Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Magn Reson Med ; 92(1): 57-68, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308151

RESUMO

PURPOSE: To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS: DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS: A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS: DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.


Assuntos
Encéfalo , Glucose , Hiperóxia , Imageamento por Ressonância Magnética , Oxigênio , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Glucose/metabolismo , Oxigênio/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Hiperóxia/diagnóstico por imagem , Administração por Inalação , Masculino , Camundongos Endogâmicos C57BL
2.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L410-L422, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943727

RESUMO

99mTc-hexamethylpropyleneamine oxime (HMPAO) and 99mTc-duramycin in vivo imaging detects pulmonary oxidative stress and cell death, respectively, in rats exposed to >95% O2 (hyperoxia) as a model of acute respiratory distress syndrome (ARDS). Preexposure to hyperoxia for 48 h followed by 24 h in room air (H-T) is protective against hyperoxia-induced lung injury. This study's objective was to determine the ability of 99mTc-HMPAO and 99mTc-duramycin to track this protection and to elucidate underlying mechanisms. Rats were exposed to normoxia, hyperoxia for 60 h, H-T, or H-T followed by 60 h of hyperoxia (H-T + 60). Imaging was performed 20 min after intravenous injection of either 99mTc-HMPAO or 99mTc-duramycin. 99mTc-HMPAO and 99mTc-duramycin lung uptake was 200% and 167% greater (P < 0.01) in hyperoxia compared with normoxia rats, respectively. On the other hand, uptake of 99mTc-HMPAO in H-T + 60 was 24% greater (P < 0.01) than in H-T rats, but 99mTc-duramycin uptake was not significantly different (P = 0.09). Lung wet-to-dry weight ratio, pleural effusion, endothelial filtration coefficient, and histological indices all showed evidence of protection and paralleled imaging results. Additional results indicate higher mitochondrial complex IV activity in H-T versus normoxia rats, suggesting that mitochondria of H-T lungs may be more tolerant of oxidative stress. A pattern of increasing lung uptake of 99mTc-HMPAO and 99mTc-duramycin correlates with advancing oxidative stress and cell death and worsening injury, whereas stable or decreasing 99mTc-HMPAO and stable 99mTc-duramycin reflects hyperoxia tolerance, suggesting the potential utility of molecular imaging for identifying at-risk hosts that are more or less susceptible to progressing to ARDS.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/diagnóstico por imagem , Animais , Hiperóxia/diagnóstico por imagem , Hiperóxia/metabolismo , Imagem Molecular , Oximas , Ratos , Ratos Sprague-Dawley
3.
Nat Biomed Eng ; 6(9): 1017-1030, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970929

RESUMO

Direct assessment of blood oxygenation in the human placenta can provide information about placental function. However, the monitoring of placental oxygenation involves invasive sampling or imaging techniques that are poorly suited for bedside use. Here we show that placental oxygen haemodynamics can be non-invasively probed in real time and up to 4.2 cm below the body surface via concurrent frequency-domain diffuse optical spectroscopy and ultrasound imaging. We developed a multimodal instrument to facilitate the assessment of the properties of the anterior placenta by leveraging image-reconstruction algorithms that integrate ultrasound information about the morphology of tissue layers with optical information on haemodynamics. In a pilot investigation involving placentas with normal function (15 women) or abnormal function (9 women) from pregnancies in the third trimester, we found no significant differences in baseline haemoglobin properties, but statistically significant differences in the haemodynamic responses to maternal hyperoxia. Our findings suggest that the non-invasive monitoring of placental oxygenation may aid the early detection of placenta-related adverse pregnancy outcomes and maternal vascular malperfusion.


Assuntos
Hiperóxia , Placenta , Feminino , Humanos , Hiperóxia/diagnóstico por imagem , Oxigênio , Placenta/irrigação sanguínea , Placenta/diagnóstico por imagem , Placenta/fisiologia , Gravidez , Análise Espectral , Ultrassonografia
4.
Magn Reson Med ; 88(4): 1867-1885, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35678239

