sci ; 115(6): 1749-1762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508217

RESUMO

N6-Methyladenosine (m6A) is a important process regulating gene expression post-transcriptionally. Programmed death ligand 1 (PD-L1) is a major immune inhibitive checkpoint that facilitates immune evasion and is expressed in tumor cells. In this research we discovered that Wilms' tumor 1-associated protein (WTAP) degradation caused by ubiquitin-mediated cleavage in cancer cells (colorectal cancer, CRC) under hypoxia was inhibited by Pumilio homolog 1 (PUM1) directly bound to WTAP. WTAP enhanced PD-L1 expression in a way that was m6A-dependent. m6A "reader," Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) identified methylated PD-L1 transcripts and subsequently fixed its mRNA. Additionally, we found that T-cell proliferation and its cancer cell-killing effects were prevented by overexpression of WTAP in vitro and in vivo. Overexpression prevented T cells from proliferating and killing CRC by maintaining the expression of PD-L1. Further evidence supporting the WTAP-PD-L1 regulatory axis was found in human CRC and organoid tissues. Tumors with high WTAP levels appeared more responsive to anti-PD1 immunotherapy, when analyzing samples from patients undergoing treatment. Overall, our findings demonstrated a novel PD-L1 regulatory mechanism by WTAP-induced mRNA epigenetic regulation and the possible application of targeting WTAP as immunotherapy for tumor hypoxia.


Assuntos
Adenosina , Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Feminino , Hipóxia Tumoral/genética , Proteínas de Ciclo Celular
5.
Curr Mol Med ; 24(5): 525-536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38310548

RESUMO

Hypoxia is a pathophysiological condition characterized by oxygen deficiency in tissues, which negatively affects normal biological functions. It is a typical microenvironment character of almost all solid tumours. Noncoding RNA are small functional RNA molecules that regulate gene expression at chromatin and posttranscriptional levels. Micro-RNAs (miRNAs) are a type of noncoding RNA and are ~12-22 nucleotides long that are crucial in regulating gene expression by partnering with the mRNAs of protein-coding genes. It is widely reported that miRs play an important role in various key processes and pathways during tumour formation, as well as advancement in hypoxic tumors by influencing the HIF pathway. The role of miRNAs in hypoxic tumours, namely in pancreatic, kidney, breast, lung and colorectal, are described. These miRNAs have immense potential as diagnostic and prognostic biomarkers for early cancer detection.


Assuntos
Biomarcadores Tumorais , Detecção Precoce de Câncer , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/metabolismo , Detecção Precoce de Câncer/métodos , Regulação Neoplásica da Expressão Gênica , Animais , Hipóxia Tumoral/genética
6.
Clin Cancer Res ; 29(16): 2954-2956, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37310809

RESUMO

Hypoxia in head and neck tumors has proven to be predictive of outcomes. Current hypoxia signatures have failed for patient treatment selection. In a recent study, the authors identified a hypoxia methylation signature as a more robust biomarker in head and neck squamous cell carcinoma and shed light into the mechanism of hypoxia-mediated treatment resistance. See related article by Tawk et al., p. 3051.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Hipóxia Tumoral/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Epigenoma , Recidiva Local de Neoplasia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Prognóstico , Hipóxia/genética , Quimiorradioterapia , DNA
7.
Clin Cancer Res ; 29(16): 3051-3064, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058257