RESUMO

PURPOSE: Inducing hyperoxia in tissues is common practice in several areas of research, including oxygen-enhanced MRI (OE-MRI), which attempts to use the resulting signal changes to detect regions of tumor hypoxia or pulmonary disease. The linear relationship between PO2 and R1 has been reproduced in phantom solutions and body fluids such as vitreous fluid; however, in tissue and blood experiments, factors such as changes in deoxyhemoglobin levels can also affect the ΔR1. THEORY AND METHODS: This manuscript proposes a three-compartment model for estimating the hyperoxia-induced changes in R1 of tissues depending on B0, SO2 , blood volume, hematocrit, oxygen extraction fraction, and changes in blood and tissue PO2 . The model contains two blood compartments (arterial and venous) and a tissue compartment. This model has been designed to be easy for researchers to tailor to their tissue of interest by substituting their preferred model for tissue oxygen diffusion and consumption. A specific application of the model is demonstrated by calculating the resulting ΔR1 expected in healthy, hypoxic and necrotic tumor tissues. In addition, the effect of sex-based hematocrit differences on ΔR1 is assessed. RESULTS: The ΔR1 values predicted by the model are consistent with reported literature OE-MRI results: with larger positive changes in the vascular periphery than hypoxic and necrotic regions. The observed sex-based differences in ΔR1 agree with findings by Kindvall et al. suggesting that differences in hematocrit levels may sometimes be a confounding factor in ΔR1. CONCLUSION: This model can be used to estimate the expected tissue ΔR1 in oxygen-enhanced MRI experiments.


Assuntos
Hiperóxia , Volume Sanguíneo , Humanos , Hiperóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Oxigênio , Imagens de Fantasmas
5.
Placenta ; 114: 124-132, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34537569

RESUMO

INTRODUCTION: MR relaxometry has been used to assess placental exchange function, but methods to date are not sufficiently fast to be robust to placental motion. Magnetic resonance fingerprinting (MRF) permits rapid, voxel-wise, intrinsically co-registered T1 and T2 mapping. After characterizing measurement error, we scanned pregnant women during air and oxygen breathing to demonstrate MRF's ability to detect placental oxygenation changes. METHODS: The accuracy of FISP-based, sliding-window reconstructed MRF was tested on phantoms. MRF scans in 9-s breath holds were acquired at 3T in 31 pregnant women during air and oxygen breathing. A mixed effects model was used to test for changes in placenta relaxation times between physiological states, to assess the dependency on gestational age (GA), and the impact of placental motion. RESULTS: MRF estimates of known phantom relaxation times resulted in mean absolute errors for T1 of 92 ms (4.8%), but T2 was less accurate at 16 ms (13.6%). During normoxia, placental T1 = 1825 ± 141 ms (avg ± standard deviation) and T2 = 60 ± 16 ms (gestational age range 24.3-36.7, median 32.6 weeks). In the statistical model, placental T2 rose and T1 remained contant after hyperoxia, and no GA dependency was observed for T1 or T2. DISCUSSION: Well-characterized, motion-robust MRF was used to acquire T1 and T2 maps of the placenta. Changes with hyperoxia are consistent with a net increase in oxygen saturation. Toward the goal of whole-placenta quantitative oxygenation imaging over time, we aim to implement 3D MRF with integrated motion correction to improve T2 accuracy.


Assuntos
Hiperóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Gravidez , Adulto Jovem
6.
J Appl Physiol (1985) ; 131(3): 895-904, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34292788

RESUMO

Evolving bronchopulmonary dysplasia (BPD) is characterized by impaired alveolarization leading to lung aeration inhomogeneities. Hyperoxia-exposed preterm rabbits have been proposed to mimic evolving BPD; therefore, we aimed to verify if this model has the same lung ultrasound and mechanical features of evolving BPD in human neonates. Semiquantitative lung ultrasound and lung mechanics measurement was performed in 25 preterm rabbits (28 days of gestation) and 25 neonates (mean gestational age ≈ 26 wk) with evolving BPD. A modified rabbit lung ultrasound score (rLUS) and a validated neonatal lung ultrasound score (LUS) were used. Lung ultrasound images were recorded and evaluated by two independent observers blinded to each other's evaluation. Lung ultrasound findings were equally heterogeneous both in rabbits as in human neonates and encompassed all the classical lung ultrasound semiology. Lung ultrasound and histology examination were also performed in 13 term rabbits kept under normoxia as further control and showed the absence of ultrasound and histology abnormalities compared with hyperoxia-exposed preterm rabbits. The interrater absolute agreement for the evaluation of lung ultrasound images in rabbits was very high [ICC: 0.989 (95%CI: 0.975-0.995); P < 0.0001], and there was no difference between the two observers. Lung mechanics parameters were similarly altered in both rabbits and human neonates. There were moderately significant correlations between airway resistances and lung ultrasound scores in rabbits (ρ = 0.519; P = 0.008) and in neonates (ρ = 0.409; P = 0.042). In conclusion, the preterm rabbit model fairly reproduces the lung ultrasound and mechanical characteristics of preterm neonates with evolving BPD.NEW & NOTEWORTHY We have reported that hyperoxia-exposed preterm rabbits and human preterm neonates with evolving BPD have the same lung ultrasound appearance, and that lung ultrasound can be fruitfully applied on this model with a brief training. The animal model and human neonates also presented the same relationship between semiquantitative ultrasound-assessed lung aeration and airway resistances. In conclusion, this animal model fairly reproduce evolving BPD as it is seen in clinical practice.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Hiperóxia/diagnóstico por imagem , Recém-Nascido , Pulmão/diagnóstico por imagem , Coelhos , Mecânica Respiratória
7.
Magn Reson Med ; 85(3): 1272-1281, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32936489

RESUMO

PURPOSE: Quantitative susceptibility mapping (QSM) is an emerging tool for the precise characterization of human tissue, including regional oxygenation. A critical function of the human placenta is oxygen transfer to the developing fetus, which remains difficult to study in utero. The purpose of this study is to investigate the feasibility of performing QSM in the human placenta in utero. METHODS: In healthy pregnant women, 3D gradient echo data of the placenta were acquired with prospective respiratory gating at 1.5 Tesla and 3 Tesla. A brief period (6-7 min) of maternal hyperoxia was induced to increase placental oxygenation in a subset of women scanned at 3 Tesla, and data were acquired before and during oxygen administration. Susceptibility and T2∗ / R2∗ maps were reconstructed from gradient echo data, and mean and SD of these measures within the whole placenta were calculated. RESULTS: A total of 54 women were studied at a mean gestational age of 30.7 ± 4.2 (range: 24 5/7-38 4/7) weeks. Susceptibility and T2∗ maps demonstrated lobular contrast reflecting regional oxygenation difference at both field strengths. SD of susceptibilities, mean R2∗ , and SD of R2∗ of the placenta showed a linear relationship with gestational age (P < .01 for all). These measures were also responsive to maternal hyperoxia, and there was an increasing response with advancing gestational age (P < .01 for all). CONCLUSION: This study demonstrates the feasibility of performing placental QSM in pregnant women and supports the potential for placental QSM to provide noninvasive in vivo assessment of placental oxygenation.


Assuntos
Hiperóxia , Imageamento por Ressonância Magnética , Estudos de Viabilidade , Feminino , Humanos , Hiperóxia/diagnóstico por imagem , Lactente , Placenta/diagnóstico por imagem , Gravidez , Estudos Prospectivos
8.
Magn Reson Med ; 85(1): 334-345, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32710578

RESUMO

PURPOSE: Examine the feasibility of characterizing the regulation of renal oxygenation using high-temporal-resolution monitoring of the T2∗ response to a step-like oxygenation stimulus. METHODS: For T2∗ mapping, multi-echo gradient-echo imaging was used (temporal resolution = 9 seconds). A step-like renal oxygenation challenge was applied involving sequential exposure to hyperoxia (100% O2 ), hypoxia (10% O2 + 90% N2 ), and hyperoxia (100% O2 ). In vivo experiments were performed in healthy rats (N = 10) and in rats with bilateral ischemia-reperfusion injury (N = 4). To assess the step response of renal oxygenation, a second-order exponential model was used (model parameters: amplitude [A], time delay [Δt], damping constant [D], and period of the oscillation [T]) for renal cortex, outer stripe of the outer medulla, inner stripe of the outer medulla, and inner medulla. RESULTS: The second-order exponential model permitted us to model the exponential T2∗ recovery and the superimposed T2∗ oscillation following renal oxygenation stimulus. The in vivo experiments revealed a difference in Douter medulla between healthy controls (D < 1, indicating oscillatory recovery) and ischemia-reperfusion injury (D > 1, reflecting aperiodic recovery). The increase in Douter medulla by a factor of 3.7 (outer stripe of the outer medulla) and 10.0 (inner stripe of the outer medulla) suggests that this parameter might be rather sensitive to (patho)physiological oxygenation changes. CONCLUSION: This study demonstrates the feasibility of monitoring the dynamic oxygenation response of renal tissues to a step-like oxygenation challenge using high-temporal-resolution T2∗ mapping. Our results suggest that the implemented system analysis approach may help to unlock questions regarding regulation of renal oxygenation, with the ultimate goal of providing imaging means for diagnostics and therapy of renal diseases.


Assuntos
Hiperóxia , Traumatismo por Reperfusão , Animais , Hiperóxia/diagnóstico por imagem , Hipóxia , Rim/diagnóstico por imagem , Córtex Renal/diagnóstico por imagem , Medula Renal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio , Ratos
9.
Eur Radiol ; 31(5): 3090-3097, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33123792