RESUMO

PURPOSE: Tumor hypoxia is a paradigmatic negative prognosticator of treatment resistance in head and neck squamous cell carcinoma (HNSCC). The lack of robust and reliable hypoxia classifiers limits the adaptation of stratified therapies. We hypothesized that the tumor DNA methylation landscape might indicate epigenetic reprogramming induced by chronic intratumoral hypoxia. EXPERIMENTAL DESIGN: A DNA-methylome-based tumor hypoxia classifier (Hypoxia-M) was trained in the TCGA (The Cancer Genome Atlas)-HNSCC cohort based on matched assignments using gene expression-based signatures of hypoxia (Hypoxia-GES). Hypoxia-M was validated in a multicenter DKTK-ROG trial consisting of human papillomavirus (HPV)-negative patients with HNSCC treated with primary radiochemotherapy (RCHT). RESULTS: Although hypoxia-GES failed to stratify patients in the DKTK-ROG, Hypoxia-M was independently prognostic for local recurrence (HR, 4.3; P = 0.001) and overall survival (HR, 2.34; P = 0.03) but not distant metastasis after RCHT in both cohorts. Hypoxia-M status was inversely associated with CD8 T-cell infiltration in both cohorts. Hypoxia-M was further prognostic in the TCGA-PanCancer cohort (HR, 1.83; P = 0.04), underscoring the breadth of this classifier for predicting tumor hypoxia status. CONCLUSIONS: Our findings highlight an unexplored avenue for DNA methylation-based classifiers as biomarkers of tumoral hypoxia for identifying high-risk features in patients with HNSCC tumors. See related commentary by Heft Neal and Brenner, p. 2954.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/mortalidade , Hipóxia Tumoral/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia , Epigenoma , Recidiva Local de Neoplasia/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Prognóstico , Quimiorradioterapia , Hipóxia/genética , DNA
8.
Cell Death Dis ; 13(8): 666, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915091

RESUMO

Given the rapid developments in RNA-seq technologies and bioinformatic analyses, circular RNAs (circRNAs) have gradually become recognized as a novel class of endogenous RNAs, characterized by covalent loop structures lacking free terminals, which perform multiple biological functions in cancer genesis, progression and metastasis. Hypoxia, a common feature of the tumor microenvironments, profoundly affects several fundamental adaptive responses of tumor cells by regulating the coding and non-coding transcriptomes and renders cancer's phenotypes more aggressive. Recently, hypoxia-responsive circRNAs have been recognized as a novel player in hypoxia-induced non-coding RNA transcriptomics to modulate the hypoxic responses and promote the progression and metastasis of hypoxic tumors. Moreover, via extracellular vesicles-exosomes, these hypoxia-responsive circRNAs could transmit hypoxia responses from cancer cells to the cells of surrounding matrices, even more distant cells of other organs. Here, we have summarized what is known about hypoxia-responsive circRNAs, with a focus on their interaction with hypoxia-inducible factors (HIFs), regulation of hypoxic responses and relevance with malignant carcinoma's clinical features, which will offer novel insights on the non-coding RNAs' regulation of cancer cells under hypoxic stress and might aid the identification of new theranostic targets and define new therapeutic strategies for those cancer patients with resistance to radiochemotherapy, because of the ubiquity of tumoral hypoxia.


Assuntos
Exossomos , Neoplasias , Humanos , Hipóxia/genética , Neoplasias/genética , RNA/genética , RNA Circular/genética , Hipóxia Tumoral/genética , Microambiente Tumoral/genética
9.
Cell Death Dis ; 13(2): 95, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110544

RESUMO

Breast cancer is the most common malignancy among women across the globe. Recent studies have revealed that many long non-coding RNAs (lncRNAs) regulate the Wnt/ß-catenin signaling pathway in several types of cancer. Hyperactivation of the Wnt/ß-catenin pathway has been extensively presented in breast cancer and is involved in breast cancer progression. However, the underlying molecular mechanism remains elusive. In the current study, we found lncRNA RBM5-AS1 was remarkably upregulated in breast cancer cells and tissues. Overexpression of RBM5-AS1 facilitated proliferation, migration, invasion, EMT, and stemness maintenance of breast cancer cells in vitro and in vivo. Mechanism studies suggested that RBM5-AS1 could be transcriptionally activated by hypoxia-induced RUNX2. Upregulated RBM5-AS1 further activated the Wnt/ß-catenin signaling by preventing ß-catenin degradation and by helping organize ß-catenin-TCF4 transcriptional complex. These findings suggested that RBM5-AS1, a regulator of Wnt/ß-catenin signaling, plays a vital role in breast cancer initiation and progression, implicating its potential as a new target for breast cancer treatment.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , RNA Antissenso/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Hipóxia Tumoral/genética , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Fator de Transcrição 4/metabolismo
10.
Nat Commun ; 13(1): 954, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177645