RESUMO

OBJECTIVE: Assessment of lung development and maturity is of utmost importance in prenatal counseling. Blood oxygen level-dependent (BOLD) effect MRI was developed for functional evaluations of organs. To date, no data are available in fetal lungs and nothing is known about the existence of a BOLD effect in the lungs. The aim of our study was to evaluate if a BOLD response could be detected in fetal lungs. MATERIALS AND METHODS: From January 2014 to December 2016, 38 healthy pregnant women were prospectively enrolled. After a routine scan on a 1.5-T MRI device (normoxic period), maternal hyperoxia was induced for 5 min before the BOLD sequence (hyperoxic period). R2* was evaluated by fitting average intensity of the signal, both for normoxic (norm) and hyperoxic (hyper) periods. RESULTS: A significant BOLD response was observed after maternal hyperoxia in the lungs with a mean R2* decrease of 12.1 ± 2.5% (p < 0.001), in line with the placenta response with a mean R2* decrease of 19.2 ± 5.9% (p < 0.0001), confirming appropriate oxygen uptake. Conversely, no significant BOLD effect was observed for the brain nor the liver with a mean ∆R2* of 3.6 ± 3.1% (p = 0.64) and 2.8 ± 3.7% (p = 0.23). CONCLUSION: This study shows for the first time in human that a BOLD response can be observed in the normal fetal lung despite its prenatal "non-functional status." If confirmed in congenital lung and chest malformations, this property could be used in addition to the lung volume for a better prediction of postnatal respiratory status. KEY POINTS: • Blood oxygen level-dependent (BOLD) effect MRI was developed for functional evaluations of organs and could have interesting implications for the fetal organs. • Assessment of lung development is of utmost importance in prenatal counseling, but to date no data are available in fetal lungs. • BOLD response can be observed in the normal fetal lung opening the way to studies on fetus with pathological lungs.


Assuntos
Hiperóxia , Oxigênio , Feminino , Feto/diagnóstico por imagem , Humanos , Hiperóxia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Gravidez
10.
Magn Reson Med ; 84(6): 3271-3285, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32602975

RESUMO

PURPOSE: To use hyperoxia in combination with QSM to quantify microvascular oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO2 ) in healthy subjects and to cross-validate results with those from hypercapnia QSM-OEF. METHODS: Ten healthy subjects were scanned on a 3T MRI scanner. At baseline normoxia and during hyperoxia (PetO2 = +300 mmHg), QSM data were acquired using a multi-echo gradient-echo (GRE) sequence, and cerebral blood flow data were acquired using a pseudocontinuous arterial spin labeling sequence. The OEF and CMRO2 maps were computed and compared with those from hypercapnia QSM-OEF, acquired in the same subjects, using correlation and Bland-Altman analysis in 16 vascular territories. RESULTS: Hyperoxia QSM-OEF produced physiologically reasonable OEF and CMRO2 values in all subjects (gray-matter region of interest average OEF = 0.42 ± 0.04, average CMRO2 = 181 ± 34 µmol O2 /min/100 g). When compared with hypercapnia QSM-OEF, Bland-Altman plots revealed small deviations (mean OEF difference = 0.015, mean CMRO2 difference = 4.9 µmol O2 /min/100 g, P < .05). Good and excellent correlations of regional OEF and CMRO2 were found for the two methods. In addition, hyperoxia had minimal impact on cerebral blood flow (average gray-matter cerebral blood flow was reduced by 7.5 ± 5.4%). CONCLUSIONS: Hyperoxia in combination with QSM is a robust approach to measure OEF. Compared with hypercapnia, hyperoxia is more comfortable and has minimal impact on cerebral blood flow.


Assuntos
Hiperóxia , Oxigênio , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Substância Cinzenta , Humanos , Hiperóxia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Consumo de Oxigênio
11.
J Vis Exp ; (157)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32281974

RESUMO

The vascular supply to the retina has been shown to dynamically adapt through vasoconstriction and vasodilation to accommodate the metabolic demands of the retina. This process, referred to as retinal vascular reactivity (RVR), is mediated by neurovascular coupling, which is impaired very early in retinal vascular diseases such as diabetic retinopathy. Therefore, a clinically feasible method of assessing vascular function may be of significant interest in both research and clinical settings. Recently, in vivo imaging of the retinal vasculature at the capillary level has been made possible by the FDA approval of optical coherence tomography angiography (OCTA), a noninvasive, minimal risk and dyeless angiography method with capillary level resolution. Concurrently, physiological and pathological changes in RVR have been shown by several investigators. The method shown in this manuscript is designed to investigate RVR using OCTA with no need for alterations to the clinical imaging procedures or device. It demonstrates real time imaging of the retina and retinal vasculature during exposure to hypercapnic or hyperoxic conditions. The exam is easily performed with two personnel in under 30 min with minimal subject discomfort or risk. This method is adaptable to other ophthalmic imaging devices and the applications may vary based on the composition of the gas mixture and patient population. A strength of this method is that it allows for an investigation of retinal vascular function at the capillary level in human subjects in vivo. Limitations of this method are largely those of OCTA and other retinal imaging methods including imaging artifacts and a restricted dynamic range. The results obtained from the method are OCT and OCTA images of the retina. These images are amenable to any analysis that is possible on commercially available OCT or OCTA devices. The general method, however, can be adapted to any form of ophthalmic imaging.