RESUMO

Hepatocellular carcinoma (HCC) invariably exhibits inadequate O2 (hypoxia) and nutrient supply. Hypoxia-inducible factor (HIF) mediates cascades of molecular events that enable cancer cells to adapt and propagate. Macropinocytosis is an endocytic process initiated by membrane ruffling, causing the engulfment of extracellular fluids (proteins), protein digestion and subsequent incorporation into the biomass. We show that macropinocytosis occurs universally in HCC under hypoxia. HIF-1 activates the transcription of a membrane ruffling protein, EH domain-containing protein 2 (EHD2), to initiate macropinocytosis. Knockout of HIF-1 or EHD2 represses hypoxia-induced macropinocytosis and prevents hypoxic HCC cells from scavenging protein that support cell growth. Germline or somatic deletion of Ehd2 suppresses macropinocytosis and HCC development in mice. Intriguingly, EHD2 is overexpressed in HCC. Consistently, HIF-1 or macropinocytosis inhibitor suppresses macropinocytosis and HCC development. Thus, we show that hypoxia induces macropinocytosis through the HIF/EHD2 pathway in HCC cells, harnessing extracellular protein as a nutrient to survive.


Assuntos
Carcinoma Hepatocelular/imunologia , Proteínas de Transporte/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/imunologia , Pinocitose/imunologia , Hipóxia Tumoral/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Pinocitose/efeitos dos fármacos , Pinocitose/genética , Estudo de Prova de Conceito , Hipóxia Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Cells ; 11(2)2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053392

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly invasive brain tumour, characterized by its ability to secrete factors promoting its virulence. Brain endothelial cells (BECs) in the GBM environment are physiologically modulated. The present study investigated the modulatory effects of normoxically and hypoxically induced glioblastoma U-87 cell secretions on BECs. METHODS: Conditioned media (CM) were derived by cultivating U-87 cells under hypoxic incubation (5% O2) and normoxic incubation (21% O2). Treated bEnd.3 cells were evaluated for mitochondrial dehydrogenase activity, mitochondrial membrane potential (ΔΨm), ATP production, transendothelial electrical resistance (TEER), and endothelial tight-junction (ETJ) gene expression over 96 h. RESULTS: The coculture of bEnd.3 cells with U-87 cells, or exposure to either hypoxic or normoxic U-87CM, was associated with low cellular viability. The ΔΨm in bEnd.3 cells was hyperpolarized after hypoxic U-87CM treatment (p < 0.0001). However, normoxic U-87CM did not affect the state of ΔΨm. BEC ATP levels were reduced after being cocultured with U-87 cells, or with hypoxic and normoxic CM (p < 0.05). Suppressed mitochondrial activity in bEnd.3 cells was associated with increased transendothelial permeability, while bEnd.3 cells significantly increased the gene expression levels of ETJs (p < 0.05) when treated with U-87CM. CONCLUSIONS: Hypoxic and normoxic glioblastoma paracrine factors differentially suppressed mitochondrial activity in BECs, increasing the BECs' barrier permeability.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Células Endoteliais/patologia , Glioblastoma/patologia , Comunicação Parácrina , Hipóxia Tumoral , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias Encefálicas/genética , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Claudina-5/genética , Claudina-5/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ocludina/genética , Ocludina/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/genética , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética
12.
Cells ; 11(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35053409

RESUMO

Multiple myeloma (MM) is the second most common hematologic malignancy, which is characterized by clonal proliferation of neoplastic plasma cells in the bone marrow. This microenvironment is characterized by low oxygen levels (1-6% O2), known as hypoxia. For MM cells, hypoxia is a physiologic feature that has been described to promote an aggressive phenotype and to confer drug resistance. However, studies on hypoxia are scarce and show little conformity. Here, we analyzed the mRNA expression of previously determined hypoxia markers to define the temporal adaptation of MM cells to chronic hypoxia. Subsequent analyses of the global proteome in MM cells and the stromal cell line HS-5 revealed hypoxia-dependent regulation of proteins, which directly or indirectly upregulate glycolysis. In addition, chronic hypoxia led to MM-specific regulation of nine distinct proteins. One of these proteins is the cysteine protease legumain (LGMN), the depletion of which led to a significant growth disadvantage of MM cell lines that is enhanced under hypoxia. Thus, herein, we report a methodologic strategy to examine MM cells under physiologic hypoxic conditions in vitro and to decipher and study previously masked hypoxia-specific therapeutic targets such as the cysteine protease LGMN.