Assuntos
Angiofluoresceinografia , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica , Humanos , Hipercapnia/diagnóstico por imagem , Hiperóxia/diagnóstico por imagem , Imagem Óptica
12.
J Am Heart Assoc ; 9(5): e014739, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32089047

RESUMO

Background The impact of hyperoxia, that is, supraphysiological arterial partial pressure of O2, on myocardial oxygen balance and function in stable multivessel coronary artery disease (CAD) is poorly understood. In this observational study, we assessed myocardial effects of inhalational hyperoxia in patients with CAD using a comprehensive cardiovascular magnetic resonance exam. Methods and Results Twenty-five patients with stable CAD underwent a contrast-free cardiovascular magnetic resonance exam in the interval between their index coronary angiography and subsequent revascularization. The cardiovascular magnetic resonance exam involved T1 and T2 mapping for tissue characterization (fibrosis, edema) as well as function imaging, from which strain analysis was derived, and oxygenation-sensitive cardiovascular magnetic resonance imaging. The latter modalities were both acquired at room air and after breathing pure O2 by face mask at 10 L/min for 5 minutes. In 14 of the 25 CAD patients (56%), hyperoxia induced poststenotic myocardial deoxygenation with a subsequent oxygenation discordance across the myocardium. Extent of deoxygenation was correlated to degree of stenosis (r=-0.434, P=0.033). Hyperoxia-associated poststenotic deoxygenation was accompanied by ipsiregional reduction of diastolic strain rate (1.39±0.57 versus 1.18±0.65; P=0.045) and systolic radial velocity (37.40±17.22 versus 32.88±13.58; P=0.038). Increased T2, as well as lower cardiac index, and defined abnormal strain parameters on room air were predictive for hyperoxia-induced abnormalities (P<0.05). Furthermore, in patients with prolonged native T1 (>1220 ms), hyperoxia reduced ejection fraction and peak strain. Conclusions Patients with CAD and pre-existent myocardial injury who respond to hyperoxic challenge with strain abnormalities appear susceptible for hyperoxia-induced regional deoxygenation and deterioration of myocardial function. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02233634.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/metabolismo , Hiperóxia/complicações , Miocárdio/metabolismo , Consumo de Oxigênio/fisiologia , Adulto , Idoso , Estudos de Casos e Controles , Angiografia Coronária , Doença da Artéria Coronariana/terapia , Humanos , Hiperóxia/diagnóstico por imagem , Hiperóxia/metabolismo , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Oxigenoterapia , Adulto Jovem
13.
Braz J Med Biol Res ; 53(2): e8917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31994602

RESUMO

This study investigates the effect of the overexpression of the placental growth factor (PGF) and hyperoxia on lung development and determines whether anti-PGF antibody ameliorates hyperoxia-mediated impairment of lung development in newborn rats. After exposure to normoxic conditions for seven days, newborn rats subjected to normoxia were intraperitoneally or intratracheally injected with physiological saline, adenovirus-negative control (Ad-NC), or adenovirus-PGF (Ad-PGF) to create the Normoxia, Normoxia+Ad-NC, and Normoxia+Ad-PGF groups, respectively. Newborn rats subjected to hyperoxia were intraperitoneally injected with physiological saline or anti-PGF antibodies to create the Hyperoxia and Hyperoxia+anti-PGF groups, respectively. Our results revealed significant augmentation in the levels of PGF and its receptor Flt-1 in the lung tissues of newborn rats belonging to the Normoxia+Ad-PGF or Hyperoxia groups. PGF overexpression in these groups caused lung injury in newborn rats, while anti-PGF antibody treatment significantly cured the hyperoxia-induced lung injury. Moreover, PGF overexpression significantly increased TNF-α and Il-6 levels in the bronchoalveolar lavage (BAL) fluid of the Normoxia+Ad-PGF and Hyperoxia groups. However, their levels were significantly reduced in the BAL fluid of the Hyperoxia+anti-PGF group. Immunohistochemical analysis revealed that PGF overexpression and hyperoxia treatment significantly increased the expression of the angiogenesis marker, CD34. However, its expression was significantly decreased upon administration of anti-PGF antibodies (compared to the control group under hyperoxia). In conclusion, PGF overexpression impairs lung development in newborn rats while its inhibition using an anti-PGF antibody ameliorates the same. These results provided new insights for the clinical management of bronchopulmonary dysplasia in premature infants.


Assuntos
Anticorpos Monoclonais/metabolismo , Autoanticorpos/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Fator de Crescimento Placentário/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Modelos Animais de Doenças , Feminino , Hiperóxia/complicações , Hiperóxia/diagnóstico por imagem , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/patologia , Microscopia Eletrônica de Varredura , Fator de Crescimento Placentário/imunologia , Gravidez , Ratos
14.
J Cereb Blood Flow Metab ; 40(7): 1501-1516, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394960

RESUMO

Functional MRI (fMRI) can identify active foci in response to stimuli through BOLD signal fluctuations, which represent a complex interplay between blood flow and cerebral metabolic rate of oxygen (CMRO2) changes. Calibrated fMRI can disentangle the underlying contributions, allowing quantification of the CMRO2 response. Here, whole-brain venous oxygen saturation (Yv) was computed alongside ASL-measured CBF and BOLD-weighted data to derive the calibration constant, M, using the proposed Yv-based calibration. Data were collected from 10 subjects at 3T with a three-part interleaved sequence comprising background-suppressed 3D-pCASL, 2D BOLD-weighted, and single-slice dual-echo GRE (to measure Yv via susceptometry-based oximetry) acquisitions while subjects breathed normocapnic/normoxic, hyperoxic, and hypercapnic gases, and during a motor task. M was computed via Yv-based calibration from both hypercapnia and hyperoxia stimulus data, and results were compared to conventional hypercapnia or hyperoxia calibration methods. Mean M in gray matter did not significantly differ between calibration methods, ranging from 8.5 ± 2.8% (conventional hyperoxia calibration) to 11.7 ± 4.5% (Yv-based calibration in response to hyperoxia), with hypercapnia-based M values between (p = 0.56). Relative CMRO2 changes from finger tapping were computed from each M map. CMRO2 increased by ∼20% in the motor cortex, and good agreement was observed between the conventional and proposed calibration methods.


Assuntos
Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Calibragem , Feminino , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Humanos , Hipercapnia/diagnóstico por imagem , Hipercapnia/metabolismo , Hiperóxia/diagnóstico por imagem , Hiperóxia/metabolismo , Masculino , Marcadores de Spin
15.
Braz. j. med. biol. res ; 53(2): e8917, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1055492

RESUMO

This study investigates the effect of the overexpression of the placental growth factor (PGF) and hyperoxia on lung development and determines whether anti-PGF antibody ameliorates hyperoxia-mediated impairment of lung development in newborn rats. After exposure to normoxic conditions for seven days, newborn rats subjected to normoxia were intraperitoneally or intratracheally injected with physiological saline, adenovirus-negative control (Ad-NC), or adenovirus-PGF (Ad-PGF) to create the Normoxia, Normoxia+Ad-NC, and Normoxia+Ad-PGF groups, respectively. Newborn rats subjected to hyperoxia were intraperitoneally injected with physiological saline or anti-PGF antibodies to create the Hyperoxia and Hyperoxia+anti-PGF groups, respectively. Our results revealed significant augmentation in the levels of PGF and its receptor Flt-1 in the lung tissues of newborn rats belonging to the Normoxia+Ad-PGF or Hyperoxia groups. PGF overexpression in these groups caused lung injury in newborn rats, while anti-PGF antibody treatment significantly cured the hyperoxia-induced lung injury. Moreover, PGF overexpression significantly increased TNF-α and Il-6 levels in the bronchoalveolar lavage (BAL) fluid of the Normoxia+Ad-PGF and Hyperoxia groups. However, their levels were significantly reduced in the BAL fluid of the Hyperoxia+anti-PGF group. Immunohistochemical analysis revealed that PGF overexpression and hyperoxia treatment significantly increased the expression of the angiogenesis marker, CD34. However, its expression was significantly decreased upon administration of anti-PGF antibodies (compared to the control group under hyperoxia). In conclusion, PGF overexpression impairs lung development in newborn rats while its inhibition using an anti-PGF antibody ameliorates the same. These results provided new insights for the clinical management of bronchopulmonary dysplasia in premature infants.


Assuntos
Animais , Feminino , Gravidez , Ratos , Autoanticorpos/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Fator de Crescimento Placentário/metabolismo , Anticorpos Monoclonais/metabolismo , Autoanticorpos/imunologia , Microscopia Eletrônica de Varredura , Hiperóxia/complicações , Hiperóxia/diagnóstico por imagem , Modelos Animais de Doenças , Lesão Pulmonar/patologia , Lesão Pulmonar/diagnóstico por imagem , Fator de Crescimento Placentário/imunologia , Animais Recém-Nascidos , Anticorpos Monoclonais/imunologia
16.
Top Magn Reson Imaging ; 28(5): 285-297, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31592995