Assuntos
Cisteína Endopeptidases/genética , Terapia de Alvo Molecular , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/genética , Hipóxia Tumoral/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Hexoquinase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
13.
Cancer Sci ; 113(3): 926-939, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34990040

RESUMO

C-X-C motif chemokine receptor 4 (CXCR4) belongs to the CXC chemokine receptor family, which mediates the metastasis of tumor cells and promotes the malignant development of cancers. However, its biological role and regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we found that CXCR4 expression was associated with lymph node metastasis and a poor prognosis. In vitro and in vivo studies demonstrated that CXCR4 overexpression promoted ESCC cell proliferation, migration, invasion, and survival, whereas silencing CXCR4 induced the opposite effects. Mechanically, HIF-1α transcriptionally regulates CXCR4 expression by binding to a hypoxia response element in its promoter. HIF-1α-induced ESCC cell migration and invasion were reversed by CXCR4 knockdown or treatment with MSX-122, a CXCR4 antagonist. Collectively, these data revealed that the HIF-1α/CXCR4 axis plays key roles in ESCC growth and metastasis and indicated CXCR4 as a potential target for ESCC treatment.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Receptores CXCR4/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metástase Linfática , Masculino , Camundongos , Prognóstico , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Transdução de Sinais , Hipóxia Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cancer Res ; 20(1): 150-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593607

RESUMO

Metastases account for the majority of mortalities related to breast cancer. The onset and sustained presence of hypoxia strongly correlates with increased incidence of metastasis and unfavorable prognosis in patients with breast cancer. The Hedgehog (Hh) signaling pathway is dysregulated in breast cancer, and its abnormal activity enables tumor progression and metastasis. In addition to programming tumor cell behavior, Hh activity enables tumor cells to craft a metastasis-conducive microenvironment. Hypoxia is a prominent feature of growing tumors that impacts multiple signaling circuits that converge upon malignant progression. We investigated the role of Hh activity in crafting a hypoxic environment of breast cancer. We used radioactive tracer [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) to image tumor hypoxia. We show that tumors competent for Hh activity are able to establish a hypoxic milieu; pharmacologic inhibition of Hh signaling in a syngeneic mammary tumor model mitigates tumor hypoxia. Furthermore, in hypoxia, Hh activity is robustly activated in tumor cells and institutes increased HIF signaling in a VHL-dependent manner. The findings establish a novel perspective on Hh activity in crafting a hypoxic tumor landscape and molecularly navigating the tumor cells to adapt to hypoxic conditions. IMPLICATIONS: Importantly, we present a translational strategy of utilizing longitudinal hypoxia imaging to measure the efficacy of vismodegib in a preclinical model of triple-negative breast cancer.


Assuntos
Proteínas Hedgehog/genética , Tomografia por Emissão de Pósitrons/métodos , Hipóxia Tumoral/genética , Animais , Estudos de Avaliação como Assunto , Feminino , Humanos , Estudos Longitudinais , Camundongos , Transfecção
15.
Tumori ; 108(1): 63-76, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34165025

RESUMO

BACKGROUND: Hypoxia is a hallmark of solid cancers, including hepatocellular carcinoma (HCC). There is scarce information about how hypoxia avoids immunologic stress and maintains a cancer-promoting microenvironment. METHODS: The Cancer Genome Atlas, RNA-seq data, and Oncomine database were used to discover the correlation of RNASEH2A with tumor progression; then expression of RNASEH2A mRNA and protein were detected in HCC tissues and cells subjected to hypoxia or with the treatment of CoCl2 via real-time quantitative polymerase chain reaction and immunochemistry assays. Finally, the effect of RNASEH2A on cell proliferation and the involved signaling pathway was explored further. RESULTS: RNASEH2A was positively correlated with tumor grade, size, vascular invasion, and poor prognosis. The expression of RNASEH2A mRNA and protein were increased and dependent on hypoxia-inducible factor 2α in HCC tissues and cell lines. Knockout of RNASEH2A in HCC cells greatly reduced cell proliferation and induced the transcription of multiple cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) targeted type 1 interferon-related genes, including IFIT1, USP18, and CXCL10, which suggests knockout of RNASEH2A may produce immunologic stress and tumor suppressive effects. CONCLUSIONS: RNASEH2A plays a critical role and potentially predicts patient outcomes in HCC, which uncovers a new mechanism that RNASEH2A contributes to limit immunologic stress of cancer cells in the context of hypoxia.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Ribonuclease H/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Quimiocina CXCL10/genética , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Inativação de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Masculino , Prognóstico , Proteínas de Ligação a RNA/genética , Transdução de Sinais/genética , Hipóxia Tumoral/genética , Microambiente Tumoral/imunologia , Ubiquitina Tiolesterase/genética
16.
Cancer Sci ; 113(2): 540-552, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34897892