RESUMO

The Human Placenta Project has focused attention on the need for noninvasive magnetic resonance imaging (MRI)-based techniques to diagnose and monitor placental function throughout pregnancy. The hope is that the management of placenta-related pathologies would be improved if physicians had more direct, real-time measures of placental health to guide clinical decision making. As oxygen alters signal intensity on MRI and oxygen transport is a key function of the placenta, many of the MRI methods under development are focused on quantifying oxygen transport or oxygen content of the placenta. For example, measurements from blood oxygen level-dependent imaging of the placenta during maternal hyperoxia correspond to outcomes in twin pregnancies, suggesting that some aspects of placental oxygen transport can be monitored by MRI. Additional methods are being developed to accurately quantify baseline placental oxygenation by MRI relaxometry. However, direct validation of placental MRI methods is challenging and therefore animal studies and ex vivo studies of human placentas are needed. Here we provide an overview of the current state of the art of oxygen transport and quantification with MRI. We suggest that as these techniques are being developed, increased focus be placed on ensuring they are robust and reliable across individuals and standardized to enable predictive diagnostic models to be generated from the data. The field is still several years away from establishing the clinical benefit of monitoring placental function in real time with MRI, but the promise of individual personalized diagnosis and monitoring of placental disease in real time continues to motivate this effort.


Assuntos
Hiperóxia/diagnóstico por imagem , Hiperóxia/patologia , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Placenta/diagnóstico por imagem , Placenta/patologia , Animais , Feminino , Humanos , Gravidez
18.
J Magn Reson Imaging ; 49(6): 1577-1586, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30353969

RESUMO

BACKGROUND: Noninvasive assessment of dynamic changes in liver blood flow, perfusion, and oxygenation using MRI may allow detection of subtle hemodynamic alterations in cirrhosis. PURPOSE: To assess the feasibility of measuring dynamic liver blood flow, perfusion, and T2 * alterations in response to meal, hypercapnia, and hyperoxia challenges. STUDY TYPE: Prospective. SUBJECTS: Ten healthy volunteers (HV) and 10 patients with compensated cirrhosis (CC). FIELD STRENGTH/SEQUENCE: 3T; phase contrast, arterial spin labeling, and T2* mapping. ASSESSMENT: Dynamic changes in portal vein and hepatic artery blood flow (using phase contrast MRI), liver perfusion (using arterial spin labeling), and blood oxygenation ( T2* mapping) following a meal challenge (660 kcal), hyperoxia (target PET O2 of 500 mmHg), and hypercapnia (target increase PET CO2 of ∼6 mmHg). STATISTICAL TESTS: Tests between baseline and each challenge were performed using a paired two-tailed t-test (parametric) or Wilcoxon-signed-ranks test (nonparametric). Repeatability and reproducibility were determined by the coefficient of variation (CoV). RESULTS: Portal vein velocity increased following the meal (70 ± 9%, P < 0.001) and hypercapnic (7 (5-11)%, P = 0.029) challenge, while hepatic artery flow decreased (-30 ± 18%, P = 0.005) following the meal challenge in HV. In CC patients, portal vein velocity increased (37 ± 13%, P = 0.012) without the decrease in hepatic artery flow following the meal. In both groups, the meal increased liver perfusion (HV: 82 ± 50%, P < 0.0001; CC: 27 (16-42)%, P = 0.011) with faster arrival time of blood (HV: -54 (-56-30)%, P = 0.074; CC: -42 ± 32%, P = 0.005). In HVs, T2* increased after the meal and in response to hyperoxia, with a decrease in hypercapnia (6 ± 8% P = 0.052; 3 ± 5%, P = 0.075; -5 ± 6%, P = 0.073, respectively), but no change in CC patients. Baseline between-session CoV <15% for blood flow and <10% for T2* measures. DATA CONCLUSION: Dynamic changes in liver perfusion, blood flow, and oxygenation following a meal, hyperoxic, and hypercapnic challenges can be measured using noninvasive MRI and potentially be used to stratify patients with cirrhosis. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1577-1586.


Assuntos
Alimentos , Hipercapnia/diagnóstico por imagem , Hiperóxia/diagnóstico por imagem , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Artérias/diagnóstico por imagem , Feminino , Fibrose/diagnóstico por imagem , Voluntários Saudáveis , Hemodinâmica , Artéria Hepática/diagnóstico por imagem , Humanos , Hipercapnia/metabolismo , Hiperóxia/metabolismo , Masculino , Microscopia de Contraste de Fase , Pessoa de Meia-Idade , Oxigênio/metabolismo , Perfusão , Veia Porta/diagnóstico por imagem , Período Pós-Prandial , Estudos Prospectivos , Reprodutibilidade dos Testes , Marcadores de Spin , Adulto Jovem
19.
Stroke ; 49(12): 3012-3019, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571431