RESUMO

An insufficient oxygen supply within the intratumoral environment, also known as hypoxia, induces glioblastoma multiforme (GBM) invasion, stemness, and temozolomide (TMZ) drug resistance. Long noncoding (lnc)RNAs have been reported to be involved in hypoxia and GBM progression. However, their roles in hypoxic GBM malignancy are still unclear. We investigated the mechanisms of hypoxia-mediated lncRNAs in regulating GBM processes. Using The Cancer Genome Atlas (TCGA) and data mining, hypoxia-correlated lncRNAs were identified. A hypoxia-upregulated lncRNA, MIR210HG, locating in nuclear regions, predicted poor prognoses of patients and modulated hypoxia-promoted glioma stemness, TMZ resistance, and invasion. Depletion of hypoxic MIR210HG suppressed GBM and patient-derived cell growth and increased TMZ sensitivity in vitro and vivo. Using RNA sequencing and gene set enrichment analysis (GSEA), MIR210HG-upregulated genes significantly belonged to the targets of octamer transcription factor 1 (OCT1) transcription factor. The direct interaction between OCT1 and MIR210HG was also validated. Two well-established worse prognostic factors of GBM, insulin-like growth factor-binding protein 2 (IGFBP2) and fibroblast growth factor receptor 1 (FGFR1), were identified as downstream targets of OCT1 through MIR210HG mediation in hypoxia. Consequently, the lncRNA MIR210HG is upregulated by hypoxia and interacts with OCT1 for modulating hypoxic GBM, leading to poor prognoses. These findings might provide a better understanding in functions of hypoxia/MIR210HG signaling for regulating GBM malignancy.


Assuntos
Glioblastoma/genética , Fator 1 de Transcrição de Octâmero/genética , RNA Longo não Codificante/genética , Hipóxia Tumoral/genética , Animais , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Prognóstico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Temozolomida/farmacologia
17.
Cancer Sci ; 113(3): 916-925, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931404

RESUMO

Metastatic progression of tumors is driven by genetic alterations and tumor-stroma interaction. To elucidate the mechanism underlying the oncogene-induced gastric tumor progression, we have developed an organoid-based model of gastric cancer from GAstric Neoplasia (GAN) mice, which express Wnt1 and the enzymes COX2 and microsomal prostaglandin E synthase 1 in the stomach. Both p53 knockout (GAN-p53KO) organoids and KRASG12V -expressing GAN-p53KO (GAN-KP) organoids were generated by genetic manipulation of GAN mouse-derived tumor (GAN wild-type [WT]) organoids. In contrast with GAN-WT and GAN-p53KO organoids, which manifested Wnt addiction, GAN-KP organoids showed a Wnt-independent phenotype and the ability to proliferate without formation of a Wnt-regulated three-dimensional epithelial architecture. After transplantation in syngeneic mouse stomach, GAN-p53KO cells formed only small tumors, whereas GAN-KP cells gave rise to invasive tumors associated with the development of hypoxia as well as to liver metastasis. Spatial transcriptomics analysis suggested that hypoxia signaling contributes to the metastatic progression of GAN-KP tumors. In particular, such analysis identified a cluster of stromal cells located at the tumor invasive front that expressed genes related to hypoxia signaling, angiogenesis, and cell migration. These cells were also positive for phosphorylated extracellular signal-regulated kinase (ERK), suggesting that mitogen-activated protein kinase (MAPK) signaling promotes development of both tumor and microenvironment. The MEK (MAPK kinase) inhibitor trametinib suppressed the development of GAN-KP gastric tumors, formation of a hypoxic microenvironment, tumor angiogenesis, and liver metastasis. Our findings therefore establish a rationale for application of trametinib to suppress metastatic progression of KRAS-mutated gastric cancer.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Metástase Neoplásica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
18.
J Cell Mol Med ; 25(24): 11039-11052, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34791807