RESUMO

Background and Purpose- Acceleration of longitudinal relaxation under hyperoxic challenge (ie, hyperoxia-induced ΔR1) indicates oxygen accumulation and reflects baseline tissue oxygenation. We evaluated the feasibility of hyperoxia-induced ΔR1 for evaluating cerebral oxygenation status and degree of ischemic damage in stroke. Methods- In 24-hour transient stroke rat models (n=13), hyperoxia-induced ΔR1, ischemic severity (apparent diffusion coefficient [ADC]), vasogenic edema (R2), total and microvascular blood volume (superparamagnetic iron oxide-driven ΔR2* and ΔR2, respectively), and glucose metabolism activity (18F-fluorodeoxyglucose uptake on positron emission tomography) were measured. The distribution of these parameters according to hyperoxia-induced ΔR1 was analyzed. The partial pressure of tissue oxygen change during hyperoxic challenge was measured using fiberoptic tissue oximetry. In 4-hour stroke models (n=6), ADC and hyperoxia-induced ΔR1 was analyzed with 2,3,5-triphenyltetrazolium chloride staining being a criterion of infarction. Results- Ischemic hemisphere showed significantly higher hyperoxia-induced ΔR1 than nonischemic brain in a pattern depending on ADC. During hyperoxic challenge, ischemic hemisphere demonstrated uncontrolled increase of partial pressure of tissue oxygen, whereas contralateral hemisphere rapidly plateaued. Ischemic hemisphere also demonstrated significant correlation between hyperoxia-induced ΔR1 and R2. Hyperoxia-induced ΔR1 showed a significant negative correlation with 18F-fluorodeoxyglucose uptake. The ADC, R2, ΔR2, and 18F-fluorodeoxyglucose uptake showed a dichotomized distribution according to the hyperoxia-induced ΔR1 as their slopes and values were higher at low hyperoxia-induced ΔR1 (<50 ms-1) than at high ΔR1. In 4-hour stroke rats, the distribution of ADC according to the hyperoxia-induced ΔR1 was similar with 24-hour stroke rats. The hyperoxia-induced ΔR1 was greater in the infarct area (47±10 ms-1) than in peri-infarct area (16±4 ms-1; P<0.01). Conclusions- Hyperoxia-induced ΔR1 adequately indicates cerebral oxygenation and can be a feasible biomarker to classify the degree of ischemia-induced damage in neurovascular function and metabolism in stroke brain.


Assuntos
Edema Encefálico/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Hiperóxia/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Oxigênio , Animais , Circulação Cerebrovascular , Modelos Animais de Doenças , Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Pressão Parcial , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Acidente Vascular Cerebral/diagnóstico por imagem
20.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R759-R767, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29995458

RESUMO

We examined if the diving-induced vascular changes in the peripheral and cerebral circulation could be prevented by oral antioxidant supplementation. Fourteen divers performed a single scuba dive to eighteen meter sea water for 47 min. Twelve of the divers participated in a follow-up study involving breathing 60% of oxygen at ambient pressure for 47 min. Before both studies, participants ingested vitamin C (2 g/day) or a placebo capsule for 6 days. After a 2-wk washout, the study was repeated with the different condition. Endothelium-dependent vasodilator function of the brachial artery was assessed pre- and postintervention using the flow-mediated dilation (FMD) technique. Transcranial Doppler ultrasound was used to measure intracranial blood velocities pre- and 90 min postintervention. FMD was reduced by ∼32.8% and ∼21.2% postdive in the placebo and vitamin C trial and posthyperoxic condition in the placebo trial by ∼28.2% ( P < 0.05). This reduction in FMD was attenuated by ∼10% following vitamin C supplementation in the hyperoxic study ( P > 0.05). Elevations in intracranial blood velocities 30 min after surfacing from diving were reduced in the vitamin C study compared with the placebo trial ( P < 0.05). O2 breathing had no postintervention effects on intracranial velocities ( P > 0.05). Prophylactic ingestion of vitamin C effectively abrogated peripheral vascular dysfunction following exposure to 60% O2 but did not abolish the postdive decrease in FMD. Transient elevations of intracranial velocities postdive were reduced by vitamin C. These findings highlight the differential influence of vitamin C on peripheral and cerebral circulations following scuba diving, which are only partly mediated via hyperoxia.


Assuntos
Antioxidantes/administração & dosagem , Ácido Ascórbico/administração & dosagem , Artéria Braquial/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Mergulho , Hiperóxia/fisiopatologia , Vasodilatação/efeitos dos fármacos , Administração Oral , Adulto , Velocidade do Fluxo Sanguíneo , Artéria Braquial/diagnóstico por imagem , Artéria Braquial/fisiopatologia , Croácia , Método Duplo-Cego , Ecocardiografia , Humanos , Hiperóxia/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Ultrassonografia Doppler de Pulso , Ultrassonografia Doppler Transcraniana/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...