RESUMO

Acute myeloid leukaemia (AML) is an aggressive form of blood cancer that carries a dismal prognosis. Several studies suggest that the poor outcome is due to a small fraction of leukaemic cells that elude treatment and survive in specialised, oxygen (O2 )-deprived niches of the bone marrow. Although several AML drug targets such as FLT3, IDH1/2 and CD33 have been established in recent years, survival rates remain unsatisfactory, which indicates that other, yet unrecognized, mechanisms influence the ability of AML cells to escape cell death and to proliferate in hypoxic environments. Our data illustrates that Carbonic Anhydrases IX and XII (CA IX/XII) are critical for leukaemic cell survival in the O2 -deprived milieu. CA IX and XII function as transmembrane proteins that mediate intracellular pH under low O2 conditions. Because maintaining a neutral pH represents a key survival mechanism for tumour cells in O2 -deprived settings, we sought to elucidate the role of dual CA IX/XII inhibition as a novel strategy to eliminate AML cells under hypoxic conditions. Our findings demonstrate that the dual CA IX/XII inhibitor FC531 may prove to be of value as an adjunct to chemotherapy for the treatment of AML.


Assuntos
Antineoplásicos/farmacologia , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Hipóxia Tumoral/efeitos dos fármacos , Adulto , Idoso , Animais , Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Anidrases Carbônicas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Duplicação Gênica , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Hipóxia Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem , Tirosina Quinase 3 Semelhante a fms/genética
19.
Cell Rep Med ; 2(11): 100444, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841291

RESUMO

Although transarterial chemoembolization (TACE) is the most widely used treatment for intermediate-stage, unresectable hepatocellular carcinoma (HCC), it is only effective in a subset of patients. In this study, we combine clinical, radiological, and genomics data in supervised machine-learning models toward the development of a clinically applicable predictive classifier of response to TACE in HCC patients. Our study consists of a discovery cohort of 33 tumors through which we identify predictive biomarkers, which are confirmed in a validation cohort. We find that radiological assessment of tumor area and several transcriptomic signatures, primarily the expression of FAM111B and HPRT1, are most predictive of response to TACE. Logistic regression decision support models consisting of tumor area and RNA-seq gene expression estimates for FAM111B and HPRT1 yield a predictive accuracy of ∼90%. Reverse transcription droplet digital PCR (RT-ddPCR) confirms these genes in combination with tumor area as a predictive classifier for response to TACE.


Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/genética , Quimioembolização Terapêutica , Artéria Hepática/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/genética , Aprendizado de Máquina Supervisionado , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Feminino , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Hipóxia Tumoral/genética
20.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830491

RESUMO

Glioblastoma is the most aggressive form of brain tumor in adults and is characterized by the presence of hypervascularization and necrosis, both caused by a hypoxic microenvironment. In this review, we highlight that hypoxia-induced factor 1 (HIF-1), the main factor activated by hypoxia, is an important driver of tumor progression in GB patients. HIF-1α is a transcription factor regulated by the presence or absence of O2. The expression of HIF-1 has been related to high-grade gliomas and aggressive tumor behavior. HIF-1 promotes tumor progression via the activation of angiogenesis, immunosuppression, and metabolic reprogramming, promoting cell invasion and survival. Moreover, in GB, HIF-1 is not solely modulated by oxygen but also by oncogenic signaling pathways, such as MAPK/ERK, p53, and PI3K/PTEN. Therefore, the inhibition of the hypoxia pathway could represent an important treatment alternative in a disease with very few therapy options. Here, we review the roles of HIF-1 in GB progression and the inhibitors that have been studied thus far, with the aim of shedding light on this devastating disease.


Assuntos
Glioblastoma/genética , Neovascularização Patológica/genética , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neovascularização Patológica/patologia , Transdução de Sinais/genética , Hipóxia Tumoral/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...